Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives
Abstract
:1. Introduction
2. SMA Zebrafish Models
2.1. Transient smn Antisense Morphants
2.2. SMA Transgenic Zebrafish Models
2.3. Pharmacological SMA Zebrafish Model
3. Concluding Remarks and Future Perspectives
Protein/Gene/Molecule | Function | Experimental Condition | Results | Reference(s) |
---|---|---|---|---|
Transient SMA antisense morpholino models | ||||
Smn | Deletion or mutations in Smn are linked to SMA | Knocked down | Motor axon abnormalities | [26] |
U snRNP | Small nuclear ribonucleoproteins involved in forming spliceosome | Knocked down | Rescues Smn-deficient zebrafish | [28] |
Etv5b | Transcription factor orthologous to human ETV5 | Knocked down | Phenocopies Smn-deficient zebrafish | [34] |
PLS3 | Actin-binding protein | Overexpressed | Rescues Smn-deficient zebrafish | [35,36] |
CORO1C | F-actin-binding protein | Overexpressed | Rescues Smn-deficient zebrafish | [37] |
Pgrn | Secreted glycoprotein involved in several cell processes | Knocked down | Rescues Smn-deficient zebrafish | [40] |
Cpg15 | Promotes axon branching and NMJ formation; highly expressed in developing ventral spinal cord | Overexpressed | Rescues Smn-deficient zebrafish | [41] |
Stasimon | Transmembrane protein involved in motor circuit function | Knocked down | Phenocopies Smn-deficient zebrafish | [42] |
SBL-154, SBL-185, SBL-190 | Small molecules that lower Aβ42 production | - | Rescues Smn-deficient zebrafish | [43] |
Quercetin | Disrupts activity of the β-catenin-Tcf complex | Pharmacologically inhibited | Rescues Smn-deficient zebrafish | [45] |
Non-P tau | Microtubule-assembly factor, regulator of intracellular trafficking | Overexpressed | Rescues Smn-deficient zebrafish | [47] |
Uba1 | Ubiquitination enzyme downstream ubiquitin pathways | Overexpressed | Rescues Smn-deficient zebrafish | [48] |
Necdin | Involved in neuronal mitochondria biogenesis | Overexpressed | Rescues Smn-deficient zebrafish | [49] |
Pgk1 | Involved in ATP synthesis in the glycolytic process | Overexpressed/ Pharmacological induction | Rescues Smn-deficient zebrafish | [49] |
Transgenic SMA zebrafish models | ||||
smn | - | smnY262stop, smnL265stop, smnG264D mutations | Decreased levels of SV2 | [52] |
smn | - | mz-smn | Abnormal SC, DRG, and motor neuron development | [53] |
smn | - | miRNA-based | Recapitulates different forms of SMA | [54] |
smn | - | Cell-specific miRNA-based | smn1 downregulation in motor neurons causes SMA | [55] |
smn | - | smnA6Tind27 | Affected motor neurons, NMJ, and skeletal muscles in late stages | [56] |
HuD | RNA-binding protein expressed early in motor neurons | Overexpressed in mz-smn | Rescues motor axon and locomotor alterations | [57] |
PLS3 | Actin-binding protein | Overexpressed in smn−/− (smnY262stop) | Rescues locomotor function | [59] |
hSMN2 | Human SMN2 | Overexpressed in smn−/− (smnY262stop) | Rescues low levels of SV2 observed in smn−/− larvae | [58] |
Pharmacological SMN zebrafish models | ||||
Uba1 | Ubiquitination enzyme downstream ubiquitin pathways | Uba1 inhibition (UBEI-41) | Motor axon alterations | [46] |
Dipyridamole | Adenosine uptake inhibitor | Treated Uba1-inhibited (UBEI-41) | Rescues motor axon abnormalities | [61] |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babin, P.J.; Goizet, C.; Raldúa, D. Zebrafish Models of Human Motor Neuron Diseases: Advantages and Limitations. Prog. Neurobiol. 2014, 118, 36–58. [Google Scholar] [CrossRef]
- Hahnen, E.; Forkert, R.; Marke, C.; Rudnik-Schöneborn, S.; Schönling, J.; Zerres, K.; Wirth, B. Molecular Analysis of Candidate Genes on Chromosome 5q13 in Autosomal Recessive Spinal Muscular Atrophy: Evidence of Homozygous Deletions of the SMN Gene in Unaffected Individuals. Hum. Mol. Genet. 1995, 4, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Chaytow, H.; Huang, Y.T.; Gillingwater, T.H.; Faller, K.M.E. The Role of Survival Motor Neuron Protein (SMN) in Protein Homeostasis. Cell. Mol. Life Sci. 2018, 75, 3877–3894. [Google Scholar] [CrossRef]
- D’Amico, A.; Mercuri, E.; Tiziano, F.D.; Bertini, E. Spinal Muscular Atrophy. Orphanet J. Rare Dis. 2011, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Prior, T.W.; Snyder, P.J.; Rink, B.D.; Pearl, D.K.; Pyatt, R.E.; Mihal, D.C.; Conlan, T.; Schmalz, B.; Montgomery, L.; Ziegler, K.; et al. Newborn and Carrier Screening for Spinal Muscular Atrophy. Am. J. Med. Genet. A 2010, 152, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, K.J. Seize the Day: Newborn Screening for SMA. Am. J. Med. Genet. A 2010, 152, 1605–1607. [Google Scholar] [CrossRef] [PubMed]
- Munstat, T.L.; Davies, K.E. International sma consortium meeting. Neuromuscul. Disord. 1992, 2, 423–428. [Google Scholar]
- Singh, R.N.; Howell, M.D.; Ottesen, E.W.; Singh, N.N. Diverse Role of Survival Motor Neuron Protein. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 299–315. [Google Scholar] [CrossRef]
- Vitte, J.; Fassier, C.; Tiziano, F.D.; Dalard, C.; Soave, S.; Roblot, N.; Brahe, C.; Saugier-Veber, P.; Bonnefont, J.P.; Melki, J. Refined Characterization of the Expression and Stability of the SMN Gene Products. Am. J. Pathol. 2007, 171, 1269–1280. [Google Scholar] [CrossRef]
- Wirth, B. An Update of the Mutation Spectrum of the Survival Motor Neuron Gene (SMN1) in Autosomal Recessive Spinal Muscular Atrophy (SMA). Hum. Mutat. 2000, 15, 228–237. [Google Scholar] [CrossRef]
- Gavrilov, D.K.; Shi, X.; Das, K.; Gilliam, T.C.; Wang, C.H. Differential SMN2 Expression Associated with SMA Severity. Nat. Genet. 1998, 20, 230–231. [Google Scholar] [CrossRef] [PubMed]
- Feldkötter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.F.; Wirth, B. Quantitative Analyses of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy. Am. J. Hum. Genet. 2002, 70, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Rudnik-Schöneborn, S.; Berg, C.; Zerres, K.; Betzler, C.; Grimm, T.; Eggermann, T.; Eggermann, K.; Wirth, R.; Wirth, B.; Heller, R. Genotype-Phenotype Studies in Infantile Spinal Muscular Atrophy (SMA) Type I in Germany: Implications for Clinical Trials and Genetic Counselling. Clin. Genet. 2009, 76, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Burghes, A.H.; Beattie, C.E. Spinal Muscular Atrophy: Why Do Low Levels of Survival Motor Neuron Protein Make Motor Neurons Sick? Nat. Rev. Neurosci. 2009, 8, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.J.J.; Darras, B.T. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr. Neurol. 2020, 109, 12–19. [Google Scholar] [CrossRef]
- Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and Characterization of a Spinal Muscular Atrophy-determining Gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef]
- Tabet, R.; El Bitar, S.; Zaidan, J.; Dabaghian, G. Spinal Muscular Atrophy: The Treatment Approved. Cureus 2017, 9, e1644. [Google Scholar] [CrossRef]
- Mahajan, R. Onasemnogene Abeparvovec for Spinal Muscular Atrophy: The Costlier Drug Ever. Int. J. Appl. Basic. Med. Res. 2019, 9, 127. [Google Scholar] [CrossRef]
- Markati, T.; Fisher, G.; Ramdas, S.; Servais, L. Risdiplam: An Investigational Survival Motor Neuron 2 (SMN2) Splicing Modifier for Spinal Muscular Atrophy (SMA). Expert Opin. Investig. Drugs 2022, 31, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, S.; Boccanegra, B.; Vitturi, G.; Trifirò, G.; De Luca, A. Pharmacological Therapies of Spinal Muscular Atrophy: A Narrative Review of Preclinical, Clinical-Experimental, and Real-World Evidence. Brain Sci. 2023, 13, 1446. [Google Scholar] [CrossRef]
- Bandmann, O.; Burton, E.A. Genetic Zebrafish Models of Neurodegenerative Diseases. Neurobiol. Dis. 2010, 40, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.S.; Rinkwitz, S. Zebrafish as a Genomics Model for Human Neurological and Polygenic Disorders. Dev. Neurobiol. 2012, 72, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Bertrandy, S.; Burlet, P.; Clermont, O.; Huber, C.; Fondrat, C.; Thierry-Mieg, D.; Munnich, A.; Lefebvre, S. The RNA-Binding Properties of SMN: Deletion Analysis of the Zebrafish Orthologue Defines Domains Conserved in Evolution. Hum. Mol. Genet. 1999, 8, 775–782. [Google Scholar] [CrossRef] [PubMed]
- McWhorter, M.L.; Monani, U.R.; Burghes, A.H.M.; Beattie, C.E. Knockdown of the Survival Motor Neuron (Smn) Protein in Zebrafish Causes Defects in Motor Axon Outgrowth and Pathfinding. J. Cell Biol. 2003, 162, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Beattie, C.E.; Carrel, T.L.; McWhorter, M.L. Fishing for a Mechanism: Using Zebrafish to Understand Spinal Muscular Atrophy. J. Child. Neurol. 2007, 22, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Eggert, C.; Gradl, D.; Meister, G.; Giegerich, M.; Wedlich, D.; Laggerbauer, B.; Fischer, U. Reduced U SnRNP Assembly Causes Motor Axon Degeneration in an Animal Model for Spinal Muscular Atrophy. Genes. Dev. 2005, 19, 2320–2330. [Google Scholar] [CrossRef]
- Pellizzoni, L.; Yong, J.; Dreyfuss, G. Essential Role for the SMN Complex in the Specificity of SnRNP Assembly. Science 2002, 298, 1775–1779. [Google Scholar] [CrossRef]
- McWhorter, M.L.; Boon, K.I.; Horan, E.S.; Burghes, A.H.M.; Beattie, C.E. The SMN Binding Protein Gemin2 Is Not Involved in Motor Axon Outgrowth. Dev. Neurobiol. 2008, 68, 182–194. [Google Scholar] [CrossRef]
- Jablonka, S.; Bandilla, M.; Wiese, S.; Buhler, D.; Wirth, B.; Sendtner, M.; Fischer, U. Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Hum. Mol. Genet. 2001, 10, 497–505. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, L.; Rossoll, W.; Wichterle, H.; Singer, R.H.; Bassell, G.J. Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J. Neurosci. 2006, 26, 8622–8632. [Google Scholar] [CrossRef] [PubMed]
- Carrel, T.L.; McWhorter, M.L.; Workman, E.; Zhang, H.; Wolstencroft, E.C.; Lorson, C.; Bassell, G.J.; Burghes, A.H.M.; Beattie, C.E. Survival Motor Neuron Function in Motor Axons Is Independent of Functions Required for Small Nuclear Ribonucleoprotein Biogenesis. J. Neurosci. 2006, 26, 11014–11022. [Google Scholar] [CrossRef] [PubMed]
- Spiró, Z.; Koh, A.; Tay, S.; See, K.; Winkler, C. Transcriptional Enhancement of Smn Levels in Motoneurons Is Crucial for Proper Axon Morphology in Zebrafish. Sci. Rep. 2016, 6, 27470. [Google Scholar] [CrossRef] [PubMed]
- Oprea, G.E.; Kröber, S.; Mcwhorter, M.L.; Rossoll, W.; Müller, S.; Krawczak, M.; Bassell, G.J.; Beattie, C.E.; Wirth, B. Plastin 3 Is a Protective Modifier of Autosomal Recessive Spinal Muscular Atrophy. Science 2008, 320, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.N.; Pineda, R.H.; Hao, L.T.; Kudryashova, E.; Kudryashov, D.S.; Beattie, C.E. Calcium Binding Is Essential for Plastin 3 Function in Smn-Deficient Motoneurons. Hum. Mol. Genet. 2014, 23, 1990–2004. [Google Scholar] [CrossRef]
- Hosseinibarkooie, S.; Peters, M.; Torres-Benito, L.; Rastetter, R.H.H.; Hupperich, K.; Hoffmann, A.; Mendoza-Ferreira, N.; Kaczmarek, A.; Janzen, E.; Milbradt, J.; et al. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am. J. Hum. Genet. 2016, 99, 647–665. [Google Scholar] [CrossRef] [PubMed]
- Riessland, M.; Kaczmarek, A.; Schneider, S.; Swoboda, K.J.; Löhr, H.; Bradler, C.; Grysko, V.; Dimitriadi, M.; Hosseinibarkooie, S.; Torres-Benito, L.; et al. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. Am. J. Hum. Genet. 2017, 100, 297–315. [Google Scholar] [CrossRef]
- Janzen, E.; Mendoza-Ferreira, N.; Hosseinibarkooie, S.; Schneider, S.; Hupperich, K.; Tschanz, T.; Grysko, V.; Riessland, M.; Hammerschmidt, M.; Rigo, F.; et al. CHP1 Reduction Ameliorates Spinal Muscular Atrophy Pathology by Restoring Calcineurin Activity and Endocytosis. Brain 2018, 141, 2343–2361. [Google Scholar] [CrossRef]
- Chitramuthu, B.P.; Baranowski, D.C.; Kay, D.G.; Bateman, A.; Bennett, H.P.J. Progranulin Modulates Zebrafish Motoneuron Development in Vivo and Rescues Truncation Defects Associated with Knockdown of Survival Motor Neuron 1. Mol. Neurodegener. 2010, 5, 41. [Google Scholar] [CrossRef]
- Akten, B.; Kye, M.J.; Hao, L.T.; Wertz, M.H.; Singh, S.; Nie, D.; Huang, J.; Merianda, T.T.; Twiss, J.L.; Beattie, C.E.; et al. Interaction of Survival of Motor Neuron (SMN) and HuD Proteins with MRNA Cpg15 Rescues Motor Neuron Axonal Deficits. Proc. Natl. Acad. Sci. USA 2011, 108, 10337–10342. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Imlach, W.L.; Saieva, L.; Beck, E.S.; Hao, L.T.; Li, D.K.; Jiao, W.; Mentis, G.Z.; Beattie, C.E.; McCabe, B.D.; et al. An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function. Cell 2012, 151, 440–454. [Google Scholar] [CrossRef] [PubMed]
- Gassman, A.; Hao, L.T.; Bhoite, L.; Bradford, C.L.; Chien, C.B.; Beattie, C.E.; Manfredi, J.P. Small Molecule Suppressors of Drosophila Kinesin Deficiency Rescue Motor Axon Development in a Zebrafish Model of Spinal Muscular Atrophy. PLoS ONE 2013, 8, e0074325. [Google Scholar] [CrossRef] [PubMed]
- Bäumer, D.; Lee, S.; Nicholson, G.; Davies, J.L.; Parkinson, N.J.; Murray, L.M.; Gillingwater, T.H.; Ansorge, O.; Davies, K.E.; Talbot, K. Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy. PLoS Genet. 2009, 5, e1000773. [Google Scholar] [CrossRef] [PubMed]
- Sleigh, J.N.; Barreiro-Iglesias, A.; Oliver, P.L.; Biba, A.; Becker, T.; Davies, K.E.; Becker, C.G.; Talbot, K. Chondrolectin Affects Cell Survival and Neuronal Outgrowth in in Vitro and in Vivo Models of Spinal Muscular Atrophy. Hum. Mol. Genet. 2014, 23, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Wishart, T.M.; Mutsaers, C.A.; Riessland, M.; Reimer, M.M.; Hunter, G.; Hannam, M.L.; Eaton, S.L.; Fuller, H.R.; Roche, S.L.; Somers, E.; et al. Dysregulation of Ubiquitin Homeostasis and β-Catenin Signaling Promote Spinal Muscular Atrophy. J. Clin. Investig. 2014, 124, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.; Feng, Z.; Edens, B.M.; Yang, B.; Shi, H.; Sze, C.C.; Hong, B.T.; Su, S.C.; Cantu, J.A.; Topczewski, J.; et al. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy. J. Neurosci. 2015, 35, 6038–6050. [Google Scholar] [CrossRef]
- Powis, R.A.; Karyka, E.; Boyd, P.; Côme, J.; Jones, R.A.; Zheng, Y.; Szunyogova, E.; Groen, E.J.N.; Hunter, G.; Thomson, D.; et al. Systemic Restoration of UBA1 Ameliorates Disease in Spinal Muscular Atrophy. JCI Insight 2016, 1, e87908. [Google Scholar] [CrossRef]
- Boyd, P.J.; Tu, W.Y.; Shorrock, H.K.; Groen, E.J.N.; Carter, R.N.; Powis, R.A.; Thomson, S.R.; Thomson, D.; Graham, L.C.; Motyl, A.A.L.; et al. Bioenergetic Status Modulates Motor Neuron Vulnerability and Pathogenesis in a Zebrafish Model of Spinal Muscular Atrophy. PLoS Genet. 2017, 13, e1006744. [Google Scholar] [CrossRef]
- Koh, A.; Sarusie, M.V.; Ohmer, J.; Fischer, U.; Winkler, C.; Wohland, T. Fluorescence Correlation Spectroscopy Reveals Survival Motor Neuron Oligomerization but No Active Transport in Motor Axons of a Zebrafish Model for Spinal Muscular Atrophy. Front. Cell Dev. Biol. 2021, 9, 639904. [Google Scholar] [CrossRef]
- Riboldi, G.M.; Faravelli, I.; Kuwajima, T.; Delestrée, N.; Dermentzaki, G.; De Planell-Saguer, M.; Rinchetti, P.; Hao, L.T.; Beattie, C.C.; Corti, S.; et al. Sumoylation Regulates the Assembly and Activity of the SMN Complex. Nat. Commun. 2021, 12, 5040. [Google Scholar] [CrossRef] [PubMed]
- Boon, K.L.; Xiao, S.; McWhorter, M.L.; Donn, T.; Wolf-Saxon, E.; Bohnsack, M.T.; Moens, C.B.; Beattie, C.E. Zebrafish Survival Motor Neuron Mutants Exhibit Presynaptic Neuromuscular Junction Defects. Hum. Mol. Genet. 2009, 18, 3615–3625. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.T.; Duy, P.Q.; Jontes, J.D.; Beattie, C.E. Motoneuron Development Influences Dorsal Root Ganglia Survival and Schwann Cell Development in a Vertebrate Model of Spinal Muscular Atrophy. Hum. Mol. Genet. 2015, 24, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Giacomotto, J.; Rinkwitz, S.; Becker, T.S. Effective Heritable Gene Knockdown in Zebrafish Using Synthetic MicroRNAs. Nat. Commun. 2015, 6, 7378. [Google Scholar] [CrossRef] [PubMed]
- Laird, A.S.; Mackovski, N.; Rinkwitz, S.; Becker, T.S.; Giacomotto, J. Tissue-Specific Models of Spinal Muscular Atrophy Confirm a Critical Role of SMN in Motor Neurons from Embryonic to Adult Stages. Hum. Mol. Genet. 2016, 25, 1728–1738. [Google Scholar] [CrossRef]
- Tay, S.H.; Ellieyana, E.N.; Le, Y.; Sarusie, M.V.; Grimm, C.; Ohmer, J.; Mathuru, A.S.; Fischer, U.; Winkler, C. A Novel Zebrafish Model for Intermediate Type Spinal Muscular Atrophy Demonstrates Importance of Smn for Maintenance of Mature Motor Neurons. Hum. Mol. Genet. 2021, 30, 2488–2502. [Google Scholar] [CrossRef]
- Hao Le, T.; Duy, P.Q.; An, M.; Talbot, J.; Iyer, C.C.; Wolman, M.; Beattie, C.E. HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and MRNA Regulation. J. Neurosci. 2017, 37, 11559–11571. [Google Scholar] [CrossRef]
- Hao, L.T.; Burghes, A.H.M.; Beattie, C.E. Generation and Characterization of a Genetic Zebrafish Model of SMA Carrying the Human SMN2 Gene. Mol. Neurodegener. 2011, 6, 24. [Google Scholar] [CrossRef]
- Hao, L.T.; Wolman, M.; Granato, M.; Beattie, C.E. Survival Motor Neuron Affects Plastin 3 Protein Levels Leading to Motor Defects. J. Neurosci. 2012, 32, 5074–5084. [Google Scholar] [CrossRef]
- Ramser, J.; Ahearn, M.E.; Lenski, C.; Yariz, K.O.; Hellebrand, H.; von Rhein, M.; Clark, R.D.; Schmutzler, R.K.; Lichtner, P.; Hoffman, E.P.; et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 2008, 82, 188–193. [Google Scholar] [CrossRef]
- Oprişoreanu, A.M.; Smith, H.L.; Krix, S.; Chaytow, H.; Carragher, N.O.; Gillingwater, T.H.; Becker, C.G.; Becker, T. Automated in Vivo Drug Screen in Zebrafish Identifies Synapse Stabilising Drugs with Relevance to Spinal Muscular Atrophy. DMM Dis. Models Mech. 2021, 14, dmm047761. [Google Scholar] [CrossRef] [PubMed]
- Farinelli, S.E.; Greene, L.A.; Friedman, W.J. Neuroprotective actions of dipyridamole on cultured CNS neurons. J. Neurosci. 1998, 18, 5112–5123. [Google Scholar] [CrossRef] [PubMed]
- Höllerhage, M.; Moebius, C.; Melms, J.; Chiu, W.H.; Goebel, J.N.; Chakroun, T.; Koeglsperger, T.; Oertel, W.H.; Rösler, T.W.; Bickle, M.; et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci. Rep. 2017, 7, 11469. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, D.; Vásquez-Doorman, C.; Luna, A.; Allende, M.L. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 1962. https://doi.org/10.3390/ijms25041962
Gonzalez D, Vásquez-Doorman C, Luna A, Allende ML. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. International Journal of Molecular Sciences. 2024; 25(4):1962. https://doi.org/10.3390/ijms25041962
Chicago/Turabian StyleGonzalez, David, Constanza Vásquez-Doorman, Adolfo Luna, and Miguel L. Allende. 2024. "Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives" International Journal of Molecular Sciences 25, no. 4: 1962. https://doi.org/10.3390/ijms25041962
APA StyleGonzalez, D., Vásquez-Doorman, C., Luna, A., & Allende, M. L. (2024). Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. International Journal of Molecular Sciences, 25(4), 1962. https://doi.org/10.3390/ijms25041962