Hyperparathyroidism, Serum Phosphorus and Dietary Intake in Hemodialysis Patients: Is There a Novel Relationship?
Abstract
:1. Introduction
2. Results
- iPTH < 130 pg/mL—13.9% (n = 81);
- iPTH between 130–585 pg/mL—59.3% (n = 345);
- iPTH >585 pg/mL—23.2% (n = 135).
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Sample Size
4.3. Inclusion and Exclusion Criteria
4.4. Data Analysis
4.5. Body Composition
4.6. Food Frequency Questionnaire (FFQ)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. Kidney Disease: Improving Global Outcomes CKDMBDUWG. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef]
- Dukkipati, R.; Kovesdy, C.P.; Colman, S.; Budoff, M.J.; Nissenson, A.R.; Sprague, S.M.; Kopple, J.D.; Kalantar-Zadeh, K. Association of relatively low serum parathyroid hormone with malnutrition-inflammation complex and survival in maintenance hemodialysis patients. J. Ren. Nutr. 2010, 20, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, M.; Ogata, H.; Koiwa, F. Secondary Hyperparathyroidism: Pathogenesis and Latest Treatment. Ther. Apher. Dial. 2019, 23, 309–318. [Google Scholar] [CrossRef]
- Brandenburg, V.; Ketteler, M. Vitamin D and Secondary Hyperparathyroidism in Chronic Kidney Disease: A Critical Appraisal of the Past, Present, and the Future. Nutrients 2022, 14, 3009. [Google Scholar] [CrossRef] [PubMed]
- Feroze, U.; Molnar, M.Z.; Dukkipati, R.; Kovesdy, C.P.; Kalantar-Zadeh, K. Insights into nutritional and inflammatory aspects of low parathyroid hormone in dialysis patients. J. Ren. Nutr. 2011, 21, 100–104. [Google Scholar] [CrossRef]
- Fujii, H. Association between Parathyroid Hormone and Cardiovascular Disease. Ther. Apher. Dial. 2018, 22, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Tentori, F.; Wang, M.; Bieber, B.A.; Karaboyas, A.; Li, Y.; Jacobson, S.H.; Andreucci, V.E.; Fukagawa, M.; Frimat, L.; Mendelssohn, D.C.; et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: The DOPPS study. Clin. J. Am. Soc. Nephrol. 2015, 10, 98–109. [Google Scholar] [CrossRef]
- Floege, J.; Kim, J.; Ireland, E.; Chazot, C.; Drueke, T.; de Francisco, A.; Kronenberg, F.; Marcelli, D.; Passlick-Deetjen, J.; Schernthaner, G.; et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol. Dial. Transplant. 2011, 26, 1948–1955. [Google Scholar] [CrossRef]
- Cuppari, L.; de Carvalho, A.B.; Avesani, C.M.; Kamimura, M.A.; Dos Santos Lobao, R.R.; Draibe, S.A. Increased resting energy expenditure in hemodialysis patients with severe hyperparathyroidism. J. Am. Soc. Nephrol. 2004, 15, 2933–2939. [Google Scholar] [CrossRef]
- Ribeiro, M.; Vogt, B.P.; Vannini, F.C.D.; Caramori, J.C.T. Role of parathyroid hormone in anorexia on maintenance hemodialysis patients. Clin. Nutr. ESPEN 2019, 34, 137–141. [Google Scholar] [CrossRef]
- Friedl, C.; Zitt, E. Role of etelcalcetide in the management of secondary hyperparathyroidism in hemodialysis patients: A review on current data and place in therapy. Drug Des. Devel. Ther. 2018, 12, 1589–1598. [Google Scholar] [CrossRef]
- Kir, S.; Komaba, H.; Garcia, A.P.; Economopoulos, K.P.; Liu, W.; Lanske, B.; Hodin, R.A.; Spiegelman, B.M. PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab. 2016, 23, 315–323. [Google Scholar] [CrossRef]
- Komaba, H.; Zhao, J.; Yamamoto, S.; Nomura, T.; Fuller, D.S.; McCullough, K.P.; Evenepoel, P.; Christensson, A.; Zhao, X.; Alrukhaimi, M.; et al. Secondary hyperparathyroidism, weight loss, and longer term mortality in haemodialysis patients: Results from the DOPPS. J. Cachexia Sarcopenia Muscle 2021, 12, 855–865. [Google Scholar] [CrossRef]
- Disthabanchong, S.; Vantanasiri, K.; Khunapornphairote, S.; Chansomboon, P.; Buachum, N.; Saeseow, S. Severe hyperparathyroidism is associated with nutritional impairment in maintenance hemodialysis patients. Front. Nutr. 2022, 9, 933918. [Google Scholar] [CrossRef] [PubMed]
- Komaba, H.; Fukagawa, M. Secondary Hyperparathyroidism and Protein-Energy Wasting in End-Stage Renal Disease. Ther. Apher. Dial. 2018, 22, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J.; Vanholder, R.; Mehrotra, R.; Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 2020, 16, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Majlessi, A.; Burton, J.O.; March, D.S. The effect of extended hemodialysis on nutritional parameters: A systematic review. J. Nephrol. 2022, 35, 1985–1999. [Google Scholar] [CrossRef] [PubMed]
- Sahathevan, S.; Khor, B.H.; Ng, H.M.; Gafor, A.H.A.; Daud, Z.A.M.; Mafra, D.; Karupaiah, T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef] [PubMed]
- Cano, N. Hemodialysis, inflammation and malnutrition. Nefrologia 2001, 21, 437–442. [Google Scholar] [PubMed]
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.M.; et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef]
- raterol Torres, F.; Molina, M.; Soler-Majoral, J.; Romero-González, G.; Rodríguez Chitiva, N.; Troya-Saborido, M.; Socias Rullan, G.; Burgos, E.; Paúl Martínez, J.; Urrutia Jou, M.; et al. Evolving Concepts on Inflammatory Biomarkers and Malnutrition in Chronic Kidney Disease. Nutrients 2022, 14, 4297. [Google Scholar] [CrossRef]
- Rezende, L.T.; Cuppari, L.; Carvalho, A.B.; Canziani, M.E.; Manfredi, S.R.; Cendoroglo, M.; Sigulem, D.M.; Draibe, S.A. Nutritional status of hemodialysis patients with secondary hyperparathyroidism. Braz. J. Med. Biol. Res. 2000, 33, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.R.; Gusmao, M.H.; Almeida, A.F.; Pereira, L.J.; Sampaio, L.R.; Medeiros, J.M. Nutritional status and food intake of continuous peritoneal dialysis patients with and without secondary hyperparathyroidism. J. Bras. Nefrol. 2012, 34, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Khajehdehi, P.; Ali, M.; Al-Gebory, F.; Henry, G.; Bastani, B. The effects of parathyroidectomy on nutritional and biochemical status of hemodialysis patients with severe secondary hyperparathyroidism. J. Ren. Nutr. 1999, 9, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, C.; Nakamoto, M.; Matsuo, K.; Nishihara, G.; Yoshida, T.; Goya, T. Effects of a parathyroidectomy on the immune system and nutritional condition in chronic dialysis patients with secondary hyperparathyroidism. Am. J. Surg. 1999, 178, 332–336. [Google Scholar] [CrossRef]
- Chertow, G.M.; Plone, M.; Dillon, M.A.; Burke, S.K.; Slatopolsky, E. Hyperparathyroidism and dialysis vintage. Clin. Nephrol. 2000, 54, 295–300. [Google Scholar]
- Lau, W.L.; Obi, Y.; Kalantar-Zadeh, K. Parathyroidectomy in the Management of Secondary Hyperparathyroidism. Clin. J. Am. Soc. Nephrol. 2018, 13, 952–961. [Google Scholar] [CrossRef]
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42 (Suppl. S3), S1–S201. [Google Scholar] [CrossRef]
- Filipska, I.; Winiarska, A.; Knysak, M.; Stompor, T. Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins 2021, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, R. Role of Gut Microbiota in the Skeletal Response to PTH. J. Clin. Endocrinol. Metab. 2021, 106, 636–645. [Google Scholar] [CrossRef]
- Kermgard, E.; Chawla, N.K.; Wesseling-Perry, K. Gut microbiome, parathyroid hormone, and bone. Curr. Opin. Nephrol. Hypertens. 2021, 30, 418–423. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Piccoli, G.B.; Cupisti, A. The “phosphorus pyramid”: A visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015, 16, 9. [Google Scholar] [CrossRef]
- Ye, G.; Yang, W.; Bi, Z.; Huang, L.; Liu, F. Effects of a high-phosphorus diet on the gut microbiota in CKD rats. Ren. Fail. 2021, 43, 1577–1587. [Google Scholar] [CrossRef]
- Favero, C.; Carriazo, S.; Cuarental, L.; Fernandez-Prado, R.; Goma-Garces, E.; Perez-Gomez, M.V.; Ortiz, A.; Fernandez-Fernandez, B.; Sanchez-Niño, M.D. Phosphate, Microbiota and CKD. Nutrients 2021, 13, 1273. [Google Scholar] [CrossRef] [PubMed]
- Biruete, A.; Cross, T.L.; Allen, J.M.; Kistler, B.M.; de Loor, H.; Evenepoel, P.; Fahey, G.C., Jr.; Bauer, L.; Swanson, K.S.; Wilund, K.R. Effect of Dietary Inulin Supplementation on the Gut Microbiota Composition and Derived Metabolites of Individuals Undergoing Hemodialysis: A Pilot Study. J. Ren. Nutr. 2021, 31, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. S1), S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Byrne, F.; Gillman, B.; Palmer, B.; Kiely, M.; Eustace, J.; Kearney, P.; Davidson, F.; Shiely, F. The effect of dietary phosphorus load and food matrix on postprandial serum phosphate in hemodialysis patients: A pilot study. HRB Open Res. 2021, 4, 119. [Google Scholar] [CrossRef] [PubMed]
- Camerotto, C.; Cupisti, A.; D’Alessandro, C.; Muzio, F.; Gallieni, M. Dietary Fiber and Gut Microbiota in Renal Diets. Nutrients 2019, 11, 2149. [Google Scholar] [CrossRef] [PubMed]
- Board IoMFaN. Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Dew, T.P.; Day, A.J.; Morgan, M.R. Bone mineral density, polyphenols and caffeine: A reassessment. Nutr. Res. Rev. 2007, 20, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Kiel, D.P.; Felson, D.T.; Hannan, M.T.; Anderson, J.J.; Wilson, P.W. Caffeine and the risk of hip fracture: The Framingham Study. Am. J. Epidemiol. 1990, 132, 675–684. [Google Scholar] [CrossRef]
- Hallstrom, H.; Wolk, A.; Glynn, A.; Michaelsson, K. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos. Int. 2006, 17, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Lerner, U.H.; Mellstrom, D. Caffeine has the capacity to stimulate calcium release in organ culture of neonatal mouse calvaria. Calcif. Tissue Int. 1992, 51, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Farnebo, L.O.; Branstrom, R.; Larsson, C. Inhibition of parathyroid hormone secretion by caffeine in human parathyroid cells. J. Clin. Endocrinol. Metab. 2013, 98, E1345–E1351. [Google Scholar] [CrossRef] [PubMed]
- Moissl, U.M.; Wabel, P.; Chamney, P.W.; Bosaeus, I.; Levin, N.W.; Bosy-Westphal, A.; Korth, O.; Müller, M.J.; Ellegård, L.; Malmros, V.; et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 2006, 27, 921–933. [Google Scholar] [CrossRef]
- Chamney, P.W.; Wabel, P.; Moissl, U.M.; Muller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89. [Google Scholar] [CrossRef]
- de Moura Lopes, C.M. Reprodutibilidade e Validação de Um Questionário Semi-Quantitativo de Frequência Alimentar. In Alimentação e Enfarte Agudo do Miocárdio—Estudo Caso-Controlo de Base Comunitária; Faculdade de Medicina da Universidade do Porto: Porto, Portugal, 2000. [Google Scholar]
- Lopes, C.; Aro, A.; Azevedo, A.; Ramos, E.; Barros, H. Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J. Am. Diet Assoc. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Ferreira, F.G.M. Tabela de Composição de Alimentos Portugueses; Instituto Nacional de Saúde Doutor Ricardo Jorge: Lisbon, Portugal; Editorial do Ministério da Educação: Mem Martins, Portugal, 1985. [Google Scholar]
Parameter | iPTH < 130 pg/mL | iPTH 130–585 pg/mL | iPTH > 585 pg/mL | p |
---|---|---|---|---|
Age (years) | 68 ± 14 | 69 ± 13 β | 64 ± 15 β | 0.002 |
HD vintage (months) | 62 (41–105) | 62 (42–101) β | 73 (47–119) β | 0.021 |
Kt/V | 1.8 (1.5–1.9) | 1.7 (1.5–1.9) | 1.7 (1.4–2.0) | 0.985 |
Dry weight (kg) | 67.0 (59.5–77.9) | 69.5 (61.5–78.2) | 70.0 (61–81.5) | 0.325 |
Serum phosphorus (mg/dL) | 4.2 ± 1.4 | 4.2 ± 1.1 β | 4.6 ± 1.0 β | 0.005 |
Serum calcium (mg/dL) | 8.9 ± 1.0 | 8.9 ± 0.6 β | 9.1 ± 0.8 β | 0.027 |
Calcium–phosphorus product | 37.8 ± 15.2 β | 37.6 ± 10.7 ¥ | 42.0 ± 10.5 β¥ | <0.001 |
Potassium (mEq/L) | 5.3 ± 0.7 | 5.3 ± 0.7 | 5.3 ± 0.6 | 0.760 |
Albumin (g/dL) | 4.0 (3.8–4.2) β | 4.0 (3.8–4.2) ¥ | 4.1 (4.0–4.3) β¥ | 0.016 |
C-reactive protein (mg/L) | 10.9 ± 14.5 | 9.8 ± 12.6 | 12.8 ± 18.7 | 0.662 |
Body mass index (kg/m2) | 24.9 (22.1–28.3) | 25.8 (22.8–29.4) | 26.0 (22.6–29.1) | 0.747 |
Lean tissue index (kg/m2) | 12.3 (10.5–14.4) | 12.1 (10.7–13.6) | 12.9 (10.9–14.7) | 0.090 |
Fat tissue index (kg/m2) | 12.0 (9.4–15.6) | 13.7 (9.7–17.6) | 12.9 (9.0–16.5) | 0.250 |
Energy intake (kcal) | 1896 (1395–2341) | 1829 (1482–2361) | 1722 (1390–2173) | 0.125 |
Protein intake (g/day) | 75.4 (60.8–102.7) | 76.7 (61.1–99.9) | 72.9 (52.8–93.0) | 0.103 |
Carbohydrate intake (g/day) | 235 (172–317) | 247 (191–300) | 224 (172–278) | 0.073 |
Fat intake (g/day) | 57.9 (43.5–79.8) | 57.7 (44.5–77.6) | 54.9 (43.8–75.1) | 0.516 |
Dietary fiber intake (g/day) | 20.1 (13.9–27.6) | 20.0 (14.4–26.6) β | 17.5 (14.7–22.1) β | 0.047 |
Calcium intake (mg/day) | 687 (498–911) | 680 (460–938) | 615 (447–860) | 0.119 |
Phosphorus intake (mg/day) | 1089 (821–1387) | 1093 (833–1414) β | 986 (756–1286) β | 0.044 |
Potassium intake (mg/day) | 2453 (1786–3156) | 2378 (1814–2967) | 2215 (1758–2651) | 0.077 |
Riboflavin (mg/day) | 1.7 (1.3–2.0) | 1.7 (1.3–2.1) β | 1.5 (1.1–2.0) β | 0.031 |
Folate (mcg/day) | 220 (157–304) ¥ | 210 (160–279) β | 192 (149–236) β¥ | 0.011 |
Caffeine (mg/day) | 56 (15–81) ¥ | 45 (20–81) β | 79 (32–86) β¥ | 0.009 |
r | p | |
---|---|---|
Age (years) | −0.145 | <0.001 |
Serum calcium (mg/dL) | 0.114 | 0.007 |
Serum phosphorus (mg/dL) | 0.141 | <0.001 |
Calcium–phosphorus product | 0.157 | <0.001 |
Albumin (g/dL) | 0.090 | 0.033 |
C-reactive protein (mg/L) | 0.088 | 0.339 |
Energy intake (Kcal/day) | −0.082 | 0.052 |
Protein intake (g/day) | −0.083 | 0.050 |
Carbohydrate intake (g/day) | −0.082 | 0.052 |
Fat intake (g/day) | −0.050 | 0.233 |
Fiber intake (g/day) | −0.086 | 0.042 |
Calcium intake (mg/day) | −0.099 | 0.008 |
Phosphorus intake (mg/day) | −0.112 | 0.019 |
Vitamin D intake (mcg/day) | −0.058 | 0.168 |
Folate (mcg/day) | −0.120 | 0.004 |
Riboflavin (mg/day) | −0.109 | 0.010 |
Caffeine (mg/day) | 0.097 | 0.022 |
Dependent Variable | Independent Variable | B | 95% CIa * | p |
---|---|---|---|---|
Intact PTH | Serum Phosphorus | 39.6 | 5.9–73.4 | 0.022 |
Dependent Variable | Independent Variable | B | 95% CIa * | p |
---|---|---|---|---|
Intact PTH | Phosphorus intake | −0.090 | −0.17–(−0.007) | 0.033 |
Intact PTH | Fiber intake | −3.713 | −7.35–(−0.046) | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garagarza, C.; Valente, A.; Queirós, C.; Neto, I.P.; Sebastião, J.; Gomes, M.; Ferreira, A. Hyperparathyroidism, Serum Phosphorus and Dietary Intake in Hemodialysis Patients: Is There a Novel Relationship? Int. J. Mol. Sci. 2024, 25, 2006. https://doi.org/10.3390/ijms25042006
Garagarza C, Valente A, Queirós C, Neto IP, Sebastião J, Gomes M, Ferreira A. Hyperparathyroidism, Serum Phosphorus and Dietary Intake in Hemodialysis Patients: Is There a Novel Relationship? International Journal of Molecular Sciences. 2024; 25(4):2006. https://doi.org/10.3390/ijms25042006
Chicago/Turabian StyleGaragarza, Cristina, Ana Valente, Cátia Queirós, Inês Pastor Neto, Joana Sebastião, Melanie Gomes, and Aníbal Ferreira. 2024. "Hyperparathyroidism, Serum Phosphorus and Dietary Intake in Hemodialysis Patients: Is There a Novel Relationship?" International Journal of Molecular Sciences 25, no. 4: 2006. https://doi.org/10.3390/ijms25042006
APA StyleGaragarza, C., Valente, A., Queirós, C., Neto, I. P., Sebastião, J., Gomes, M., & Ferreira, A. (2024). Hyperparathyroidism, Serum Phosphorus and Dietary Intake in Hemodialysis Patients: Is There a Novel Relationship? International Journal of Molecular Sciences, 25(4), 2006. https://doi.org/10.3390/ijms25042006