Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose
Abstract
:1. Introduction
2. Results
2.1. Effect of APAP Overdose on Cell Proliferation in the Subgranular Zone of the Dentate Gyrus and Hypothalamus
2.2. Effect of APAP Overdose on Cell Survival in the Hippocampus and Hypothalamus
2.3. Effect of APAP Overdose on Neuronal Activity in the Hippocampus and Hypothalamus
2.4. Effect of APAP Overdose on Astroglia in the Hippocampus and Hypothalamus
2.5. Correlation Analysis between Liver Transaminases and Cell Proliferation and Survival following APAP Overdose
2.6. Correlation Analysis between Neuronal Activity and Astroglia and Cell Proliferation and Survival following APAP Overdose
2.7. Correlation Analysis between Cell Proliferation and Survival following APAP Overdose
2.8. Effect of APAP Overdose Reduced GSH/GSSG Ratio in the Hypothalamus and Plasma of Control and APAPx3-Treated Mice
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Animal Model
4.3. Acetaminophen Treatment
4.4. IdU and BrdU Administration
4.5. Sample Collection
4.6. Biochemical Analysis
4.7. Immunohistochemistry and Immunofluorescence
4.8. Cell Counting
4.9. Quantification of Immunoreactivity
4.10. Determination of Reduced and Oxidized Glutathione
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jozwiak-Bebenista, M.; Nowak, J.Z. Paracetamol: Mechanism of Action, Applications and Safety Concern. Acta Pol. Pharm. Drug Res. 2014, 71, 11–23. [Google Scholar]
- Chidiac, A.S.; Buckley, N.A.; Noghrehchi, F.; Cairns, R. Paracetamol (Acetaminophen) Overdose and Hepatotoxicity: Mechanism, Treatment, Prevention Measures, and Estimates of Burden of Disease. Expert Opin. Drug Metab. Toxicol. 2023, 19, 297–317. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, C.I.; Pérez, M.J.; Manautou, J.E.; Mottino, A.D. Acetaminophen from Liver to Brain: New Insights into Drug Pharmacological Action and Toxicity. Pharmacol. Res. 2016, 109, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Hennings, L.; Rafferty, T.M.; Letzig, L.G.; McCullough, S.; James, L.P.; MacMillan-Crow, L.A.; Hinson, J.A. Acetaminophen-Induced Hepatotoxicity and Protein Nitration in Neuronal Nitric-Oxide Synthase Knockout Mice. J. Pharmacol. Exp. Ther. 2012, 340, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Wade, J.B.; Sanyal, A.J. Spectrum of Neurocognitive Impairment in Cirrhosis: Implications for the Assessment of Hepatic Encephalopathy. Hepatology 2009, 50, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, D.R.; Tranah, E.J.; Shawcross, D.L. Pathogenesis of Hepatic Encephalopathy: Role of Ammonia and Systemic Inflammation. J. Clin. Exp. Hepatol. 2015, 5, S7–S20. [Google Scholar] [CrossRef]
- Felipo, V.; Butterworth, R.F. Neurobiology of Ammonia. Prog. Neurobiol. 2002, 67, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and Pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef]
- Clissold, S.P. Paracetamol and Phenacetin. Drugs 1986, 32, 46–59. [Google Scholar] [CrossRef]
- Kumpulainen, E.; Kokki, H.; Halonen, T.; Heikkinen, M.; Savolainen, J.; Laisalmi, M. Paracetamol (Acetaminophen) Penetrates Readily into the Cerebrospinal Fluid of Children after Intravenous Administration. Pediatrics 2007, 119, 766–771. [Google Scholar] [CrossRef]
- Courade, J.P.; Besse, D.; Delchambre, C.; Hanoun, N.; Hamon, M.; Eschalier, A.; Caussade, F.; Cloarec, A. Acetaminophen Distribution in the Rat Central Nervous System. Life Sci. 2001, 69, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, S.S. Paracetamol (Acetaminophen): A Familiar Drug with an Unexplained Mechanism of Action. Temperature 2021, 8, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Fegley, D.; Kathuria, S.; Mercier, R.; Li, C.; Goutopoulos, A.; Makriyannis, A.; Piomelli, D. Anandamide Transport Is Independent of Fatty-Acid Amide Hydrolase Activity and Is Blocked by the Hydrolysis-Resistant Inhibitor AM1172. Proc. Natl. Acad. Sci. USA 2004, 101, 8756–8761. [Google Scholar] [CrossRef] [PubMed]
- Jurkowski, M.P.; Bettio, L.; Woo, E.K.; Patten, A.; Yau, S.Y.; Gil-Mohapel, J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis throughout the Brain. Front. Cell. Neurosci. 2020, 14, 576444. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.Z.; Kriebel, D.; Herbert, M.R.; Bornehag, C.G.; Swan, S.H. Prenatal Paracetamol Exposure and Child Neurodevelopment: A Review. Horm. Behav. 2018, 101, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Philippot, G.; Hellsten, S.V.; Viberg, H.; Fredriksson, R. Evaluation of the Dentate Gyrus in Adult Mice Exposed to Acetaminophen (Paracetamol) on Postnatal Day 10. Int. J. Dev. Neurosci. 2021, 81, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Talge, N.M. Prenatal Acetaminophen Exposure and Neurodevelopment: State of the Evidence. Paediatr. Perinat. Epidemiol. 2020, 34, 227–229. [Google Scholar] [CrossRef]
- Hill, M.N.; Kambo, J.S.; Sun, J.C.; Gorzalka, B.B.; Galea, L.A.M. Endocannabinoids Modulate Stress-Induced Suppression of Hippocampal Cell Proliferation and Activation of Defensive Behaviours. Eur. J. Neurosci. 2006, 24, 1845–1849. [Google Scholar] [CrossRef]
- Lourenço, D.M.; Soares, R.; Sá-Santos, S.; Mateus, J.M.; Rodrigues, R.S.; Moreira, J.B.; Vaz, S.H.; Sebastião, A.M.; Solá, S.; Xapelli, S. Unravelling a Novel Role for Cannabidivarin in the Modulation of Subventricular Zone Postnatal Neurogenesis. Eur. J. Pharmacol. 2023, 959, 176079. [Google Scholar] [CrossRef]
- Jaworski, J.; Kalita, K.; Knapska, E. C-Fos and Neuronal Plasticity: The Aftermath of Kaczmarek’s Theory. Acta Neurobiol. Exp. 2018, 78, 287–296. [Google Scholar] [CrossRef]
- Rivera, P.; Vargas, A.; Pastor, A.; Boronat, A.; López-Gambero, A.J.; Sánchez-Marín, L.; Medina-Vera, D.; Serrano, A.; Pavón, F.J.; de la Torre, R.; et al. Differential Hepatoprotective Role of the Cannabinoid CB1 and CB2 Receptors in Paracetamol-Induced Liver Injury. Br. J. Pharmacol. 2020, 177, 3309–3326. [Google Scholar] [CrossRef]
- Rivera, P.; Pastor, A.; Arrabal, S.; Decara, J.; Vargas, A.; Sánchez-Marín, L.; Pavón, F.J.; Serrano, A.; Bautista, D.; Boronat, A.; et al. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver. Front. Pharmacol. 2017, 8, 705. [Google Scholar] [CrossRef]
- Rivera, P.; Bindila, L.; Pastor, A.; Pérez-Martín, M.; Pavón, F.J.; Serrano, A.; de la Torre, R.; Lutz, B.; de Fonseca, F.R.; Suárez, J. Pharmacological Blockade of the Fatty Acid Amide Hydrolase (FAAH) Alters Neural Proliferation, Apoptosis and Gliosis in the Rat Hippocampus, Hypothalamus and Striatum in a Negative Energy Context. Front. Cell. Neurosci. 2015, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Betterton, R.D.; Williams, E.I.; Stanton, J.A.; Reddell, E.S.; Ogbonnaya, C.E.; Dorn, E.; Davis, T.P.; Lochhead, J.J.; Ronaldson, P.T. High-Dose Acetaminophen Alters the Integrity of the Blood–Brain Barrier and Leads to Increased CNS Uptake of Codeine in Rats. Pharmaceutics 2022, 14, 949. [Google Scholar] [CrossRef] [PubMed]
- Suda, N.; Hernandez, J.C.; Poulton, J.; Jones, J.P.; Konsoula, Z.; Smith, C.; Parker, W. Therapeutic Doses of Acetaminophen with Coadministration of Cysteine and Mannitol during Early Development Result in Long Term Behavioral Changes in Laboratory Rats. PLoS ONE 2021, 16, e0253543. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.; Hornik, C.D.; Bilbo, S.; Holzknecht, Z.E.; Gentry, L.; Rao, R.; Lin, S.S.; Herbert, M.R.; Nevison, C.D. The Role of Oxidative Stress, Inflammation and Acetaminophen Exposure from Birth to Early Childhood in the Induction of Autism. J. Int. Med. Res. 2017, 45, 407–438. [Google Scholar] [CrossRef] [PubMed]
- Vlenterie, R.; Wood, M.E.; Brandlistuen, R.E.; Roeleveld, N.; van Gelder, M.M.H.J.; Nordeng, H. Neurodevelopmental Problems at 18 Months among Children Exposed to Paracetamol in Utero: A Propensity Score Matched Cohort Study. Int. J. Epidemiol. 2016, 45, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Philippot, G.; Gordh, T.; Fredriksson, A.; Viberg, H. Adult Neurobehavioral Alterations in Male and Female Mice Following Developmental Exposure to Paracetamol (Acetaminophen): Characterization of a Critical Period. J. Appl. Toxicol. 2017, 37, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Posadas, I.; Santos, P.; Blanco, A.; Muñoz-Fernández, M.; Ceña, V. Acetaminophen Induces Apoptosis in Rat Cortical Neurons. PLoS ONE 2010, 5, e15360. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F. Pathogenesis of Hepatic Encephalopathy and Brain Edema in Acute Liver Failure. J. Clin. Exp. Hepatol. 2015, 5, S96–S103. [Google Scholar] [CrossRef]
- Wijdicks, E.F.M. Hepatic Encephalopathy. N. Engl. J. Med. 2016, 375, 1660–1670. [Google Scholar] [CrossRef]
- Upadhya, S.C.; Tirumalai, P.S.; Boyd, M.R.; Mori, T.; Ravindranath, V. Cytochrome P4502E (CYP2E) in BRAIN: Constitutive Expression, Induction by Ethanol and Localization by Fluorescence in Situ Hybridization. Arch. Biochem. Biophys. 2000, 373, 23–34. [Google Scholar] [CrossRef]
- Howard, L.A.; Miksys, S.; Hoffmann, E.; Mash, D.; Tyndale, R.F. Brain CYP2E1 Is Induced by Nicotine and Ethanol in Rat and Is Higher in Smokers and Alcoholics. Br. J. Pharmacol. 2003, 138, 1376–1386. [Google Scholar] [CrossRef]
- Micheli, L.; Fiaschi, A.I.; Cerretani, D.; Giorgi, G. Effect of Acetaminophen on Glutathione Levels in Several Regions of the Rat Brain. Curr. Ther. Res. 1993, 53, 730–736. [Google Scholar] [CrossRef]
- Johnson, W.M.; Wilson-Delfosse, A.L.; Mieyal, J.J. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients 2012, 4, 1399–1440. [Google Scholar] [CrossRef]
- Högestätt, E.D.; Jönsson, B.A.G.; Ermund, A.; Andersson, D.A.; Björk, H.; Alexander, J.P.; Cravatt, B.F.; Basbaum, A.I.; Zygmunt, P.M. Conversion of Acetaminophen to the Bioactive N-Acylphenolamine AM404 via Fatty Acid Amide Hydrolase-Dependent Arachidonic Acid Conjugation in the Nervous System. J. Biol. Chem. 2005, 280, 31405–31412. [Google Scholar] [CrossRef] [PubMed]
- Mallet, C.; Desmeules, J.; Pegahi, R.; Eschalier, A. An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. J. Pain Res. 2023, 16, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Mallet, C.; Daulhac, L.; Bonnefont, J.; Ledent, C.; Etienne, M.; Chapuy, E.; Libert, F.; Eschalier, A. Endocannabinoid and Serotonergic Systems Are Needed for Acetaminophen-Induced Analgesia. Pain 2008, 139, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Aguado, T.; Monory, K.; Palazuelos, J.; Stella, N.; Cravatt, B.; Lutz, B.; Marsicano, G.; Kokaia, Z.; Guzmán, M.; Galve-Roperh, I. The Endocannabinoid System Drives Neural Progenitor Proliferation. FASEB J. 2005, 19, 1704–1706. [Google Scholar] [CrossRef]
- Galve-Roperh, I.; Aguado, T.; Palazuelos, J.; Guzmán, M. The Endocannabinoid System and Neurogenesis in Health and Disease. Neuroscientist 2007, 13, 109–114. [Google Scholar] [CrossRef]
- Goncalves, M.B.; Suetterlin, P.; Yip, P.; Molina-Holgado, F.; Walker, D.J.; Oudin, M.J.; Zentar, M.P.; Pollard, S.; Yáñez-Muñoz, R.J.; Williams, G.; et al. A Diacylglycerol Lipase-CB2 Cannabinoid Pathway Regulates Adult Subventricular Zone Neurogenesis in an Age-Dependent Manner. Mol. Cell. Neurosci. 2008, 38, 526–536. [Google Scholar] [CrossRef]
- Rivera, P.; Romero-Zerbo, Y.; Pavón, F.J.; Serrano, A.; López-Ávalos, M.D.; Cifuentes, M.; Grondona, J.M.; Bermúdez-Silva, F.J.; Fernández-Llebrez, P.; de Fonseca, F.R.; et al. Obesity-Dependent Cannabinoid Modulation of Proliferation in Adult Neurogenic Regions. Eur. J. Neurosci. 2011, 33, 1577–1586. [Google Scholar] [CrossRef]
- Jin, K.; Xie, L.; Kim, S.H.; Parmentier-Batteur, S.; Sun, Y.; Mao, X.O.; Childs, J.; Greenberg, D.A. Defective Adult Neurogenesis in CB1 Cannabinoid Receptor Knockout Mice. Mol. Pharmacol. 2004, 66, 204–208. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Y.; Xiao, L.; Van Cleemput, J.; Ji, S.P.; Bai, G.; Zhang, X. Cannabinoids Promote Embryonic and Adult Hippocampus Neurogenesis and Produce Anxiolytic- and Antidepressant-like Effects. J. Clin. Investig. 2005, 115, 3104–3116. [Google Scholar] [CrossRef]
- Zygmunt, P.M.; Chuang, H.H.; Movahed, P.; Julius, D.; Högestätt, E.D. The Anandamide Transport Inhibitor AM404 Activates Vanilloid Receptors. Eur. J. Pharmacol. 2000, 396, 39–42. [Google Scholar] [CrossRef]
- Ross, R.A.; Gibson, T.M.; Brockie, H.C.; Leslie, M.; Pashmi, G.; Craib, S.J.; Di Marzo, V.; Pertwee, R.G. Structure-Activity Relationship for the Endogenous Cannabinoid, Anandamide, and Certain of Its Analogues at Vanilloid Receptors in Transfected Cells and Vas Deferens. Br. J. Pharmacol. 2001, 132, 631–640. [Google Scholar] [CrossRef]
- Stock, K.; Garthe, A.; De Almeida Sassi, F.; Glass, R.; Wolf, S.A.; Kettenmann, H. The Capsaicin Receptor TRPV1 as a Novel Modulator of Neural Precursor Cell Proliferation. Stem Cells 2014, 32, 3183–3195. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Ortega, E.; Ladrón de Guevara-Miranda, D.; Serrano, A.; Pavón, F.J.; Suárez, J.; Rodríguez de Fonseca, F.; Santín, L.J. The Impact of Cocaine on Adult Hippocampal Neurogenesis: Potential Neurobiological Mechanisms and Contributions to Maladaptive Cognition in Cocaine Addiction Disorder. Biochem. Pharmacol. 2017, 141, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.J.; Robles, M.; Ulzurrun, E.; Lucena, M.I. Drug-induced liver injury: Insights from genetic studies. Pharmacogenomics 2009, 10, 1467–1487. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Elsevier Science Publishing Co. Inc.: San Diego, CA, USA, 2007; ISBN 9780125476126. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, J.; de Ceglia, M.; Rodríguez-Pozo, M.; Vargas, A.; Santos, I.; Melgar-Locatelli, S.; Castro-Zavala, A.; Castilla-Ortega, E.; Rodríguez de Fonseca, F.; Decara, J.; et al. Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose. Int. J. Mol. Sci. 2024, 25, 1964. https://doi.org/10.3390/ijms25041964
Suárez J, de Ceglia M, Rodríguez-Pozo M, Vargas A, Santos I, Melgar-Locatelli S, Castro-Zavala A, Castilla-Ortega E, Rodríguez de Fonseca F, Decara J, et al. Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose. International Journal of Molecular Sciences. 2024; 25(4):1964. https://doi.org/10.3390/ijms25041964
Chicago/Turabian StyleSuárez, Juan, Marialuisa de Ceglia, Miguel Rodríguez-Pozo, Antonio Vargas, Ignacio Santos, Sonia Melgar-Locatelli, Adriana Castro-Zavala, Estela Castilla-Ortega, Fernando Rodríguez de Fonseca, Juan Decara, and et al. 2024. "Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose" International Journal of Molecular Sciences 25, no. 4: 1964. https://doi.org/10.3390/ijms25041964
APA StyleSuárez, J., de Ceglia, M., Rodríguez-Pozo, M., Vargas, A., Santos, I., Melgar-Locatelli, S., Castro-Zavala, A., Castilla-Ortega, E., Rodríguez de Fonseca, F., Decara, J., & Rivera, P. (2024). Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose. International Journal of Molecular Sciences, 25(4), 1964. https://doi.org/10.3390/ijms25041964