Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review
Abstract
:1. Introduction
2. Silicon Uptake and Frustule Formation
3. Diatom Biosilica: Structure, Purification, and Surface Modification
3.1. Unique 3D Structure of Diatoms
3.2. Purification of Raw Diatom Biosilica
3.3. Surface Modification of Diatom Biosilica
4. Biomedical Applications of Diatom Biosilica
4.1. Bone Regeneration
Application | Type | Function | Type of Functionalization | Loading Material | Ref. |
---|---|---|---|---|---|
Composite | Diatom (Thalassiosira weissflogii) | Osteoactive material | Bisphosphonates | - | [60] |
Diatomite | Polyelectrolyte scaffold | Chitosan/Na-carboxymethylcellulose | - | [61] | |
Diatomite | Chitosan membrane | - | - | [63] | |
Diatomite | PHBV-PCL fibrous scaffold | - | Pullulan | [62] | |
Diatomite | Chitosan composites | - | - | [64] | |
Diatomite | Silk fibroin | - | - | [65] | |
Diatomite | Collagen/chitosan/hydroxyapatite nanocomposite | - | - | [66] | |
Material loading | Diatomite | Chitosan composite | Polyethyleneimine | BMP-2 | [67] |
PHBV-PCL fibrous scaffold | - | Melatonin | [68] | ||
Diatomite scaffold | - | Copper | [69] | ||
Biocoating | Diatomite | Magnesium implants | - | ZrO2 particle | [70,71] |
Ceramic coating | - | - | [72] |
4.2. Wound Healing
Application | Type | Function | Form | Ref. |
---|---|---|---|---|
Wound healing | Diatomite | Promoting bioactivity of wound dressings for tissue regeneration | Scaffolds | [78] |
Diatom (Cyclotella cryptica sp.) | Biocompatibility, sustained drug release, non-adherence, and antibacterial activity with hemostatic properties | Hydrogel | [79] | |
Silica nanoparticles (Diatom) | Accelerates diabetic wound healing | Hydrogel | [82] | |
Wound healing and hemostasis | Diatomite | Stops bleeding | Scaffolds | [83] |
Biocompatibility and hemostasis | Diatomite | New hemostatic substance | Particles | [84] |
Diatomite | Hemostatic material with non-toxic side effects and rapid coagulation promotion | Particles | [85] | |
Hemostasis | Diatomite | Fast hemostasis with controlled porous structure | Aerogel | [86] |
Diatom (Thalassiosira weissflogii, Thalassiosira sp., Cyclotella cryptica) | Hemostasis and rapid blood clotting | Frustum | [87] | |
Diatom (Cyclotella cryptica sp.) | Improves hemostasis efficiency | Frustule | [88] | |
Diatomite | Hemostatic and antibacterial material | Spheres | [89] | |
Mechanical properties and hemostasis | Diatomite | Low-cost, high-efficiency, and rapid hemostasis material | Sponge | [90] |
Antibacterial, hemostatic, and osteogenic | Diatomite | Bio-multifunctional sponge after tooth extraction | Sponge | [91] |
Antibacterial | Diatomite | Antibacterial activity | Membrane | [92] |
Diatom (C. cryptica) | Healing of infected wounds, and suppressing inflammation, collagen, and angiogenesis | Particles | [81] |
4.3. Drug Delivery Systems
4.4. Other Applications
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Behrenfeld, M.J.; Halsey, K.H.; Boss, E.; Karp-Boss, L.; Milligan, A.J.; Peers, G. Thoughts on the evolution and ecological niche of diatoms. Ecol. Monogr. 2021, 91, e01457. [Google Scholar] [CrossRef]
- Mann, D.G.; Vanormelingen, P. An inordinate fondness? The number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 2013, 60, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M.D. How Many Species of Algae Are There? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef]
- Mann, D.G. The species concept in diatoms. Phycologia 1999, 38, 437–495. [Google Scholar] [CrossRef]
- Tréguer, P.; Bowler, C.; Moriceau, B.; Dutkiewicz, S.; Gehlen, M.; Aumont, O.; Bittner, L.; Dugdale, R.; Finkel, Z.; Iudicone, D.; et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 2018, 11, 27–37. [Google Scholar] [CrossRef]
- Hildebrand, M.; Doktycz, M.J.; Allison, D.P. Application of AFM in understanding biomineral formation in diatoms. Pflug. Arch. Eur. J. Physiol. 2008, 456, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga-Astudillo, D.; Ruge, J.C.; Camacho-Tauta, J.; Reyes-Ortiz, O.; Caicedo-Hormaza, B. Diatomaceous Soils and Advances in Geotechnical Engineering—Part I. Appl. Sci. 2023, 13, 549. [Google Scholar] [CrossRef]
- Losic, D.; Rosengarten, G.; Mitchell, J.G.; Voelcker, N.H. Pore architecture of diatom frustules: Potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanotechnol. 2006, 6, 982–989. [Google Scholar] [CrossRef]
- Huang, J.T.; Wu, B.Y.; Lyu, S.; Li, T.; Han, H.; Li, D.D.; Wang, J.K.; Zhang, J.T.; Lu, X.; Sun, D.Z. Improving the thermal energy storage capability of diatom-based biomass/polyethylene glycol composites phase change materials by artificial culture methods. Sol. Energy Mat. Sol. Cells 2021, 219, 110797. [Google Scholar] [CrossRef]
- Poulsen, N.; Berne, C.; Spain, J.; Kröger, N. Silica immobilization of an enzyme through genetic engineering of the diatom. Angew. Chem. Int. Ed. 2007, 46, 1843–1846. [Google Scholar] [CrossRef]
- Terracciano, M.; De Stefano, L.; Rea, I. Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics 2018, 10, 242. [Google Scholar] [CrossRef]
- Sharma, N.; Simon, D.P.; Diaz-Garza, A.M.; Fantino, E.; Messaabi, A.; Meddeb-Mouelhi, F.; Germain, H.; Desgagné-Penix, I. Diatoms Biotechnology: Various Industrial Applications for a Greener Tomorrow. Front. Mar. Sci. 2021, 8, 636613. [Google Scholar] [CrossRef]
- Sardo, A.; Orefice, I.; Balzano, S.; Barra, L.; Romano, G. Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications. Appl. Sci. 2021, 11, 4533. [Google Scholar] [CrossRef]
- Delasoie, J.; Zobi, F. Natural Diatom Biosilica as Microshuttles in Drug Delivery Systems. Pharmaceutics 2019, 11, 537. [Google Scholar] [CrossRef]
- Tramontano, C.; Chianese, G.; Terracciano, M.; de Stefano, L.; Rea, I. Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. Appl. Sci. 2020, 10, 6811. [Google Scholar] [CrossRef]
- Maher, S.; Kumeria, T.; Aw, M.S.; Losic, D. Diatom Silica for Biomedical Applications: Recent Progress and Advances. Adv. Healthc. Mater. 2018, 7, e1800552. [Google Scholar] [CrossRef]
- Payares, L.M.A.; Púa, L.D.G.; Pareja, L.A.D.; Méndez, S.C.P.; Méndez, V.N.P. Microalgae Applications to Bone Repairing Processes: A Review. ACS Biomater. Sci. Eng. 2023, 9, 2991–3009. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Schröder, H.C.; Feng, Q.L.; Draenert, F.; Müller, W.E.G. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer. Mar. Drugs 2013, 11, 718–746. [Google Scholar] [CrossRef] [PubMed]
- Brzozowska, W.; Sprynskyy, M.; Wojtczak, I.; Dabek, P.; Witkowski, A.; Buszewski, B. “Outsourcing” Diatoms in Fabrication of Metal-Doped 3D Biosilica. Materials 2020, 13, 2576. [Google Scholar] [CrossRef]
- Kulichová, J.; Urbánková, P. Symmetric and Asymmetric Components of Shape Variation in the Diatom Genus (Bacillariophyta). Symmetry 2020, 12, 1626. [Google Scholar] [CrossRef]
- Su, Y.Y.; Lundholm, N.; Ellegaard, M. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability. Appl. Microbiol. Biotechnol. 2018, 102, 5889–5899. [Google Scholar] [CrossRef] [PubMed]
- Losic, D.; Pillar, R.J.; Dilger, T.; Mitchell, J.G.; Voelcker, N.H. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. J. Porous Mat. 2007, 14, 61–69. [Google Scholar] [CrossRef]
- Poulsen, N.; Sumper, M.; Kröger, N. Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 12075–12080. [Google Scholar] [CrossRef] [PubMed]
- Dabravolski, S.A.; Isayenkov, S.V. Evolution of the Membrane Transport Protein Domain. Int. J. Mol. Sci. 2022, 23, 8094. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Lorenz, S.; Brunner, E.; Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 2002, 298, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Bowler, C.; De Martino, A.; Falciatore, A. Diatom cell division in an environmental context. Curr. Opin. Plant Biol. 2010, 13, 623–630. [Google Scholar] [CrossRef]
- Kröger, N.; Deutzmann, R.; Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 1999, 286, 1129–1132. [Google Scholar] [CrossRef]
- Sumper, M.; Kröger, N. Silica formation in diatoms:: The function of long-chain polyamines and silaffins. J. Mater. Chem. 2004, 14, 2059–2065. [Google Scholar] [CrossRef]
- Uthappa, U.T.; Brahmkhatri, V.; Sriram, G.; Jung, H.Y.; Yu, J.X.; Kurkuri, N.; Aminabhavi, T.M.; Altalhi, T.; Neelgund, G.M.; Kurkuri, M.D. Nature engineered diatom biosilica as drug delivery systems. J. Control. Release 2018, 281, 70–83. [Google Scholar] [CrossRef]
- Wang, W.; Gutu, T.; Gale, D.K.; Jiao, J.; Rorrer, G.L.; Chang, C.H. Self-Assembly of Nanostructured Diatom Microshells into Patterned Arrays Assisted by Polyelectrolyte Multilayer Deposition and Inkjet Printing. J. Am. Chem. Soc. 2009, 131, 4178–4179. [Google Scholar] [CrossRef]
- Losic, D.; Mitchell, J.G.; Lal, R.; Voelcker, N.H. Rapid fabrication of micro- and nanoscale patterns by replica molding from diatom biosilica. Adv. Funct. Mater. 2007, 17, 2439–2446. [Google Scholar] [CrossRef]
- Wee, K.M.; Rogers, T.N.; Altan, B.S.; Hackney, S.A.; Hamm, C. Engineering and medical applications of diatoms. J. Nanosci. Nanotechnol. 2005, 5, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M. Diatoms, Biomineralization Processes, and Genomics. Chem. Rev. 2008, 108, 4855–4874. [Google Scholar] [CrossRef] [PubMed]
- Gale, D.K.; Gutu, T.; Jiao, J.; Chang, C.H.; Rorrer, G.L. Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom Biosilica. Adv. Funct. Mater. 2009, 19, 926–933. [Google Scholar] [CrossRef]
- Rosi, N.L.; Thaxton, C.S.; Mirkin, C.A. Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Ed. 2004, 43, 5500–5503. [Google Scholar] [CrossRef] [PubMed]
- Saad, E.M.; Pickering, R.A.; Shoji, K.; Hossain, M.I.; Glover, T.G.; Krause, J.W.; Tang, Y.Z. Effect of cleaning methods on the dissolution of diatom frustules. Mar. Chem. 2020, 224, 103826. [Google Scholar] [CrossRef]
- Saxena, A.; Dutta, A.; Kapoor, N.; Kumar, A.; Tiwari, A. Envisaging marine diatom as a “SMART” drug delivery system for insoluble drugs. J. Drug Deliv. Sci. Technol. 2022, 68, 102983. [Google Scholar] [CrossRef]
- Sun, H.Y.; Li, T.; Sha, L.Y.; Chen, F.F.; Li, M.N.; Yang, Y.; Li, B.; Li, D.D.; Sun, D.Z. Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage. Appl. Energy 2023, 332, 120482. [Google Scholar] [CrossRef]
- Zhao, D.J.; Shen, Z.; Shen, X.Z. Dual-functional calcium alginate hydrogel beads for disinfection control and removal of dyes in water. Int. J. Biol. Macromol. 2021, 188, 253–262. [Google Scholar] [CrossRef]
- Zhao, P.; Sun, N.F.; Liu, X.D.; Chen, Z.Y.; Li, Y.Y.; Hu, T.H.; Xue, X.B.; Zhang, S.L.; Sheetah, G.; Xie, Y. Diatomite-Based Adsorbent Decorated with Fe3O4 Nanoparticles for the Removal of Hazardous Metal Ions. ACS Appl. Nano Mater. 2023, 6, 8958–8970. [Google Scholar] [CrossRef]
- Karakoy, M.; Gultepe, E.; Pandey, S.; Khashab, M.A.; Gracias, D.H. Silane surface modification for improved bioadhesion of esophageal stents. Appl. Surf. Sci. 2014, 311, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Umemura, K.; Noguchi, Y.; Ichinose, T.; Hirose, Y.; Kuroda, R.; Mayama, S. Diatom Cells Grown and Baked on a Functionalized Mica Surface. J. Biol. Phys. 2008, 34, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, S.; Setaro, A.; De Stefano, L.; De Stefano, M.; Maddalena, P. The gas-detection properties of light-emitting diatoms. Adv. Funct. Mater. 2008, 18, 1257–1264. [Google Scholar] [CrossRef]
- De Stefano, L.; Rendina, I.; De Stefano, M.; Bismuto, A.; Maddalena, P. Marine diatoms as optical chemical sensors. Appl. Phys. Lett. 2005, 87, 233902. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.Y.; Cai, J.; Pan, J.F.; Chen, M.L.; Li, A.B.; Jiang, Y.G. Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method. Appl. Microbiol. Biotechnol. 2012, 95, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Delalat, B.; Sheppard, V.C.; Ghaemi, S.R.; Rao, S.; Prestidge, C.A.; McPhee, G.; Rogers, M.L.; Donoghue, J.F.; Pillay, V.; Johns, T.G.; et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015, 6, 8791. [Google Scholar] [CrossRef]
- Qi, Y.R.; Wang, X.; Cheng, J.J. Preparation and characteristics of biosilica derived from marine diatom biomass of Nitzschia closterium and Thalassiosira. Chin. J. Oceanol. Limnol. 2017, 35, 668–680. [Google Scholar] [CrossRef]
- Min, K.H.; Shin, J.W.; Ki, M.R.; Pack, S.P. Green synthesis of silver nanoparticles on biosilica diatomite: Well-dispersed particle formation and reusability. Process. Biochem. 2023, 125, 232–238. [Google Scholar] [CrossRef]
- Kumari, S.; Min, K.H.; Kanth, B.K.; Jang, E.K.; Pack, S.P. Production of TiO-deposited Diatoms and Their Applications for Photo-catalytic Degradation of Aqueous Pollutants. Biotechnol. Bioprocess Eng. 2020, 25, 758–765. [Google Scholar] [CrossRef]
- Losic, D.; Yu, Y.; Aw, M.S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 2010, 46, 6323–6325. [Google Scholar] [CrossRef]
- Abdelhamid, M.A.A.; Pack, S.P. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomater. 2021, 120, 38–56. [Google Scholar] [CrossRef]
- Abdelhamid, M.A.A.; Son, R.G.; Park, K.S.; Pack, S.P. Oriented multivalent silaffin-affinity immobilization of recombinant lipase on diatom surface: Reliable loading and high performance of biocatalyst. Colloids Surface B 2022, 219, 112830. [Google Scholar] [CrossRef]
- Phogat, S.; Saxena, A.; Kapoor, N.; Aggarwal, C.; Tiwari, A. Diatom mediated smart drug delivery system. J. Drug Deliv. Sci. Technol. 2021, 63, 102433. [Google Scholar] [CrossRef]
- Le, T.D.H.; Bonani, W.; Speranza, G.; Sglavo, V.; Ceccato, R.; Maniglio, D.; Motta, A.; Migliaresi, C. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Mater. Sci. Eng. C-Mater. 2016, 59, 471–479. [Google Scholar] [CrossRef]
- Han, R.; Buchanan, F.; Ford, L.; Julius, M.; Walsh, P.J. A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica. Mater. Sci. Eng. C-Mater. 2021, 120, 111755. [Google Scholar] [CrossRef]
- Amoda, A.; Borkiewicz, L.; Rivero-Müller, A.; Alam, P. Sintered nanoporous biosilica diatom frustules as high efficiency cell-growth and bone-mineralisation platforms. Mater. Today Commun. 2020, 24, 100923. [Google Scholar] [CrossRef]
- Adams, L.A.; Essien, E.R.; Adesalu, A.T.; Julius, M.L. Bioactive glass 45S5 from diatom biosilica. J. Sci. Adv. Mater. Dev. 2017, 2, 476–482. [Google Scholar] [CrossRef]
- Hertz, A.; FitzGerald, V.; Pignotti, E.; Knowles, J.C.; Sen, T.; Bruce, I.J. Preparation and characterisation of porous silica and silica/titania monoliths for potential use in bone replacement. Microporous Mesoporous Mater. 2012, 156, 51–61. [Google Scholar] [CrossRef]
- Cicco, S.R.; Vona, D.; De Giglio, E.; Cometa, S.; Mattioli-Belmonte, M.; Palumbo, F.; Ragni, R.; Farinola, G.M. Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drug-Delivery and Antioxidant Properties. Chempluschem 2015, 80, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Cicco, S.R.; Vona, D.; Leone, G.; De Giglio, E.; Bonifacio, M.A.; Cometa, S.; Fiore, S.; Palumbo, F.; Ragni, R.; Farinola, G.M. Functionalization of diatom biosilica with sodium alendronate as osteoactive material. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 104, 109897. [Google Scholar] [CrossRef] [PubMed]
- Tamburaci, S.; Kimna, C.; Tihminlioglu, F. Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 100, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Dalgic, A.D.; Atila, D.; Karatas, A.; Tezcaner, A.; Keskin, D. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 100, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Tamburaci, S.; Tihminlioglu, F. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 80, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Tamburaci, S.; Tihminlioglu, F. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018, 91, 274–291. [Google Scholar] [CrossRef]
- Le, T.D.H.; Liaudanskaya, V.; Bonani, W.; Migliaresi, C.; Motta, A. Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. J. Tissue Eng. Regen. Med. 2018, 12, 89–97. [Google Scholar] [CrossRef]
- Gönenmis, D.E.; Özcan, Y. Preparation of Diatom-Doped Bio-Nanocomposite Materials for Bone Tissue Scaffolds. Mater. Res. 2022, 25, e20220234. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Y.F.; Ren, W.J.; Hou, R.X.; Liu, H.F.; Li, R.; Du, S.J.; Wang, L.; Liu, J.Y. PEI-modified diatomite/chitosan composites as bone tissue engineering scaffold for sustained release of BMP-2. J. Biomater. Sci.-Polym. Ed. 2021, 32, 1337–1355. [Google Scholar] [CrossRef]
- Dalgic, A.D.; Atila, D.; Tezcaner, A.; Gürses, S.; Keskin, D. Diatom silica frustules-doped fibers for controlled release of melatonin for bone regeneration. Eur. Polym. J. 2023, 186, 111858. [Google Scholar] [CrossRef]
- Qiu, X.; Feng, C.; Wang, W.X.; Wu, G.S.; Hu, Y.Z.; Li, S.H.; Gao, X.R.; Chen, X.G.; Ji, Q.X. Copper-deposited diatom-biosilica enhanced osteogenic potential in periodontal ligament stem cells and rat cranium. J. Biomed. Mater. Res. B 2023, 111, 1286–1298. [Google Scholar] [CrossRef]
- Sedelnikova, M.B.; Kashin, A.D.; Uvarkin, P.V.; Tolmachev, A.I.; Sharkeev, Y.P.; Ugodchikova, A.V.; Luginin, N.A.; Bakina, O.V. Porous Biocoatings Based on Diatomite with Incorporated ZrO Particles for Biodegradable Magnesium Implants. J. Funct. Biomater. 2023, 14, 241. [Google Scholar] [CrossRef]
- Kashin, A.D.; Sedelnikova, M.B.; Chebodaeva, V.V.; Uvarkin, P.V.; Luginin, N.A.; Dvilis, E.S.; Kazmina, O.V.; Sharkeev, Y.P.; Khlusov, I.A.; Miller, A.A.; et al. Diatomite-based ceramic biocoating for magnesium implants. Ceram. Int. 2022, 48, 28059–28071. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, Q.B. Effects of Diatomite Contents on Microstructure, Microhardness, Bioactivity and Biocompatibility of Gradient Bioceramic Coating Prepared by Laser Cladding. Metals 2022, 12, 931. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkoli, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Ding, Y.W.; Wang, Z.Y.; Ren, Z.W.; Zhang, X.W.; Wei, D.X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater. Sci. 2022, 10, 3393–3409. [Google Scholar] [CrossRef]
- Ahmady, A.R.; Razmjooee, K.; Saber-Samandari, S.; Toghraie, D. Fabrication of chitosan-gelatin films incorporated with thymol-loaded alginate microparticles for controlled drug delivery, antibacterial activity and wound healing: In-vitro and In-vivo studies. Int. J. Biol. Macromol. 2022, 223, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.L.; Li, Y.S.; Yu, K.M.; Chen, Z.Y.; Shen, Y.; Zha, B.S.; Zhang, H.; Xu, Q.Q.; Zhao, H. Effects of silver foam combined with Dermlin wound healing dressing on inflammation and quality of life in patients with diabetic lower limb ulcers. Am. J. Transl. Res. 2022, 14, 2452–2460. [Google Scholar] [PubMed]
- Sadeghi, S.; Nourmohammadi, J.; Ghaee, A.; Soleimani, N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int. J. Biol. Macromol. 2020, 147, 1239–1247. [Google Scholar] [CrossRef]
- Kim, B.S.; Gao, G.; Kim, J.Y.; Cho, D.W. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Adv. Healthc. Mater. 2019, 8, 1801019. [Google Scholar] [CrossRef]
- Rozan, H.E.; Wu, G.S.; Zhou, Z.Z.; Li, Q.F.; Sharaf, M.; Chen, X.G. The complex hydrogel based on diatom biosilica and hydroxybutyl chitosan for wound healing. Colloids Surface B 2022, 216, 112523. [Google Scholar] [CrossRef]
- Sun, X.J.; Li, J.; Shao, K.; Su, C.; Bi, S.C.; Mu, Y.Z.; Zhang, K.C.; Cao, Z.; Wang, X.Y.; Chen, X.G.; et al. A composite sponge based on alkylated chitosan and diatom-biosilica for rapid hemostasis. Int. J. Biol. Macromol. 2021, 182, 2097–2107. [Google Scholar] [CrossRef]
- Cong, X.; Mu, Y.Z.; Qin, D.; Sun, X.J.; Su, C.; Chen, T.T.; Wang, X.Y.; Chen, X.G.; Feng, C. Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy. New J. Chem. 2022, 46, 2140–2154. [Google Scholar] [CrossRef]
- Kim, N.; Lee, H.; Han, G.; Kang, M.; Park, S.; Kim, D.E.; Lee, M.; Kim, M.J.; Na, Y.; Oh, S.; et al. 3D-Printed Functional Hydrogel by DNA-Induced Biomineralization for Accelerated Diabetic Wound Healing. Adv. Sci. 2023, 10, e2300816. [Google Scholar] [CrossRef]
- Altintop, I.; Tatli, M.; Soyer, Z.; Yay, A.H.; Örtürk, A.; Karakükçü, Ç. A novel hemostatic scaffold material and the importance of scaffold formation on ending hemorrhage: An experimental rat study. Ulus. Travma Acil Cerrahi Derg. 2020, 26, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.Z.; Fu, Y.M.; Li, J.; Shao, K.; Pang, J.H.; Su, C.; Cai, Y.B.; Sun, X.J.; Cong, X.; Chen, X.G.; et al. Thrombin immobilized polydopamine-diatom biosilica for effective hemorrhage control. Biomater. Sci. 2021, 9, 4952–4967. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Jiang, C.Q.; Sun, X.J.; Cao, Z.; Mu, Y.Z.; Cong, X.; Qiu, K.J.; Lin, J.W.; Chen, X.G.; Feng, C. Diatomite hemostatic particles with hierarchical porous structure for rapid and effective hemostasis. Colloids Surface B 2022, 219, 112809. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.J.; Zhang, K.C.; Yang, G.N.; Mu, Y.Z.; Su, C.; Pang, J.H.; Chen, T.T.; Chen, X.G.; Feng, C. Chitosan/Diatom-Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Adv. Healthc. Mater. 2020, 9, 2000951. [Google Scholar] [CrossRef]
- Wang, L.L.; Pan, K.H.; Li, J.; Li, Y.; Zhu, B.H.; Wang, Y.A.; Feng, C.; Han, J.C. Influence of the physicochemical characteristics of diatom frustules on hemorrhage control. Biomater. Sci. 2019, 7, 1833–1841. [Google Scholar] [CrossRef]
- Wang, L.L.; Sun, Y.; Zhang, R.H.; Pan, K.H.; Li, Y.H.; Wang, R.B.; Zhang, L.; Zhou, C.X.; Li, J.; Li, Y.; et al. Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation. Biotechnol. Biofuels Bioprod. 2023, 16, 136. [Google Scholar] [CrossRef]
- Shi, Y.T.; Fang, Y.; Liang, X.Q.; Huang, C.S.; Liang, Y.; Yang, Z.; Yu, J.P.; Wang, J.R.; Zhao, G.H. Yeast cell templated porous hollow silica spheres for rapid hemostasis accompanied by antibacterial action. Biomater. Sci. 2023, 11, 3104–3113. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Z.F.; Guan, X.H.; Xiang, Z.H.; Ke, Y.; Xia, Y.; Xin, Z.R.; Shi, Q.; Yin, J.H. Facile fabrication of diatomite-based sponge with high biocompatibility and rapid hemostasis. J. Appl. Polym. Sci. 2021, 138, 51360. [Google Scholar] [CrossRef]
- Wang, D.Y.; Sun, Y.Y.; Zhang, D.J.; Kong, X.W.; Wang, S.N.; Lu, J.L.; Liu, F.Y.; Lu, S.L.; Qi, H.Z.; Zhou, Q.H. Root-shaped antibacterial alginate sponges with enhanced hemostasis and osteogenesis for the prevention of dry socket. Carbohydr. Polym. 2023, 299, 120184. [Google Scholar] [CrossRef]
- Lei, J.J.; Yao, G.Y.; Sun, Z.M.; Wang, B.; Yu, C.H.; Zheng, S.L. Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. J. Mater. Sci. 2019, 54, 11682–11693. [Google Scholar] [CrossRef]
- López-Cebral, R.; Peng, G.J.; Reys, L.L.; Silva, S.S.; Oliveira, J.M.; Chen, J.; Silva, T.H.; Reis, R.L. Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes. J. Mater. Sci. Mater. Med. 2018, 29, 21. [Google Scholar] [CrossRef]
- Lim, H.; Seo, Y.; Kwon, D.; Kang, S.; Yu, J.; Park, H.; Lee, S.D.; Lee, T. Recent Progress in Diatom Biosilica: A Natural Nanoporous Silica Material as Sustained Release Carrier. Pharmaceutics 2023, 15, 2434. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Sun, C.; Huang, Z.; Qjn, F.; Xu, H.L.; Shen, W. Fabrication of Functionalized Porous Silica Nanocapsules with a Hollow Structure for High Performance of Toluene Adsorption-Desorption. ACS Omega 2020, 5, 5805–5814. [Google Scholar] [CrossRef]
- Terracciano, M.; Napolitano, M.; De Stefano, L.; De Luca, A.C.; Rea, I. Gold decorated porous biosilica nanodevices for advanced medicine. Nanotechnology 2018, 29, 235601. [Google Scholar] [CrossRef]
- Managò, S.; Migliaccio, N.; Terracciano, M.; Napolitano, M.; Martucci, N.M.; De Stefano, L.; Rendina, I.; De Luca, A.C.; Lamberti, A.; Rea, I. Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging. J. Biophotonics 2018, 11, e201700207. [Google Scholar] [CrossRef] [PubMed]
- Zaharudin, N.S.; Isa, E.D.M.; Ahmad, H.; Rahman, M.B.A.; Jumbri, K. Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. J. Saudi Chem. Soc. 2020, 24, 289–302. [Google Scholar] [CrossRef]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef]
- Dhas, N.; Parekh, K.; Pandey, A.; Kudarha, R.; Mutalik, S.; Mehta, T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Control. Release 2019, 308, 130–161. [Google Scholar] [CrossRef] [PubMed]
- Dhali, S.; Jain, R.; Malik, A.; Sharma, S.; Raliya, R. Cultivation of Navicula sp. on rice straw hydrolysate for the production of biogenic silica. Bioresour. Technol. 2022, 360, 127577. [Google Scholar] [CrossRef]
- Saxena, A.; Marella, T.K.; Singh, P.K.; Tiwari, A. Indoor mass cultivation of marine diatoms for biodiesel production using induction plasma synthesized nanosilica. Bioresour. Technol. 2021, 332, 125098. [Google Scholar] [CrossRef] [PubMed]
- Véliz, D.S.; Alam, C.; Nietzel, T.; Wyborski, R.; Rivero-Müller, A.; Alam, P. Diatom-inspired skeletonisation of insulin—Mechanistic insights into crystallisation and extracellular bioactivity. Colloids Surface B 2015, 133, 140–147. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Z.G. Bio-inspired encapsulation and functionalization of living cells with artificial shells. Colloids Surface B 2014, 113, 483–500. [Google Scholar] [CrossRef]
- Gnanamoorthy, P.; Anandhan, S.; Prabu, V.A. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery. J. Porous Mater. 2014, 21, 789–796. [Google Scholar] [CrossRef]
- Aw, M.S.; Simovic, S.; Addai-Mensah, J.; Losic, D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine 2011, 6, 1159–1173. [Google Scholar] [CrossRef]
- Uthappa, U.T.; Kigga, M.; Sriram, G.; Ajeya, K.V.; Jung, H.Y.; Neelgund, G.M.; Kurkuri, M.D. Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous Mesoporous Mater. 2019, 288, 109572. [Google Scholar] [CrossRef]
- Delasoie, J.; Rossier, J.; Haeni, L.; Rothen-Rutishauser, B.; Zobi, F. Slow-targeted release of a ruthenium anticancer agent from vitamin B12 functionalized marine diatom microalgae. Dalton Trans. 2018, 47, 17221–17232. [Google Scholar] [CrossRef]
- Kim, J.N.; Lee, J.; Go, T.W.; Rajabi-Abhari, A.; Mahato, M.; Park, J.Y.; Lee, H.; Oh, I.K. Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 2020, 75, 104904. [Google Scholar] [CrossRef]
- Rajabi-Abhari, A.; Lee, J.; Tabassian, R.; Kim, J.N.; Lee, H.; Oh, I.K. Antagonistically Functionalized Diatom Biosilica for Bio-Triboelectric Generators. Small 2022, 18, e2107638. [Google Scholar] [CrossRef]
- Rajabi-Abhari, A.; Kim, J.N.; Lee, J.; Tabassian, R.; Mahato, M.; Youn, H.J.; Lee, H.; Oh, I.K. Diatom Bio-Silica and Cellulose Nanofibril for Bio-Triboelectric Nanogenerators and Self-Powered Breath Monitoring Masks. ACS Appl. Mater. Interfaces 2021, 13, 219–232. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernández-Marín, R.; Robles, E.; Labidi, J.; Yilmaz, B.A.; Nefzi, H. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydr. Polym. 2021, 271, 118424. [Google Scholar] [CrossRef]
- Akyuz, L.; Kaya, M.; Koc, B.; Mujtaba, M.; Ilk, S.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Yildiz, A. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int. J. Biol. Macromol. 2017, 105, 1401–1411. [Google Scholar] [CrossRef]
- Javalkote, V.S.; Pandey, A.P.; Puranik, P.R.; Deshmukh, P.K. Magnetically responsive siliceous frustules for efficient chemotherapy. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 50, 107–116. [Google Scholar] [CrossRef]
- Tsou, M.H.; Wu, Z.Y.; Chen, G.W.; Lee, C.C.; Lee, Z.H.; Yuan, W.T.; Lin, S.M.; Lin, H.M. Diatom-derived mesoporous silica nanoparticles loaded with fucoidan for enhanced chemo-photodynamic therapy. Int. J. Biol. Macromol. 2023, 253, 127078. [Google Scholar] [CrossRef]
- Singh, P.K.; Saxena, A.; Tyagi, R.; Sindhu, R.; Binod, P.; Tiwari, A. Biomass valorization of agriculture wastewater grown freshwater diatom Nitzschia sp. for metabolites, antibacterial activity, and biofertilizer. Bioresour. Technol. 2023, 377, 128976. [Google Scholar] [CrossRef]
- Wang, X.W.; Huang, L.; Ji, P.Y.; Chen, C.P.; Li, X.S.; Gao, Y.H.; Liang, J.R. Using a mixture of wastewater and seawater as the growth medium for wastewater treatment and lipid production by the marine diatom. Bioresour. Technol. 2019, 289, 121681. [Google Scholar] [CrossRef]
- Nan, M.N.; Bi, Y.; Qiang, Y.; Xue, H.L.; Yang, L.; Feng, L.D.; Pu, L.M.; Long, H.T.; Prusky, D. Electrostatic adsorption and removal mechanism of ochratoxin A in wine via a positively charged nano-MgO microporous ceramic membrane. Food Chem. 2022, 371, 131157. [Google Scholar] [CrossRef]
- Marella, T.K.; Saxena, A.; Tiwari, A. Diatom mediated heavy metal remediation: A review. Bioresour. Technol. 2020, 305, 123068. [Google Scholar]
- Jeffryes, C.; Agathos, S.N.; Rorrer, G. Biogenic nanomaterials from photosynthetic microorganisms. Curr. Opin. Biotechnol. 2015, 33, 23–31. [Google Scholar] [CrossRef]
- Saxena, A.; Mishra, B.; Tiwari, A. Mass cultivation of marine diatoms using local salts and its impact on growth and productivity. Bioresour. Technol. 2022, 352, 127128. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.N. Potential use of silica-rich biochar for the formulation of adaptively controlled release fertilizers: A mini review. J. Clean. Prod. 2021, 307, 127188. [Google Scholar] [CrossRef]
Treatment | Advantages | Limitations | References | |
---|---|---|---|---|
Baking | High temperature (calcination) | Reduction in use of hazardous chemicals | Possible alteration of pore size and possible post-treatments with acid solutions | [42] |
Oxidation | H2SO4 | High efficiency in organic matter removal | Hazardous chemical use, dissolution of thin frustules, and time-consuming post treatments | [43,44] |
H2SO4 + PTFE filters | Reduction in amount of acid required | Unsuitable for thin frustules | [45] | |
HNO3 | High efficiency in organic matter removal | High temperature treatments needed to increase efficiency | [44] | |
Piranha solution (H2SO4 + H2O2) | High efficiency in organic matter removal | Time-consuming Post-treatments | [46] | |
H2O2 | Less dangerous than use of strong acids | Long incubation, and high temperature post-treatments needed to increase efficiency | [36] | |
HCl | High purity of frustules | Possible frustule erosion depending on acid strength | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, K.H.; Kim, D.H.; Youn, S.; Pack, S.P. Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review. Int. J. Mol. Sci. 2024, 25, 2023. https://doi.org/10.3390/ijms25042023
Min KH, Kim DH, Youn S, Pack SP. Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review. International Journal of Molecular Sciences. 2024; 25(4):2023. https://doi.org/10.3390/ijms25042023
Chicago/Turabian StyleMin, Ki Ha, Dong Hyun Kim, Sol Youn, and Seung Pil Pack. 2024. "Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review" International Journal of Molecular Sciences 25, no. 4: 2023. https://doi.org/10.3390/ijms25042023
APA StyleMin, K. H., Kim, D. H., Youn, S., & Pack, S. P. (2024). Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review. International Journal of Molecular Sciences, 25(4), 2023. https://doi.org/10.3390/ijms25042023