Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges
Abstract
:1. Introduction
2. Hyperpolarized 129Xe MRI
2.1. Spin-Exchange Optical Pumping
2.2. HP 129Xe Chemical Exchange Saturation Transfer
2.3. Hardware and Pulse Sequence Considerations
3. HyperCEST Active Agents
3.1. Cryptophane-A
3.1.1. Cryptophane-A Structure
3.1.2. Cryptophane-A Exchange Kinetics Properties
3.1.3. HyperCEST Approaches Utilizing CrA-Based Agents
3.2. Cucurbit[6]uril
3.2.1. Cucurbit[6]uril Structure and Properties
3.2.2. HyperCEST Imaging Using CB6
3.2.3. Exploring Potential Functionalization of CB6
3.3. Gas Vesicles
3.4. Recently Discovered Novel HyperCEST Agents
4. In Vivo HyperCEST Imaging
5. Discussion
6. Future Directions
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mankoff, D.A. A Definition of Molecular Imaging. J. Nucl. Med. 2007, 48, 18N–21N. [Google Scholar]
- Mankoff, D.A.; Farwell, M.D.; Clark, A.S.; Pryma, D.A. Making Molecular Imaging a Clinical Tool for Precision Oncology: A Review. JAMA Oncol. 2017, 3, 695–701. [Google Scholar] [CrossRef]
- Rowe, S.P.; Pomper, M.G. Molecular Imaging in Oncology: Current Impact and Future Directions. CA Cancer J. Clin. 2022, 72, 333–352. [Google Scholar] [CrossRef]
- Haider, A.; Elghazawy, N.H.; Dawood, A.; Gebhard, C.; Wichmann, T.; Sippl, W.; Hoener, M.; Arenas, E.; Liang, S.H. Translational Molecular Imaging and Drug Development in Parkinson’s Disease. Mol. Neurodegener. 2023, 18, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tian, Y.; Zhang, C.; Tian, X.; Ross, A.W.; Moir, R.D.; Sun, H.; Tanzi, R.E.; Moore, A.; Ran, C. Near-Infrared Fluorescence Molecular Imaging of Amyloid Beta Species and Monitoring Therapy in Animal Models of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2015, 112, 9734–9739. [Google Scholar] [CrossRef] [PubMed]
- MacRitchie, N.; Frleta-Gilchrist, M.; Sugiyama, A.; Lawton, T.; McInnes, I.B.; Maffia, P. Molecular Imaging of Inflammation—Current and Emerging Technologies for Diagnosis and Treatment. Pharmacol. Ther. 2020, 211, 107550. [Google Scholar] [CrossRef] [PubMed]
- Heo, G.S.; Kopecky, B.; Sultan, D.; Ou, M.; Feng, G.; Bajpai, G.; Zhang, X.; Luehmann, H.; Detering, L.; Su, Y.; et al. Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart. Circ. Res. 2019, 124, 881–890. [Google Scholar] [CrossRef]
- Walrand, S.; Hesse, M.; Jamar, F. Update on Novel Trends in PET/CT Technology and Its Clinical Applications. Br. J. Radiol. 2018, 91, 20160534. [Google Scholar] [CrossRef]
- Stiles, J.; Baldassi, B.; Bubon, O.; Poladyan, H.; Freitas, V.; Scaranelo, A.; Mulligan, A.M.; Waterston, M.; Reznik, A. Evaluation of a High-Sensitivity Organ-Targeted PET Camera. Sensors 2022, 22, 4678. [Google Scholar] [CrossRef]
- Stiles, J.; Bubon, O.; Poladyan, H.; Teymurazyan, A.; Reznik, A.A. Evaluation of High-Sensitivity Organ-Specific Positron Emission Tomography (PET) System. In Proceedings of the 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, Manchester, UK, 26 October–2 November 2019; pp. 1–3. [Google Scholar]
- Burgholzer, P.; Bauer-Marschallinger, J.; Reitinger, B.; Berer, T. Resolution Limits in Photoacoustic Imaging Caused by Acoustic Attenuation. J. Imaging 2019, 5, 13. [Google Scholar] [CrossRef]
- Tooyama, I.; Yanagisawa, D.; Taguchi, H.; Kato, T.; Hirao, K.; Shirai, N.; Sogabe, T.; Ibrahim, N.F.; Inubushi, T.; Morikawa, S. Amyloid Imaging Using Fluorine-19 Magnetic Resonance Imaging (19F-MRI). Ageing Res. Rev. 2016, 30, 85–94. [Google Scholar] [CrossRef]
- Higuchi, M.; Iwata, N.; Matsuba, Y.; Sato, K.; Sasamoto, K.; Saido, T.C. 19F and 1H MRI Detection of Amyloid β Plaques in Vivo. Nat. Neurosci. 2005, 8, 527–533. [Google Scholar] [CrossRef]
- Meyerspeer, M.; Boesch, C.; Cameron, D.; Dezortová, M.; Forbes, S.C.; Heerschap, A.; Jeneson, J.A.L.; Kan, H.E.; Kent, J.; Layec, G.; et al. 31 P Magnetic Resonance Spectroscopy in Skeletal Muscle: Experts’ Consensus Recommendations. NMR Biomed. 2020, 34, e4246. [Google Scholar] [CrossRef]
- Shepelytskyi, Y.; Fox, M.S.; Davenport, K.; Li, T.; Albert, M.S.; Davenport, E. In-Vivo Retention of 5-Fluorouracil Using 19F Magnetic Resonance Chemical Shift Imaging in Colorectal Cancer in a Murine Model. Sci. Rep. 2019, 9, 13244. [Google Scholar] [CrossRef] [PubMed]
- Barekatain, Y.; Khadka, S.; Harris, K.; Delacerda, J.; Yan, V.C.; Chen, K.C.; Pham, C.D.; Uddin, M.N.; Avritcher, R.; Eisenberg, E.J.; et al. Quantification of Phosphonate Drugs by 1H-31P HSQC Shows That Rats Are Better Models of Primate Drug Exposure than Mice. Anal. Chem. 2022, 94, 10045–10053. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, D.; Phelan, A.; Murphy, C.D.; Cobb, S.L. 19F NMR as a Tool in Chemical Biology. Beilstein J. Org. Chem. 2021, 17, 293–318. [Google Scholar] [CrossRef] [PubMed]
- Pinon, A.C.; Capozzi, A.; Ardenkjær-Larsen, J.H. Hyperpolarization via Dissolution Dynamic Nuclear Polarization: New Technological and Methodological Advances. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Bernardo-Seisdedos, G.; Bilbao, J.; Fernández-Ramos, D.; Lopitz-Otsoa, F.; Gutierrez de Juan, V.; Bizkarguenaga, M.; Mateos, B.; Fondevila, M.F.; Abril-Fornaguera, J.; Diercks, T.; et al. Metabolic Landscape of the Mouse Liver by Quantitative 31P Nuclear Magnetic Resonance Analysis of the Phosphorome. Hepatology 2021, 74, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; Cates, G.D.; Driehuys, B.; Happer, W.; Saam, B.; Springer, C.S.; Wishnia, A. Biological Magnetic Resonance Imaging Using Laser-Polarized 129Xe. Nature 1994, 370, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Jannin, S.; Dumez, J.N.; Giraudeau, P.; Kurzbach, D. Application and Methodology of Dissolution Dynamic Nuclear Polarization in Physical, Chemical and Biological Contexts. J. Magn. Reson. 2019, 305, 41–50. [Google Scholar] [CrossRef]
- Cherubini, A.; Bifone, A. Hyperpolarised Xenon in Biology. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 42, 1–30. [Google Scholar] [CrossRef]
- Pałasz, T.; Mikowska, L.; Głowacz, B.; Olejniczak, Z.; Suchanek, M.; Dohnalik, T. Stop-Flow SEOP Polarizer for 129Xe. Acta Phys. Pol. A 2019, 136, 1008–1017. [Google Scholar] [CrossRef]
- Anderson, S.J.; Ruset, I.C.; Watt, D.W.; Ketel, J.; Ketel, S.; Distelbrink, J.H.; Hersman, F.W.; Watt, D.W.; Ketel, J.; Ketel, S. A Path to Scaling Helium-3 Spin-Exchange Optical Pumping. J. Appl. Phys. 2020, 127, 223103. [Google Scholar] [CrossRef]
- Maxwell, J.D.; Alessi, J.; Atoian, G.; Beebe, E.; Epstein, C.S.; Milner, R.G.; Musgrave, M.; Pikin, A.; Ritter, J.; Zelenski, A. Enhanced Polarization of Low Pressure 3He through Metastability Exchange Optical Pumping at High Field. Nucl. Instrum. Methods Phys. Res. A 2020, 959, 161892. [Google Scholar] [CrossRef]
- Caracciolo, F.; Paioni, A.L.; Filibian, M.; Melone, L.; Carretta, P. Proton and Carbon-13 Dynamic Nuclear Polarization of Methylated β-Cyclodextrins. J. Phys. Chem. B 2018, 122, 1836–1845. [Google Scholar] [CrossRef]
- Plummer, J.W.; Emami, K.; Dummer, A.; Woods, J.C.; Walkup, L.L.; Cleveland, Z.I. A Semi-Empirical Model to Optimize Continuous-Flow Hyperpolarized 129Xe Production under Practical Cryogenic-Accumulation Conditions. J. Magn. Reson. 2020, 320, 106845. [Google Scholar] [CrossRef]
- Schröder, L.; Lowery, T.J.; Hilty, C.; Wemmer, D.E.; Pines, A. Molecular Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor. Science 2006, 314, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Couch, M.J.; Blasiak, B.; Tomanek, B.; Ouriadov, A.V.; Fox, M.S.; Dowhos, K.M.; Albert, M.S. Hyperpolarized and Inert Gas MRI: The Future. Mol. Imaging Biol. 2015, 17, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Jayapaul, J.; Schröder, L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020, 25, 4627. [Google Scholar] [CrossRef]
- Mugler, J.P.; Driehuys, B.; Brookeman, J.R.; Cates, G.D.; Berr, S.S.; Bryant, R.G.; Daniel, T.M.; De Lange, E.E.; Downs, J.H.; Erickson, C.J.; et al. MR Imaging and Spectroscopy Using Hyperpolarized 129Xe Gas: Preliminary Human Results. Magn. Reson. Med. 1997, 37, 809–815. [Google Scholar] [CrossRef]
- Kruger, S.J.; Nagle, S.K.; Couch, M.J.; Ohno, Y.; Albert, M.; Fain, S.B. Functional Imaging of the Lungs with Gas Agents. J. Magn. Reson. Imaging 2016, 43, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.V. MOXE: A Model of Gas Exchange for Hyperpolarized 129Xe Magnetic Resonance of the Lung. Magn. Reson. Med. 2013, 69, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.V.; Quirk, J.D.; Ruset, I.C.; Atkinson, J.J.; Hersman, F.W.; Woods, J.C. Quantification of Human Lung Structure and Physiology Using Hyperpolarized 129Xe. Magn. Reson. Med. 2014, 71, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Driehuys, B.; Cofer, G.P.; Pollaro, J.; Mackel, J.B.; Hedlund, L.W.; Johnson, G.A. Imaging Alveolar-Capillary Gas Transfer Using Hyperpolarized 129Xe MRI. Proc. Natl. Acad. Sci. USA 2006, 103, 18278–18283. [Google Scholar] [CrossRef]
- Guan, S.; Tustison, N.; Qing, K.; Shim, Y.M.; Mugler, J.; Altes, T.; Albon, D.; Froh, D.; Mehrad, B.; Patrie, J.; et al. 3D Single-Breath Chemical Shift Imaging Hyperpolarized Xe-129 MRI of Healthy, CF, IPF, and COPD Subjects. Tomography 2022, 8, 2574–2587. [Google Scholar] [CrossRef]
- Saunders, L.C.; Collier, G.J.; Chan, H.F.; Hughes, P.J.C.; Smith, L.J.; Watson, J.G.R.; Meiring, J.E.; Gabriel, Z.; Newman, T.; Plowright, M.; et al. Longitudinal Lung Function Assessment of Patients Hospitalized With COVID-19 Using 1H and 129Xe Lung MRI. Chest 2023, 164, 700–716. [Google Scholar] [CrossRef]
- Doganay, O.; Kim, M.; Gleeson, F. V Gas Exchange and Ventilation Imaging of Healthy and COPD Subjects Using Hyperpolarized Xenon-129 MRI and a 3D Alveolar Gas-Exchange Model. Eur. Radiol. 2023, 33, 3322–3331. [Google Scholar] [CrossRef]
- Foo, C.T.; Langton, D.; Thompson, B.R.; Thien, F. Functional Lung Imaging Using Novel and Emerging MRI Techniques. Front. Med. 2023, 10, 1060940. [Google Scholar] [CrossRef]
- Matheson, A.M.; McIntosh, M.J.; Kooner, H.K.; Lee, J.; Desaigoudar, V.; Bier, E.; Driehuys, B.; Svenningsen, S.; Santyr, G.E.; Kirby, M.; et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-Acute COVID-19 Syndrome. Radiology 2022, 305, 466–476. [Google Scholar] [CrossRef]
- XENOVIEW, U.S. Food&Drug Administration Website. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-xenoview (accessed on 16 December 2023).
- Albert, M.S.; Kacher, D.F.; Balamore, D.; Venkatesh, A.K.; Jolesz, F.A. T1 of 129Xe in Blood and the Role of Oxygenation. J. Magn. Reson. 1999, 140, 264–273. [Google Scholar] [CrossRef]
- Albert, M.S.; Balamore, D.; Kacher, D.F.; Venkatesh, A.K.; Jolesz, F.A. Hyperpolarized 129Xe T1 in oxygenated and deoxygenated blood. NMR Biomed. 2000, 13, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Wolber, J.; Cherubini, A.; Dzik-Jurasz, A.S.K.; Leach, M.O.; Bifone, A. Spin-Lattice Relaxation of Laser-Polarized Xenon in Human Blood. Proc. Natl. Acad. Sci. USA 1999, 96, 3664–3669. [Google Scholar] [CrossRef] [PubMed]
- Norquay, G.; Leung, G.; Stewart, N.J.; Wolber, J.; Wild, J.M. 129Xe Chemical Shift in Human Blood and Pulmonary Blood Oxygenation Measurement in Humans Using Hyperpolarized 129Xe NMR. Magn. Reson. Med. 2017, 77, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Collier, G.J.; Schulte, R.F.; Rao, M.; Norquay, G.; Ball, J.; Wild, J.M. Imaging Gas-Exchange Lung Function and Brain Tissue Uptake of Hyperpolarized 129Xe Using Sampling Density-Weighted MRSI. Magn. Reson. Med. 2023, 89, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lan, Y.; Li, H.; Xia, L.; Ye, C.; Lou, X.; Zhou, X. Relationship between Lung and Brain Injury in COVID-19 Patients: A Hyperpolarized 129Xe-MRI-Based 8-Month Follow-Up. Biomedicines 2022, 10, 781. [Google Scholar] [CrossRef] [PubMed]
- Shepelytskyi, Y.; Grynko, V.; Rao, M.R.; Li, T.; Agostino, M.; Wild, J.M.; Albert, M.S. Hyperpolarized 129Xe Imaging of the Brain: Achievements and Future Challenges. Magn. Reson. Med. 2022, 88, 83–105. [Google Scholar] [CrossRef]
- Shepelytskyi, Y.; Hane, F.T.; Grynko, V.; Li, T.; Hassan, A.; Albert, M.S. Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics 2020, 10, 630. [Google Scholar] [CrossRef]
- Grynko, V.; Shepelytskyi, Y.; Li, T.; Hassan, A.; Granberg, K.; Albert, M.S. Hyperpolarized 129Xe Multi-Slice Imaging of the Human Brain Using a 3D Gradient Echo Pulse Sequence. Magn. Reson. Med. 2021, 86, 3175–3181. [Google Scholar] [CrossRef]
- Loza, L.A.; Kadlecek, S.J.; Pourfathi, M.; Hamedani, H.; Duncan, I.F.; Ruppert, K.; Rizi, R.R. Quantification of Ventilation and Gas Uptake in Free-Breathing Mice with Hyperpolarized 129Xe MRI. IEEE Trans. Med. Imaging 2019, 38, 2081. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Caldera, J.; Maunder, A.; Rao, M.; Norquay, G.; Rodgers, O.I.; Clemence, M.; Puddu, C.; Schad, L.R.; Wild, J.M. Dissolved Hyperpolarized Xenon-129 MRI in Human Kidneys. Rapid Commun. 2019, 83, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Schröder, L. Xenon for NMR Biosensing—Inert but Alert. Phys. Medica 2013, 29, 3–16. [Google Scholar] [CrossRef]
- Barskiy, D.A.; Coffey, A.M.; Nikolaou, P.; Mikhaylov, D.M.; Goodson, B.M.; Branca, R.T.; Lu, G.J.; Shapiro, M.G.; Telkki, V.V.; Zhivonitko, V.V.; et al. NMR Hyperpolarization Techniques of Gases. Chem.—Eur. J. 2017, 23, 725–751. [Google Scholar] [CrossRef]
- Eills, J.; Budker, D.; Cavagnero, S.; Chekmenev, E.Y.; Elliott, S.J.; Jannin, S.; Lesage, A.; Matysik, J.; Meersmann, T.; Prisner, T.; et al. Spin Hyperpolarization in Modern Magnetic Resonance. Chem. Rev. 2023, 123, 1417–1551. [Google Scholar] [CrossRef]
- Hirsch, M.L.; Kalechofsky, N.; Belzer, A.; Rosay, M.; Kempf, J.G. Brute-Force Hyperpolarization for NMR and MRI. J. Am. Chem. Soc. 2015, 137, 8428–8434. [Google Scholar] [CrossRef] [PubMed]
- Optically Pumped Atoms—William Happer, Yuan-Yu Jau, Thad Walker—Google Books. Available online: https://books.google.ca/books?hl=en&lr=&id=ycfaW6YjYe8C&oi=fnd&pg=PR5&dq=Happer,+William,+Yuan-Yu+Jau,+and+Thad+Walker.+Optically+pumped+atoms.+John+Wiley+%26+Sons,+2010.&ots=SY3JGTAbp3&sig=mgHVePIkEX13SSajQDX9CuWmMYI#v=onepage&q=Happer%2C%20William%2C%20Yuan-Yu%20Jau%2C%20and%20Thad%20Walker.%20Optically%20pumped%20atoms.%20John%20Wiley%20%26%20Sons%2C%202010.&f=false (accessed on 10 December 2023).
- Abragam, A.; Goldman, M. Principles of Dynamic Nuclear Polarisation. Rep. Prog. Phys. 1978, 41, 395. [Google Scholar] [CrossRef]
- Lawler, R.G. Chemically Induced Dynamic Nuclear Polarization (CIDNP). II. The Radical-Pair Model. Acc. Chem. Res. 1972, 5, 25–33. [Google Scholar] [CrossRef]
- Dechent, J.F.; Buljubasich, L.; Schreiber, L.M.; Spiess, H.W.; Münnemann, K. Proton Magnetic Resonance Imaging with Para-Hydrogen Induced Polarization. Phys. Chem. Chem. Phys. 2012, 14, 2346–2352. [Google Scholar] [CrossRef] [PubMed]
- Eronen, J. Hyperpolarization of 3-Fluoropyridine via Signal Amplification by Reversible Exchange. M.Sc. Thesis, Faculty of Science, University of Oulu, Oulu, Finland, 2022. [Google Scholar]
- Walker, T.G.; Happer, W. RMP Colloquia Spin-Exchange Optical Pumping of Noble-Gas Nuclei. Rev. Mod. Phys. 1997, 69, 629. [Google Scholar] [CrossRef]
- Grover, B.C. Noble-Gas NMR Detection through Noble-Gas-Rubidium Hyperfine Contact Interaction. Phys. Rev. Lett. 1978, 40, 391. [Google Scholar] [CrossRef]
- Happer, W. Optical Pumping. Rev. Mod. Phys. 1972, 44, 169. [Google Scholar] [CrossRef]
- Goodson, B.M.; Ranta, K.; Skinner, J.G.; Coffey, A.M.; Nikolaou, P.; Gemeinhardt, M.; Anthony, D.; Stephenson, S.; Hardy, S.; Owers-Bradley, J.; et al. The Physics of Hyperpolarized Gas MRI. In Hyperpolarized and Inert Gas MRI: From Technology to Application in Research and Medicine; Academic Press: Cambridge, MA, USA, 2017; pp. 23–46. [Google Scholar] [CrossRef]
- Six, J.S.; Hughes-Riley, T.; Stupic, K.F.; Pavlovskaya, G.E.; Meersmann, T. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129. PLoS ONE 2012, 7, e49927. [Google Scholar] [CrossRef]
- Rosen, M.S.; Chupp, T.E.; Coulter, K.P.; Welsh, R.C.; Swanson, S.D. Polarized 129Xe Optical Pumping/Spin Exchange and Delivery System for Magnetic Resonance Spectroscopy and Imaging Studies. Rev. Sci. Instrum. 1999, 70, 1546–1552. [Google Scholar] [CrossRef]
- Ruset, I.C.; Ketel, S.; Hersman, F.W. Optical Pumping System Design for Large Production of Hyperpolarized Xe129. Phys. Rev. Lett. 2006, 96, 053002. [Google Scholar] [CrossRef]
- Hersman, F.W.; Ruset, I.C.; Ketel, S.; Muradian, I.; Covrig, S.D.; Distelbrink, J.; Porter, W.; Watt, D.; Ketel, J.; Brackett, J.; et al. Large Production System for Hyperpolarized 129 Xe for Human Lung Imaging Studies. Acad. Radiol. 2008, 15, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Norquay, G.; Parnell, S.R.; Xu, X.; Parra-Robles, J.; Wild, J.M. Optimized Production of Hyperpolarized 129Xe at 2 Bars for in Vivo Lung Magnetic Resonance Imaging. J. Appl. Phys. 2013, 113, 044908. [Google Scholar] [CrossRef]
- Freeman, M.S.; Emami, K.; Driehuys, B. Characterizing and Modeling the Efficiency Limits in Large-Scale Production of Hyperpolarized 129 Xe. Phys. Rev. A 2014, 90, 023406. [Google Scholar] [CrossRef]
- Birchall, J.R.; Irwin, R.K.; Nikolaou, P.; Coffey, A.M.; Kidd, B.E.; Murphy, M.; Molway, M.; Bales, L.B.; Ranta, K.; Barlow, M.J.; et al. XeUS: A Second-Generation Automated Open-Source Batch-Mode Clinical-Scale Hyperpolarizer. J. Magn. Reson. 2020, 319, 106813. [Google Scholar] [CrossRef] [PubMed]
- Driehuys, B.; Cates, G.D.; Miron, E.; Sauer, K.; Walter, D.K.; Happer, W. High-volume Production of Laser-polarized 129Xe. Appl. Phys. Lett. 1996, 69, 1668–1670. [Google Scholar] [CrossRef]
- Marshall, H.; Stewart, N.J.; Chan, H.F.; Rao, M.; Norquay, G.; Wild, J.M. In Vivo Methods and Applications of Xenon-129 Magnetic Resonance. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 122, 42–62. [Google Scholar] [CrossRef] [PubMed]
- Perron, S.; Ouriadov, A. Hyperpolarized 129Xe MRI at Low Field: Current Status and Future Directions. J. Magn. Reson. 2023, 348, 107387. [Google Scholar] [CrossRef]
- Ward, K.M.; Aletras, A.H.; Balaban, R.S. A New Class of Contrast Agents for MRI Based on Proton Chemical Exchange Dependent Saturation Transfer (CEST). J. Magn. Reson. 2000, 143, 79–87. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Li, Z.; Sun, J.; Wang, X.; Hou, B.; Zhao, Y. Chemical Exchange Saturation Transfer (CEST) Magnetic Resonance Imaging (MRI) Quantification of Transient Ischemia Using a Combination Method of 5-Pool Lorentzian Fitting and Inverse Z-Spectrum Analysis. Quant. Imaging Med. Surg. 2023, 13, 1860–1873. [Google Scholar] [CrossRef]
- Bie, C.; van Zijl, P.; Xu, J.; Song, X.; Yadav, N.N. Radiofrequency Labeling Strategies in Chemical Exchange Saturation Transfer MRI. NMR Biomed. 2023, 36, e4944. [Google Scholar] [CrossRef]
- El Mamoune, K.; Barantin, L.; Adriaensen, H.; Tillet, Y. Application of Chemical Exchange Saturation Transfer (CEST) in Neuroimaging. J. Chem. Neuroanat. 2021, 114, 101944. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Chen, B.; Chen, Y.; Zhang, X.; Wu, R. Pathophysiology of Alzheimer’s Disease Revealed by Chemical Exchange Saturation Transfer MRI. Radiol. Sci. 2023, 2, 56–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Zu, T.; Liu, R.; Zhou, J. Acquisition Sequences and Reconstruction Methods for Fast Chemical Exchange Saturation Transfer Imaging. NMR Biomed. 2023, 36, e4699. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.D.; Balaban, R.S. NMR Imaging of Labile Proton Exchange. J. Magn. Reson. 1990, 86, 164–169. [Google Scholar] [CrossRef]
- Van Zijl, P.C.M.; Yadav, N.N. Chemical Exchange Saturation Transfer (CEST): What Is in a Name and What Isn’t? Magn. Reson. Med. 2011, 65, 927–948. [Google Scholar] [CrossRef]
- van Zijl, P.C.M.; Lam, W.W.; Xu, J.; Knutsson, L.; Stanisz, G.J. Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and Analysis of the Field-Dependent Saturation Spectrum. Neuroimage 2018, 168, 222–241. [Google Scholar] [CrossRef]
- Spence, M.M.; Rubin, S.M.; Dimitrov, I.E.; Janette Ruiz, E.; Wemmer, D.E.; Pines, A.; Qin Yao, S.; Tian, F.; Schultz, P.G. Functionalized Xenon as a Biosensor. Proc. Natl. Acad. Sci. USA 2001, 98, 10654–10657. [Google Scholar] [CrossRef]
- Mcconnell, H.M. Reaction Rates by Nuclear Magnetic Resonance Reaction Rates by Nuclear Magnetic Resonance*. Cit. J. Chem. Phys. 1958, 28, 430. [Google Scholar] [CrossRef]
- Zaiss, M.; Schnurr, M.; Bachert, P. Analytical Solution for the Depolarization of Hyperpolarized Nuclei by Chemical Exchange Saturation Transfer between Free and Encapsulated Xenon (HyperCEST). J. Chem. Phys. 2012, 136, 144106. [Google Scholar] [CrossRef] [PubMed]
- Kunth, M.; Witte, C.; Schröder, L. Quantitative Chemical Exchange Saturation Transfer with Hyperpolarized Nuclei (QHyper-CEST): Sensing Xenon-Host Exchange Dynamics and Binding Affinities by NMR. J. Chem. Phys. 2014, 141, 194202. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.T. Characterization of Ultrasound Contrast Agents as HyperCest Agents for Molecular MRI. Ph.D. Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2022. [Google Scholar]
- McHugh, C.T.; Durham, P.G.; Atalla, S.; Kelley, M.; Bryden, N.J.; Dayton, P.A.; Branca, R.T. Low-Boiling Point Perfluorocarbon Nanodroplets as Dual-Phase Dual-Modality MR/US Contrast Agent. ChemPhysChem 2022, 23, e202200438. [Google Scholar] [CrossRef] [PubMed]
- Jost, J.O.; Schröder, L. Improving HyperCEST Performance by Favorable Xenon Exchange Conditions in Liposomal Nanocarriers. NMR Biomed. 2023, 36, e4714. [Google Scholar] [CrossRef] [PubMed]
- Kunth, M.; Witte, C.; Schröder, L. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Pharmaceuticals 2021, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, M.; Joseph, R.; Naugolny-Keisar, A.; Kaizerman-Kane, D.; Bogdanoff, N.; Schuenke, P.; Cohen, Y.; Schröder, L. High Exchange Rate Complexes of 129 Xe with Water-Soluble Pillar[5]Arenes for Adjustable Magnetization Transfer MRI. ChemPhysChem 2018, 20, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kunth, M.; Schröder, L. Binding Site Exchange Kinetics Revealed through Efficient Spin-Spin Dephasing of Hyperpolarized 129Xe. Chem. Sci. 2021, 12, 158–169. [Google Scholar] [CrossRef]
- McHugh, C.T.; Durham, P.G.; Kelley, M.; Dayton, P.A.; Branca, R.T. Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent. ChemPhysChem 2021, 22, 1219–1228. [Google Scholar] [CrossRef]
- Du, K.; Zemerov, S.D.; Hurtado Parra, S.; Kikkawa, J.M.; Dmochowski, I.J. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg. Chem. 2020, 59, 13831–13844. [Google Scholar] [CrossRef]
- Shapiro, M.G.; Ramirez, R.M.; Sperling, L.J.; Sun, G.; Sun, J.; Pines, A.; Schaffer, D.V.; Bajaj, V.S. Genetically Encoded Reporters for Hyperpolarized Xenon Magnetic Resonance Imaging. Nat. Chem. 2014, 6, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dmochowski, I.J. Cucurbit[6]Uril Is an Ultrasensitive 129 Xe NMR Contrast Agent. Chem. Commun. 2015, 51, 8982–8985. [Google Scholar] [CrossRef] [PubMed]
- Hane, F.T.; Smylie, P.S.; Li, T.; Ruberto, J.; Dowhos, K.; Ball, I.; Tomanek, B.; DeBoef, B.; Albert, M.S. HyperCEST Detection of Cucurbit[6]Uril in Whole Blood Using an Ultrashort Saturation Pre-Pulse Train. Contrast Media Mol. Imaging 2016, 11, 285–290. [Google Scholar] [CrossRef]
- Hane, F.T.; Li, T.; Smylie, P.; Pellizzari, R.M.; Plata, J.A.; Deboef, B.; Albert, M.S. In Vivo Detection of Cucurbit[6]Uril, a Hyperpolarized Xenon Contrast Agent for a Xenon Magnetic Resonance Imaging Biosensor. Sci. Rep. 2017, 7, 41027. [Google Scholar] [CrossRef] [PubMed]
- Fernando, P.U.A.I.; Shepelytskyi, Y.; Cesana, P.T.; Wade, A.; Grynko, V.; Mendieta, A.M.; Seveney, L.E.; Brown, J.D.; Hane, F.T.; Albert, M.S.; et al. Decacationic Pillar[5]Arene: A New Scaffold for the Development of 129Xe MRI Imaging Agents. ACS Omega 2020, 5, 27783–27788. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.T.; Kelley, M.; Bryden, N.J.; Branca, R.T. In Vivo HyperCEST Imaging: Experimental Considerations for a Reliable Contrast. Magn. Reson. Med. 2022, 87, 1480–1489. [Google Scholar] [CrossRef] [PubMed]
- Grynko, V.; Shepelytskyi, Y.; Batarchuk, V.; Aalto, H.; Li, T.; Ruset, I.C.; DeBoef, B.; Albert, M.S. Cucurbit[6]Uril Hyperpolarized Chemical Exchange Saturation Transfer Pulse Sequence Parameter Optimization and Detectability Limit Assessment at 3.0T. ChemPhysChem 2023, 24, e202300346. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.L.; Gutberlet, M.; Rumpel, R.; Bruesch, I.; Hohlfeld, J.M.; Wacker, F.; Hensen, B. Compartment-Specific 129Xe HyperCEST z Spectroscopy and Chemical Shift Imaging of Cucurbit[6]Uril in Spontaneously Breathing Rats. Z. Med. Phys. 2023; in press. [Google Scholar] [CrossRef]
- Wikus, P.; Frantz, W.; Kümmerle, R.; Vonlanthen, P. Commercial Gigahertz-Class NMR Magnets. Supercond. Sci. Technol. 2022, 35, 033001. [Google Scholar] [CrossRef]
- Venkatesha, A.K.; Zhang, A.X.; Mansour, J.; Kubatina, L.; Oh, C.H.; Blasche, G.; Selim Ünlü, M.; Balamore, D.; Jolesz, F.A.; Goldberg, B.B.; et al. MRI of the Lung Gas-Space at Very Low-Field Using Hyperpolarized Noble Gases. Magn. Reson. Imaging 2003, 21, 773–776. [Google Scholar] [CrossRef]
- Cross, A.R.; McDonald, M.; Robles, J.P.; Santyr, G.E. Laser-Polarized 129Xe NMR at 1.88 T and 8.5 MT: A Signal-to-Noise Ratio Comparison. J. Magn. Reson. 2003, 162, 241–249. [Google Scholar] [CrossRef]
- Juchem, C.; Cudalbu, C.; de Graaf, R.A.; Gruetter, R.; Henning, A.; Hetherington, H.P.; Boer, V.O. B0 Shimming for in Vivo Magnetic Resonance Spectroscopy: Experts’ Consensus Recommendations. NMR Biomed. 2021, 34, e4350. [Google Scholar] [CrossRef] [PubMed]
- Hane, F.T.; Fernando, A.; Prete, B.R.J.; Peloquin, B.; Karas, S.; Chaudhuri, S.; Chahal, S.; Shepelytskyi, Y.; Wade, A.; Li, T.; et al. Cyclodextrin-Based Pseudorotaxanes: Easily Conjugatable Scaffolds for Synthesizing Hyperpolarized Xenon-129 Magnetic Resonance Imaging Agents. ACS Omega 2018, 3, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Kim, Y.C.; Choi, I.C.; Kim, H.D. Recent Progress in Birdcage RF Coil Technology for MRI System. Diagnostics 2020, 10, 1017. [Google Scholar] [CrossRef]
- Rao, M.R.; Stewart, N.J.; Griffiths, P.D.; Norquay, G.; Wild, J.M. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging. Radiology 2018, 286, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, T.; Bajaj, V.S.; Wemmer, D.E.; Pines, A. Band-Selective Chemical Exchange Saturation Transfer Imaging with Hyperpolarized Xenon-Based Molecular Sensors. J. Magn. Reson. 2011, 213, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Jayapaul, J.; Komulainen, S.; Zhivonitko, V.V.; Mareš, J.; Giri, C.; Rissanen, K.; Lantto, P.; Telkki, V.V.; Schröder, L. Hyper-CEST NMR of Metal Organic Polyhedral Cages Reveals Hidden Diastereomers with Diverse Guest Exchange Kinetics. Nat. Commun. 2022, 13, 1708. [Google Scholar] [CrossRef]
- Priyadarshini, S.J.; Hemanth, D.J. Investigation and Reduction Methods of Specific Absorption Rate for Biomedical Applications: A Survey. Int. J. RF Microw. Comput.-Aided Eng. 2018, 28, e21211. [Google Scholar] [CrossRef]
- Willmering, M.M.; Niedbalski, P.J.; Wang, H.; Walkup, L.L.; Robison, R.K.; Pipe, J.G.; Cleveland, Z.I.; Woods, J.C. Improved Pulmonary 129Xe Ventilation Imaging via 3D-Spiral UTE MRI. Magn. Reson. Med. 2020, 84, 312–320. [Google Scholar] [CrossRef]
- Friedlander, Y.; Zanette, B.; Lindenmaier, A.; Li, D.; Kadlecek, S.; Santyr, G.; Kassner, A. Hyperpolarized 129 Xe MRI of the Rat Brain with Chemical Shift Saturation Recovery and Spiral-IDEAL Readout. Magn. Reson. Med. 2022, 87, 1971–1979. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Bier, E.; Leewiwatwong, S.; Mummy, D.; Driehuys, B. Bias Field Correction in Hyperpolarized 129Xe Ventilation MRI Using Templates Derived by RF-Depolarization Mapping. Magn. Reson. Med. 2022, 88, 802–816. [Google Scholar] [CrossRef]
- Bauman, G.; Johnson, K.M.; Bell, L.C.; Velikina, J.V.; Samsonov, A.A.; Nagle, S.K.; Fain, S.B. Three-Dimensional Pulmonary Perfusion MRI with Radial Ultrashort Echo Time and Spatial-Temporal Constrained Reconstruction. Magn. Reson. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Deppe, M.H.; Wild, J.M. Variable Flip Angle Schedules in BSSFP Imaging of Hyperpolarized Noble Gases. Magn. Reson. Med. 2012, 67, 1656–1664. [Google Scholar] [CrossRef]
- Bdaiwi, A.S.; Willmering, M.M.; Wang, H.; Cleveland, Z.I. Diffusion Weighted Hyperpolarized 129Xe MRI of the Lung with 2D and 3D (FLORET) Spiral. Magn. Reson. Med. 2023, 89, 1342–1356. [Google Scholar] [CrossRef]
- Froeling, M.; Prompers, J.J.; Klomp, D.W.J.; van der Velden, T.A. PCA Denoising and Wiener Deconvolution of 31P 3D CSI Data to Enhance Effective SNR and Improve Point Spread Function. Magn. Reson. Med. 2021, 85, 2992–3009. [Google Scholar] [CrossRef] [PubMed]
- Visvikis, D.; Lambin, P.; Beuschau Mauridsen, K.; Hustinx, R.; Lassmann, M.; Rischpler, C.; Shi, K.; Pruim, J. Application of Artificial Intelligence in Nuclear Medicine and Molecular Imaging: A Review of Current Status and Future Perspectives for Clinical Translation. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4452–4463. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Duan, C.; Xiao, S.; Xie, J.; Zhang, H.; Sun, X.; Zhou, X. K-Space-Based Enhancement of Pulmonary Hyperpolarized 129Xe Ventilation Images. IEEE Trans. Instrum. Meas. 2019, 68, 3950–3961. [Google Scholar] [CrossRef]
- Mecozzi, S.; Rebek, J. The 55 % Solution: A Formula for Molecular Recognition in the Liquid State. Chem. Eur. J. 1998, 4, 1016–1022. [Google Scholar] [CrossRef]
- Schmidt, P.; Vogel, A.; Schwarze, B.; Seufert, F.; Licha, K.; Wycisk, V.; Kilian, W.; Hildebrand, P.W.; Mitschang, L. Towards Probing Conformational States of Y2 Receptor Using Hyperpolarized 129Xe NMR. Molecules 2023, 28, 1424. [Google Scholar] [CrossRef]
- Wang, Y.; Roose, B.W.; Palovcak, E.J.; Carnevale, V.; Dmochowski, I.J. A Genetically Encoded β-Lactamase Reporter for Ultrasensitive129Xe NMR in Mammalian Cells. Angew. Chem.—Int. Ed. 2016, 55, 8984–8987. [Google Scholar] [CrossRef] [PubMed]
- Dan, Q.; Jiang, X.; Wang, R.; Dai, Z.; Sun, D. Biogenic Imaging Contrast Agents. Adv. Sci. 2023, 10, e2207090. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Wang, B.; Guo, Q.; Yuan, Y.; Jiang, W.; Shi, L.; Yang, M.; Chen, S.; Lou, X.; et al. Coloring Ultrasensitive MRI with Tunable Metal–Organic Frameworks. Chem. Sci. 2021, 12, 4300. [Google Scholar] [CrossRef]
- Zeng, Q.; Guo, Q.; Yuan, Y.; Zhang, L.; Jiang, W.; Yang, Y.; Zhou, X. Protocol for Detecting Substrates in Living Cells by Targeted Molecular Probes through Hyperpolarized 129Xe MRI. STAR Protoc. 2022, 3, 101499. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, Q.; Yuan, C.; Li, S.; Yuan, Y.; Zeng, Q.; Zhang, X.; Ye, C.; Zhou, X. Photosensitive MRI Biosensor for BCRP-Targeted Uptake and Light-Induced Inhibition of Tumor Cells. Talanta 2021, 233, 122501. [Google Scholar] [CrossRef]
- Hilla, P.; Vaara, J. NMR Chemical Shift of Confined 129Xe: Coordination Number, Paramagnetic Channels and Molecular Dynamics in a Cryptophane-A Biosensor. Phys. Chem. Chem. Phys. 2023, 25, 22719–22733. [Google Scholar] [CrossRef]
- Zhao, Z.; Rudman, N.A.; He, J.; Dmochowski, I.J. Programming Xenon Diffusion in Maltose-Binding Protein. Biophys. J. 2022, 121, 4635–4643. [Google Scholar] [CrossRef]
- Nie, S.X.; Huang, T.Y.; Guo, H.; Wang, L.X.; Cui, J.; Xiang, J.F.; Ao, Y.F.; Wang, D.X.; Wang, Q.Q. Xenon Induces Its Own Preferred Heterochiral Host from Exclusive Homochiral Assembly. J. Am. Chem. Soc. 2022, 144, 22884–22889. [Google Scholar] [CrossRef]
- Hilla, P.; Vaara, J. Energetics and Exchange of Xenon and Water in a Prototypic Cryptophane-A Biosensor Structure. Phys. Chem. Chem. Phys. 2022, 24, 17946–17950. [Google Scholar] [CrossRef]
- Léonce, E.; Brotin, T.; Berthault, P. Syn-Cryptophanes: Macrocyclic Compounds with Optimized Characteristics for the Design of 129Xe NMR-Based Biosensors. Phys. Chem. Chem. Phys. 2022, 24, 24793–24799. [Google Scholar] [CrossRef] [PubMed]
- Vigier, C.; Fayolle, D.; El Siblani, H.; Sopkova-de Oliveira Santos, J.; Fabis, F.; Cailly, T.; Dubost, E. Synthesis and Physicochemical Properties of Cryptophazane—A Soluble and Functionalizable C1-Symmetrical Cryptophane. Angew. Chem.—Int. Ed. 2022, 61, e202208580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhou, M.; Zemerov, S.D.; Marmorstein, R.; Dmochowski, I.J. Rational Design of a Genetically Encoded NMR Zinc Sensor. Chem. Sci. 2023, 14, 3809–3815. [Google Scholar] [CrossRef] [PubMed]
- Collet, A. Cyclotriveratrylenes and Cryptophanes. Tetrahedron 1987, 43, 5725–5759. [Google Scholar] [CrossRef]
- El-Ayle, G.; Holman, K.T. Cryptophanes. In Comprehensive Supramolecular Chemistry II; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 6, pp. 199–249. [Google Scholar]
- Atkins, P.W.; De Paula, J.; James, K. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Zimmermann, H.; Tolstoy, P.; Limbach, H.H.; Poupko, R.; Luz, Z. The Saddle Form of Cyclotriveratrylene. J. Phys. Chem. B 2004, 108, 18772–18778. [Google Scholar] [CrossRef]
- Bartik, K.; Luhmer, M.; Dutasta, J.P.; Collet, A.; Reisse, J. 129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution. J. Am. Chem. Soc. 1998, 120, 784–791. [Google Scholar] [CrossRef]
- Gabard, J.; Collet, A. Synthesis of a (D3)-Bis(Cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit. J. Chem. Soc. Chem. Commun. 1981, 1137–1139. [Google Scholar] [CrossRef]
- Taratula, O.; Hill, P.A.; Khan, N.S.; Carroll, P.J.; Dmochowski, I.J. Crystallographic Observation of “induced Fit” in a Cryptophane Host–Guest Model System. Nat. Commun. 2010, 1, 148. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.A.; Berthault, P.; Brotin, T.; Huber, G.; Desvaux, H.; Dutasta, J.P. A Cryptophane Core Optimized for Xenon Encapsulation. J. Am. Chem. Soc. 2007, 129, 10332–10333. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Beguin, L.; Desvaux, H.; Brotin, T.; Fogarty, H.A.; Dutasta, J.P.; Berthault, P. Cryptophane-Xenon Complexes in Organic Solvents Observed through NMR Spectroscopy. J. Phys. Chem. A 2008, 112, 11363–11372. [Google Scholar] [CrossRef] [PubMed]
- Zemerov, S.D.; Dmochowski, I.J. Cryptophane–Xenon Complexes for 129 Xe MRI Applications. RSC Adv. 2021, 11, 7693–7703. [Google Scholar] [CrossRef] [PubMed]
- Brotin, T.; Dutasta, J.-P. Cryptophanes. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2013, 1, 317–335. [Google Scholar] [CrossRef]
- Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Cyrier, M.C.; Pines, A. Study of Xenon Binding in Cryptophane-A Using Laser-Induced NMR Polarization Enhancement. J. Am. Chem. Soc. 1999, 121, 3502–3512. [Google Scholar] [CrossRef]
- Bonnet, L.; Rayez, J.-C. Dynamical derivation of Eyring equation and the second-order kinetic law. Int. J. Quantum Chem. 2010, 110, 2355–2359. [Google Scholar] [CrossRef]
- Houk, K.N.; Nakamura, K.; Sheu, C.; Keating, A.E. Gating as a Control Element in Constrictive Binding and Guest Release by Hemicarcerands. Science 1996, 273, 627–629. [Google Scholar] [CrossRef]
- Kunth, M.; Witte, C.; Hennig, A.; Schröder, L. Identification, Classification, and Signal Amplification Capabilities of High-Turnover Gas Binding Hosts in Ultra-Sensitive NMR. Chem. Sci. 2015, 6, 6069–6075. [Google Scholar] [CrossRef]
- Riggle, B.A.; Wang, Y.; Dmochowski, I.J. A “Smart” 129Xe NMR Biosensor for PH-Dependent Cell Labeling. J. Am. Chem. Soc. 2015, 137, 5542–5548. [Google Scholar] [CrossRef]
- Zeng, Q.; Guo, Q.; Yuan, Y.; Yang, Y.; Zhang, B.; Ren, L.; Zhang, X.; Luo, Q.; Liu, M.; Bouchard, L.S.; et al. Mitochondria Targeted and Intracellular Biothiol Triggered Hyperpolarized 129Xe Magnetofluorescent Biosensor. Anal. Chem. 2017, 89, 2288–2295. [Google Scholar] [CrossRef]
- Mari, E.; Bousmah, Y.; Boutin, C.; Léonce, E.; Milanole, G.; Brotin, T.; Berthault, P.; Erard, M.; Bimodal, A.; Milanole, G. Bimodal Detection of Proteins by 129Xe NMR and Fluorescence Spectroscopy. ChemBioChem 2019, 20, 1450–1457. [Google Scholar] [CrossRef]
- Brotin, T.; Jeanneau, E.; Berthault, P.; Léonce, E.; Pitrat, D.; Mulatier, J.-C. Synthesis of Cryptophane-B. Crystal Structure and Study of Its Complex with Xenon. Synthesis of Cryptophane-B. Crystal Structure and Study of Its Complex with Xenon. J. Org. Chem. 2018, 83, 14465–14471. [Google Scholar] [CrossRef]
- Berthault, P.; Bogaert-Buchmann, A.; Desvaux, H.; Huber, G.; Boulard, Y. Sensitivity and Multiplexing Capabilities of MRI Based on Polarized 129Xe Biosensors. J. Am. Chem. Soc. 2008, 130, 16456–16457. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, R.; Witte, C.; Haag, R.; Schröder, L. Dendronized Cryptophanes as Water-Soluble Xenon Hosts for 129Xe Magnetic Resonance Imaging. Org. Lett. 2014, 16, 4436–4439. [Google Scholar] [CrossRef] [PubMed]
- Klippel, S.; Döpfert, J.; Jayapaul, J.; Kunth, M.; Rossella, F.; Schnurr, M.; Witte, C.; Freund, C.; Schröder, L. Cell Tracking with Caged Xenon: Using Cryptophanes as MRI Reporters upon Cellular Internalization. Angew. Chem.—Int. Ed. 2014, 53, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Klippel, S.; Freund, C.; Schröder, L. Multichannel MRI Labeling of Mammalian Cells by Switchable Nanocarriers for Hyperpolarized Xenon. Nano Lett. 2014, 14, 5721–5726. [Google Scholar] [CrossRef] [PubMed]
- Witte, C.; Martos, V.; Rose, H.M.; Reinke, S.; Klippel, S.; Schröder, L.; Hackenberger, C.P.R. Live-Cell MRI with Xenon Hyper-CEST Biosensors Targeted to Metabolically Labeled Cell-Surface Glycans. Angew. Chem.—Int. Ed. 2015, 54, 2806–2810. [Google Scholar] [CrossRef] [PubMed]
- Rose, H.M.; Witte, C.; Rossella, F.; Klippel, S.; Freund, C.; Schröder, L. Development of an Antibody-Based, Modular Biosensor for 129Xe NMR Molecular Imaging of Cells at Nanomolar Concentrations. Proc. Natl. Acad. Sci. USA 2014, 111, 11697–11702. [Google Scholar] [CrossRef] [PubMed]
- Piontek, A.; Witte, C.; Rose, H.M.; Eichner, M.; Protze, J.; Krause, G.; Piontek, J.; Schröder, L. A CCPE-Based Xenon Biosensor for Magnetic Resonance Imaging of Claudin-Expressing Cells. Ann. N. Y. Acad. Sci. 2017, 1397, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Mynar, J.L.; Lowery, T.J.; Wemmer, D.E.; Pines, A.; Fréchet, J.M.J. Xenon Biosensor Amplification via Dendrimer-Cage Supramolecular Constructs. J. Am. Chem. Soc. 2006, 128, 6334–6335. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.; Netirojjanakul, C.; Munch, H.K.; Sun, J.; Finbloom, J.A.; Wemmer, D.E.; Pines, A.; Francis, M.B. Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129Xe NMR. Bioconjug. Chem. 2016, 27, 1796–1801. [Google Scholar] [CrossRef]
- Stevens, T.K.; Palaniappan, K.K.; Ramirez, R.M.; Francis, M.B.; Wemmer, D.E.; Pines, A. HyperCEST Detection of a 129Xe-Based Contrast Agent Composed of Cryptophane-A Molecular Cages on a Bacteriophage Scaffold. Magn. Reson. Med. 2013, 69, 1245–1252. [Google Scholar] [CrossRef]
- Tse, Y.C.; Au-Yeung, H.Y. Catenane and Rotaxane Synthesis from Cucurbit[6]Uril-Mediated Azide-Alkyne Cycloaddition. Chem. Asian J. 2023, 18, e202300290. [Google Scholar] [CrossRef]
- Jayapaul, J.; Schröder, L. Probing Reversible Guest Binding with Hyperpolarized 129Xe-NMR: Characteristics and Applications for Cucurbit[n]Urils. Molecules 2020, 25, 957. [Google Scholar] [CrossRef]
- Kim, J.; Jung, I.S.; Kim, S.Y.; Lee, E.; Kang, J.K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-Ray Crystal Structures of Cucurbit[n]Uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540–541. [Google Scholar] [CrossRef]
- Day, A.; Arnold, A.P.; Blanch, R.J.; Snushall, B. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem. 2001, 66, 8094–8100. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Samal, S.; Selvapalam, N.; Kim, H.J.; Kim, K. Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry. Acc. Chem. Res. 2003, 36, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The Cucurbit[n]Uril Family. Angew. Chem.—Int. Ed. 2005, 44, 4844–4870. [Google Scholar] [CrossRef]
- Kim, K.; Selvapalam, N.; Ho Ko, Y.; Min Park, K.; Kim, D.; Kim, J. Functionalized Cucurbiturils and Their Applications. Chem. Soc. Rev. 2007, 36, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Kim, E.; Hwang, I.; Kim, K. Supramolecular Assemblies Built with Host-Stabilized Charge-Transfer Interactions. Chem. Commun. 2007, 1305–1315. [Google Scholar] [CrossRef]
- Young, J.J.; Kim, H.; Jon, S.; Selvapalam, N.; Dong, H.O.; Seo, I.; Park, C.S.; Seung, R.J.; Koh, D.S.; Kim, K. Artificial Ion Channel Formed by Cucurbit[n]Uril Derivatives with a Carbonyl Group Fringed Portal Reminiscent of the Selectivity Filter of K + Channels. J. Am. Chem. Soc. 2004, 126, 15944–15945. [Google Scholar] [CrossRef]
- El Haouaj, M.; Ho Ko, Y.; Luhmer, M.; Kim, K.; Bartik, K. NMR Investigation of the Complexation of Neutral Guests by Cucurbituril. J. Chem. Soc. Perkin Trans. 2 2001, 11, 2104–2107. [Google Scholar] [CrossRef]
- El Haouaj, M.; Luhmer, M.; Young, H.K.; Kim, K.; Bartik, K. NMR Study of the Reversible Complexation of Xenon by Cucurbituril. J. Chem. Soc. Perkin Trans. 2001, 2, 804–807. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, N.; Scherman, O.A. Ionic Liquids as Novel Guests for Cucurbit[6]Uril in Neutral Water. Chem. Commun. 2008, 1070–1072. [Google Scholar] [CrossRef]
- Kim, B.S.; Ko, Y.H.; Kim, Y.; Lee, H.J.; Selvapalam, N.; Lee, H.C.; Kim, K. Water Soluble Cucurbit[6]Uril Derivative as a Potential Xe Carrier for 129Xe NMR-Based Biosensors. Chem. Commun. 2008, 2756–2758. [Google Scholar] [CrossRef]
- Korchak, S.; Riemer, T.; Kilian, W.; Mitschang, L. Quantitative Assessment of Xenon Exchange Kinetics with Cucurbit[6]Uril in Physiological Saline. ChemPhysChem 2018, 19, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Mitschang, L.; Korchak, S.; Kilian, W.; Riemer, T. Comprehensive Quantitative and Calibration-Free Evaluation of Hyperpolarized Xenon-Host Interaction by Multiparametric NMR. Anal. Chem. 2022, 94, 2561–2568. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.; Shepelytskyi, Y.; Campbell, M.; Grynko, V. Evaluation of Cucurbit[6]Uril Diffusion Across an Artificial Blood-Brain Barrier. Proc. Intl. Soc. Mag. Reson. Med. 2020, 28, 3079. [Google Scholar]
- Prete, B.R.J.; Robinson, D.; Fernando, A.; Shepelytskyi, Y.; Wade, A.; Hane, F.T.; Deboef, B.; Albert, M.S. Benzene-Appended Cucurbit[6]Uril as a Potential Biosensor Scaffold for Hyperpolarized 129Xe MRI Molecular Contrast Agents. In Proceedings of the International Society for Magnetic Resonance in Medicine, 27th Annual Meeting, Paris, France, 16–21 June 2018; Volume 26, p. 3034. [Google Scholar]
- Wang, Y.; Roose, B.W.; Philbin, J.P.; Doman, J.L.; Dmochowski, I.J. Programming A Molecular Relay for Ultrasensitive Biodetection through 129 Xe NMR. Angew. Chem. 2016, 128, 1765–1768. [Google Scholar] [CrossRef]
- Finbloom, J.A.; Slack, C.C.; Bruns, C.J.; Jeong, K.; Wemmer, D.E.; Pines, A.; Francis, M.B. Rotaxane-Mediated Suppression and Activation of Cucurbit[6]Uril for Molecular Detection by 129Xe HyperCEST NMR. Chem. Commun. 2016, 52, 3119–3122. [Google Scholar] [CrossRef] [PubMed]
- Slack, C.C.; Finbloom, J.A.; Jeong, K.; Bruns, C.J.; Wemmer, D.E.; Pines, A.; Francis, M.B. Rotaxane Probes for Protease Detection by 129Xe HyperCEST NMR. Chem. Commun. 2017, 53, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Klass, S.H.; Truxal, A.E.; Fiala, T.A.; Kelly, J.; Nguyen, D.; Finbloom, J.; Wemmer, D.E.; Pines, A.; Francis, M.B. Rotaxane Probes for the Detection of Hydrogen Peroxide by 129Xe HyperCEST NMR. Angew. Chem.—Int. Ed. 2019, 58, 9948–9953. [Google Scholar] [CrossRef]
- Döpfert, J.; Schnurr, M.; Kunth, M.; Rose, H.M.; Hennig, A.; Schröder, L. Time-Resolved Monitoring of Enzyme Activity with Ultrafast Hyper-CEST Spectroscopy. Magn. Reson. Chem. 2018, 56, 679–688. [Google Scholar] [CrossRef]
- Lee, J.H.; Huh, Y.M.; Jun, Y.W.; Seo, J.W.; Jang, J.T.; Song, H.T.; Kim, S.; Cho, E.J.; Yoon, H.G.; Suh, J.S.; et al. Artificially Engineered Magnetic Nanoparticles for Ultra-Sensitive Molecular Imaging. Nat. Med. 2007, 13, 95–99. [Google Scholar] [CrossRef]
- Walsby, A.E. Gas vesicles. Microbiol. Rev. 1994, 58, 94–144. [Google Scholar] [CrossRef]
- Huber, S.T.; Terwiel, D.; Evers, W.H.; Maresca, D.; Jakobi, A.J. Cryo-EM Structure of Gas Vesicles for Buoyancy-Controlled Motility. Cell 2023, 186, 975–986.e13. [Google Scholar] [CrossRef]
- Pfeifer, F. Distribution, Formation and Regulation of Gas Vesicles. Nat. Rev. Microbiol. 2012, 10, 705–715. [Google Scholar] [CrossRef]
- Farhadi, A.; Ho, G.; Kunth, M.; Ling, B.; Lakshmanan, A.; Lu, G.J.; Bourdeau, R.W.; Schröder, L.; Shapiro, M.G. Recombinantly Expressed Gas Vesicles as Nanoscale Contrast Agents for Ultrasound and Hyperpolarized MRI. AIChE J. 2018, 64, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.G.; Goodwill, P.W.; Neogy, A.; Yin, M.; Foster, F.S.; Schaffer, D.V.; Conolly, S.M. Biogenic Gas Nanostructures as Ultrasonic Molecular Reporters. Nat. Nanotechnol. 2014, 9, 311–316. [Google Scholar] [CrossRef]
- Cosgrove, D.; Harvey, C. Clinical Uses of Microbubbles in Diagnosis and Treatment. Med. Biol. Eng. Comput. 2009, 47, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, K.; Pollard, R.; Borden, M. Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, S.; Klibanov, A.L. Microbubbles as Ultrasound Contrast Agents for Molecular Imaging: Preparation and Application. Am. J. Roentgenol. 2012, 199, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.J.; Farhadi, A.; Szablowski, J.O.; Lee-Gosselin, A.; Barnes, S.R.; Lakshmanan, A.; Bourdeau, R.W.; Shapiro, M.G. Acoustically Modulated Magnetic Resonance Imaging of Gas-Filled Protein Nanostructures. Nat. Mater. 2018, 17, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, A.; Lu, G.J.; Farhadi, A.; Nety, S.P.; Kunth, M.; Lee-Gosselin, A.; Maresca, D.; Bourdeau, R.W.; Yin, M.; Yan, J.; et al. Preparation of Biogenic Gas Vesicle Nanostructures for Use as Contrast Agents for Ultrasound and MRI. Nat. Protoc. 2017, 12, 2050–2080. [Google Scholar] [CrossRef] [PubMed]
- Serhan, M.; Sprowls, M.; Jackemeyer, D.; Long, M.; Perez, I.D.; Maret, W.; Tao, N.; Forzani, E. Total Iron Measurement in Human Serum with a Smartphone. IEEE J. Transl. Eng. Health Med. 2020, 8, 2800309. [Google Scholar] [CrossRef]
- Angelovski, G.; Tickner, B.J.; Wang, G. Opportunities and Challenges with Hyperpolarized Bioresponsive Probes for Functional Imaging Using Magnetic Resonance. Nat. Chem. 2023, 15, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Roukala, J.; Zhu, J.; Giri, C.; Rissanen, K.; Lantto, P.; Telkki, V.V. Encapsulation of Xenon by a Self-Assembled Fe4L6 Metallosupramolecular Cage. J. Am. Chem. Soc. 2015, 137, 2464–2467. [Google Scholar] [CrossRef]
- Du, K.; Zemerov, S.D.; Carroll, P.J.; Dmochowski, I.J. Paramagnetic Shifts and Guest Exchange Kinetics in ConFe4- NMetal-Organic Capsules. Inorg. Chem. 2020, 59, 12758–12767. [Google Scholar] [CrossRef] [PubMed]
- Shepelytskyi, Y.; Grynko, V.; Batarchuk, V.; Hasselbrink, C.L.; Kovacs, A.H.; Ruset, I.C.; Rodriguez, K.; Al Taradeh, N.; Talwar, T.; DeBoef, B.; et al. R3-Noria-Methanesulfonate: A Molecular Cage with Superior Hyperpolarized Xenon-129 MRI Contrast. ACS Sens. 2023, 8, 4707–4715. [Google Scholar] [CrossRef]
- Patil, R.S.; Banerjee, D.; Simon, C.M.; Atwood, J.L.; Thallapally, P.K. Noria: A Highly Xe-Selective Nanoporous Organic Solid. Chem.—Eur. J. 2016, 22, 12618–12623. [Google Scholar] [CrossRef]
- Chen, H.; Chan, J.Y.W.; Yang, X.; Wyman, I.W.; Bardelang, D.; MacArtney, D.H.; Lee, S.M.Y.; Wang, R. Developmental and Organ-Specific Toxicity of Cucurbit[7]Uril: In Vivo Study on Zebrafish Models. RSC Adv. 2015, 5, 30067–30074. [Google Scholar] [CrossRef]
- Pejchal, J.; Jošt, P.; Múčková, L.; Andrýs, R.; Lísa, M.; Karasova, J.Z. A systematic evaluation of the cucurbit [7] uril pharmacokinetics and toxicity after a single dose and short-term repeated administration in mice. Arch. Toxicol. 2022, 96, 1411–1421. [Google Scholar] [CrossRef]
- Pashkina, E.; Aktanova, A.; Boeva, O.; Bykova, M.; Gavrilova, E.; Goiman, E.; Kovalenko, E.; Saleh, N.; Grishina, L.; Kozlov, V. Evaluation of the Immunosafety of Cucurbit [n]uril In Vivo. Pharmaceutics 2023, 16, 127. [Google Scholar] [CrossRef]
- Shepelytskyi, Y.; Grynko, V.; Li, T.; Hassan, A.; Granberg, K.; Albert, M.S. The Effects of an Initial Depolarization Pulse on Dissolved Phase Hyperpolarized 129Xe Brain MRI. Magn. Reson. Med. 2021, 86, 3147–3155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batarchuk, V.; Shepelytskyi, Y.; Grynko, V.; Kovacs, A.H.; Hodgson, A.; Rodriguez, K.; Aldossary, R.; Talwar, T.; Hasselbrink, C.; Ruset, I.C.; et al. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int. J. Mol. Sci. 2024, 25, 1939. https://doi.org/10.3390/ijms25031939
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, et al. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. International Journal of Molecular Sciences. 2024; 25(3):1939. https://doi.org/10.3390/ijms25031939
Chicago/Turabian StyleBatarchuk, Viktoriia, Yurii Shepelytskyi, Vira Grynko, Antal Halen Kovacs, Aaron Hodgson, Karla Rodriguez, Ruba Aldossary, Tanu Talwar, Carson Hasselbrink, Iulian C. Ruset, and et al. 2024. "Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges" International Journal of Molecular Sciences 25, no. 3: 1939. https://doi.org/10.3390/ijms25031939
APA StyleBatarchuk, V., Shepelytskyi, Y., Grynko, V., Kovacs, A. H., Hodgson, A., Rodriguez, K., Aldossary, R., Talwar, T., Hasselbrink, C., Ruset, I. C., DeBoef, B., & Albert, M. S. (2024). Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. International Journal of Molecular Sciences, 25(3), 1939. https://doi.org/10.3390/ijms25031939