Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways
Abstract
:1. Introduction
2. Methodology
3. The Role of Non-Coding RNAs in Multiple Sclerosis
4. miRNAs in Multiple Sclerosis
4.1. Pathway—miRNAs
4.2. miRNAs as MS Biomarkers
MS Type | Sample | Experimental Models | MicroRNAs | Role | Ref. |
---|---|---|---|---|---|
PPMS, RRMS, and SPMS | Blood from patients (serum) | 50 MS patients | miR-143.3p ↑↓; miR-92a.3p ↑; miR-486.5p ↑; and miR-142.5p ↓ | Potentially useful as biomarkers related to MS severity | [101] |
MS | CSF | 151 MS patients and EAE mice model | miR-142-3p ↑ | IL-1beta/miR-142-3p/GLAST pathway and also as a negative MS biomarker in CSF | [102] |
RRMS, SPMS, and PPMS | Blood from patients (serum) | 57 MS patients, 18 clinically isolated syndrome patients, and 32 healthy controls over the four-year follow-up | miR-128-3p ↑, miR-191-5p ↑, miR-24-3p nd, and miR-223-3p nd | Potentially useful as biomarkers related to disability accumulation | [103] |
RRMS | CSF, serum, and PBMC | 10 patients with relapsing MS and 10 HC | ↑ miR-15a-3p/124-5p/149-3p/29c-3p/33a-3p/34c-5p/297 | Distinctive markers of intrathecal inflammation | [104] |
RRMS | Serum | cohort study | ↑ miR-320b and miR-25-3p | Used as biomarkers for MS severity | [105] |
MS | Serum | 30 MS patients and 30 HC | ↑ miRNA146a and miRNA155 | Higher levels associated with MS disability grade | [106] |
MS | Bioinformatics analysis | gene miRNA dataset GSE17846 and mRNA dataset GSE21942 | ↑ hsa-miR-142-3p, hsa-miR-107, hsa-miR-140-5p, and hsa-mi0R-613 | Different target hub genes | [107] |
RRMS | Blood samples | 32 MS patients and 32 HC | ↓ miR-18a-5p | P53 signaling, MAPK signaling pathway, and apoptosis; prognostic biomarkers of high risk | [108] |
RRMS | Blood samples | 19 pregnant patients | ↓ miR-1, miR-20a, miR-28, miR-95, miR-146a, miR-335, and miR-625 | Possible makers of the beneficial effects of pregnancy over MS | [109] |
SPMS and RRMS | Blood samples | 84 Egyptian patients | ↓ miR-300 and miR-450b-5p | Changes in the expression levels of ROCK2 and miRNAs 300 and 450b-5p could be useful as biomarkers, as well as related to the degree of disability and MS progression | [110] |
MS | Bioinformatics analysis | / | ↓ hsa-miR-106a-5p | Possible future biomarkers of MS diagnosis | [111] |
MS | Various analysis | EAE mice | ↓ miRNA-7188-5p and miR-7235 | Downstream inflammatory targets | [112] |
RRMS | PBMCs | 75 patients and 75 HC | ↓ miRNA-145 and miRNA-155 | Regulation of inflammatory mechanisms | [113] |
RRMS | CSF, serum exosomes | 30 untreated RRMS patients and 30 HC | ↑ Let-7 g-5p, miR-18a-5p, miR-145-5p, miR-374a-5p, miR-150-5p, and miR-342-3p ↓ miR-132-5p, miR-320a-5p, and miR-17-5p ↑ miR-15a-5p, miR-19b-3p, and miR-432-5p | Possible future use as MS biomarkers | [114] |
PPMS | CSF, serum | multicentric study | ↓ let-7b-5p; miR-143-3p in CSF; miR-20a-5p and miR-320b, dysregulated in serum; ↑ miR-142-5p in RRMS compared with other neurological conditions | Possible markers in MS to be further studied | [115] |
RRMS | Blood samples | 20 patients + 20 HC | ↑ miR-20, ↓ miR-21, miR-26, miR-155 Let-7 | Alterations in the miRNA expression levels in MS patients compared to HC | [116] |
RRMS, SPMS, and PPMS | Blood samples | 261 patients with MS and 250 HC | hsa-miR-146a and hsa-miR-223 | Genotype variants considered as risk factors for MS | [117] |
RRMS | Blood samples | 194 patients and 188 HC | DROSHA and DICER1 XPO5 RAN AGO1 g variations) | Genotype variants of miRNA processing genes considered as risk factors for MS | [118] |
MS | Bioinformatics analysis | deep-learning analysis | hsa-miR-605-5p, hsa-miR-15b-5p, and hsa-miR-16-5p | Could be involved in a possible role in MS pathogenesis | [119] |
MS | Bioinformatics analysis | peripheral blood samples from NCBI GEO datasets using GEO2R | mir-142–3p, mir-98–5p, mir-629–5p, and mir-212–3p | PI3K-Akt, MAPK, and JAK-STAT | [120] |
MS | Bioinformatics analysis | rs540457553 and rs76149940 SNPs | miR-21 and miR146a/b | Interaction with RNA-binding proteins, such as AGO36 and DGCR8 | [121] |
MS | GEO database | expression data | hsa-mir-16-5p | Possible new target in MS pathogenesis | [122] |
MS | Integrated bioinformatics approaches | integrated bioinformatics approaches | hsa-mir-155-5p, hsa-mir-182-5p, hsa-mir-320a, hsa-mir-148b-3p, and has-mir-301a5p | Interaction with BDNF, IFN-β, NEFL, NTF3, IL-10, NGF, and CH3L1 | [123] |
5. LncRNAs in Multiple Sclerosis
5.1. LncRNAs—Pathway Involved
5.2. LncRNAs—Biomarkers
6. CircRNA inMultiple Sclerosis
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gacias, M.; Casaccia, P. Epigenetic Mechanisms in Multiple Sclerosis. Rev. Esp. Escler. Mult. 2014, 6, 25–35. [Google Scholar]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Lodde, V.; Murgia, G.; Simula, E.R.; Steri, M.; Floris, M.; Idda, M.L. Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules 2020, 10, 1044. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef]
- Jasperson, J.; Jones, A.G. A case of rapid deterioration: Acute multiple sclerosis of the Marburg type. J. Neurosci. Nurs. 1998, 30, 350–355. [Google Scholar] [CrossRef]
- Hintzen, R.Q.; van Pelt, D.E. Paediatric MS is the same disease as adult MS: Yes. Mult. Scler. 2013, 19, 1257–1258. [Google Scholar] [CrossRef]
- Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef]
- Liu, J.; Sandoval, J.; Doh, S.T.; Cai, L.; López-Rodas, G.; Casaccia, P. Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells. PLoS ONE 2010, 5, e13023. [Google Scholar] [CrossRef]
- Marques, S.C.; Oliveira, C.R.; Pereira, C.M.; Outeiro, T.F. Epigenetics in neurodegeneration: A new layer of complexity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 348–355. [Google Scholar] [CrossRef]
- Ghaderian, S.; Shomali, N.; Behravesh, S.; Danbaran, G.R.; Hemmatzadeh, M.; Aslani, S.; Jadidi-Niaragh, F.; Hosseinzadeh, R.; Torkamandi, S.; Mohammadi, H. The emerging role of lncRNAs in multiple sclerosis. J. Neuroimmunol. 2020, 347, 577347. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Y.; Zhang, B.; Ni, B. Noncoding RNAs in multiple sclerosis. Clin. Epigenetics 2018, 10, 149. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Cheng, A.M.; Byrom, M.W.; Shelton, J.; Ford, L.P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005, 33, 1290–1297. [Google Scholar] [CrossRef]
- Montagner, S.; Dehó, L.; Monticelli, S. MicroRNAs in hematopoietic development. BMC Immunol. 2014, 15, 14. [Google Scholar] [CrossRef]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef]
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef]
- Amaral, P.P.; Mattick, J.S. Noncoding RNA in development. Mamm. Genome 2008, 19, 454–492. [Google Scholar] [CrossRef]
- Wilusz, J.E.; Freier, S.M.; Spector, D.L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008, 135, 919–932. [Google Scholar] [CrossRef]
- Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation: Prospects and mechanisms. RNA Biol. 2010, 7, 582–585. [Google Scholar] [CrossRef]
- Xiong, X.D.; Ren, X.; Cai, M.Y.; Yang, J.W.; Liu, X.; Yang, J.M. Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells. Drug Resist. Updates 2016, 26, 28–42. [Google Scholar] [CrossRef]
- Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316, 1484–1488. [Google Scholar] [CrossRef]
- Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 2016, 96, 1297–1325. [Google Scholar] [CrossRef]
- Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol. 2013, 10, 925–933. [Google Scholar] [CrossRef]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Kulcheski, F.R.; Christoff, A.P.; Margis, R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol. 2016, 238, 42–51. [Google Scholar] [CrossRef]
- Leung, A.K.; Sharp, P.A. MicroRNA functions in stress responses. Mol. Cell 2010, 40, 205–215. [Google Scholar] [CrossRef]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Trapp, B.D.; Peterson, J.; Ransohoff, R.M.; Rudick, R.; Mörk, S.; Bö, L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 1998, 338, 278–285. [Google Scholar] [CrossRef]
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bhan, A.K.; Gilles, F.; Kemp, M.; Kerr, C.; Weiner, H.L. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol. 1986, 19, 578–587. [Google Scholar] [CrossRef]
- Stromnes, I.M.; Cerretti, L.M.; Liggitt, D.; Harris, R.A.; Goverman, J.M. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat. Med. 2008, 14, 337–342. [Google Scholar] [CrossRef]
- Myhr, K.M.; Torkildsen, Ø.; Lossius, A.; Bø, L.; Holmøy, T. B cell depletion in the treatment of multiple sclerosis. Expert Opin. Biol. Ther. 2019, 19, 261–271. [Google Scholar] [CrossRef]
- Tintore, M.; Vidal-Jordana, A.; Sastre-Garriga, J. Treatment of multiple sclerosis—Success from bench to bedside. Nat. Rev. Neurol. 2019, 15, 53–58. [Google Scholar] [CrossRef]
- Gao, Y.; Han, D.; Feng, J. MicroRNA in multiple sclerosis. Clin. Chim. Acta 2021, 516, 92–99. [Google Scholar] [CrossRef]
- O’Connell, R.M.; Kahn, D.; Gibson, W.S.; Round, J.L.; Scholz, R.L.; Chaudhuri, A.A.; Kahn, M.E.; Rao, D.S.; Baltimore, D. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010, 33, 607–619. [Google Scholar] [CrossRef]
- Heng, A.H.S.; Han, C.W.; Abbott, C.; McColl, S.R.; Comerford, I. Chemokine-Driven Migration of Pro-Inflammatory CD4(+) T Cells in CNS Autoimmune Disease. Front. Immunol. 2022, 13, 817473. [Google Scholar] [CrossRef]
- Du, C.; Liu, C.; Kang, J.; Zhao, G.; Ye, Z.; Huang, S.; Li, Z.; Wu, Z.; Pei, G. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 2009, 10, 1252–1259. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Q.; Zhang, Y.; Li, Z.; Mei, X. MicroRNA-590 promotes pathogenic Th17 cell differentiation through targeting Tob1 and is associated with multiple sclerosis. Biochem. Biophys. Res. Commun. 2017, 493, 901–908. [Google Scholar] [CrossRef]
- Ahmadian-Elmi, M.; Bidmeshki Pour, A.; Naghavian, R.; Ghaedi, K.; Tanhaei, S.; Izadi, T.; Nasr-Esfahani, M.H. miR-27a and miR-214 exert opposite regulatory roles in Th17 differentiation via mediating different signaling pathways in peripheral blood CD4+ T lymphocytes of patients with relapsing-remitting multiple sclerosis. Immunogenetics 2016, 68, 43–54. [Google Scholar] [CrossRef]
- Wu, R.; He, Q.; Chen, H.; Xu, M.; Zhao, N.; Xiao, Y.; Tu, Q.Q.; Zhang, W.; Bi, X. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem. Biophys. Res. Commun. 2017, 486, 759–766. [Google Scholar] [CrossRef]
- Guan, H.; Fan, D.; Mrelashvili, D.; Hao, H.; Singh, N.P.; Singh, U.P.; Nagarkatti, P.S.; Nagarkatti, M. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2013, 43, 104–114. [Google Scholar] [CrossRef]
- Chandler, S.; Coates, R.; Gearing, A.; Lury, J.; Wells, G.; Bone, E. Matrix metalloproteinases degrade myelin basic protein. Neurosci. Lett. 1995, 201, 223–226. [Google Scholar] [CrossRef]
- Majd, M.; Hosseini, A.; Ghaedi, K.; Kiani-Esfahani, A.; Tanhaei, S.; Shiralian-Esfahani, H.; Rahnamaee, S.Y.; Mowla, S.J.; Nasr-Esfahani, M.H. MiR-9-5p and miR-106a-5p dysregulated in CD4(+) T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation. Iran. J. Basic Med. Sci. 2018, 21, 277–283. [Google Scholar] [CrossRef]
- Lecca, D.; Marangon, D.; Coppolino, G.T.; Méndez, A.M.; Finardi, A.; Costa, G.D.; Martinelli, V.; Furlan, R.; Abbracchio, M.P. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci. Rep. 2016, 6, 34503. [Google Scholar] [CrossRef]
- Giunti, D.; Marini, C.; Parodi, B.; Usai, C.; Milanese, M.; Bonanno, G.; Kerlero de Rosbo, N.; Uccelli, A. Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation. Sci. Rep. 2021, 11, 1740. [Google Scholar] [CrossRef]
- Sievers, C.; Meira, M.; Hoffmann, F.; Fontoura, P.; Kappos, L.; Lindberg, R.L. Altered microRNA expression in B lymphocytes in multiple sclerosis: Towards a better understanding of treatment effects. Clin. Immunol. 2012, 144, 70–79. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Li, R.; Rezk, A.; Misirliyan, H.; Moore, C.; Farooqi, N.; Solis, M.; Goiry, L.G.; de Faria Junior, O.; Dang, V.D.; et al. A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected]. PLoS ONE 2014, 9, e105421. [Google Scholar] [CrossRef]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef]
- Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef]
- Moore, C.S.; Rao, V.T.; Durafourt, B.A.; Bedell, B.J.; Ludwin, S.K.; Bar-Or, A.; Antel, J.P. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann. Neurol. 2013, 74, 709–720. [Google Scholar] [CrossRef]
- Ponomarev, E.D.; Veremeyko, T.; Barteneva, N.; Krichevsky, A.M.; Weiner, H.L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. 2011, 17, 64–70. [Google Scholar] [CrossRef]
- Salta, E.; De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol. 2012, 11, 189–200. [Google Scholar] [CrossRef]
- Miron, V.E.; Boyd, A.; Zhao, J.W.; Yuen, T.J.; Ruckh, J.M.; Shadrach, J.L.; van Wijngaarden, P.; Wagers, A.J.; Williams, A.; Franklin, R.J.M.; et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 2013, 16, 1211–1218. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Z.; Fang, X.; Liu, M.; Pu, Y.; Shao, Q.; Wang, D.; Zhao, X.; Huang, A.; Xiang, Z.; et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 2017, 18, 1801–1816. [Google Scholar] [CrossRef]
- Masoumi, F.; Ghorbani, S.; Talebi, F.; Branton, W.G.; Rajaei, S.; Power, C.; Noorbakhsh, F. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2019, 328, 50–59. [Google Scholar] [CrossRef]
- Dastmalchi, R.; Ghafouri-Fard, S.; Omrani, M.D.; Mazdeh, M.; Sayad, A.; Taheri, M. Dysregulation of long non-coding RNA profile in peripheral blood of multiple sclerosis patients. Mult. Scler. Relat. Disord. 2018, 25, 219–226. [Google Scholar] [CrossRef]
- Abedin, J.; Papadopoulos, D.; Dexter, D.; Reynolds, R. Oxidative DNA damage in the spinal cord in multiple sclerosis. Neuropathol. Appl. Neurobiol. 2002, 28, 168. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; An, G.; Ma, Q. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp. Biol. Med. 2016, 241, 644–649. [Google Scholar] [CrossRef]
- Santoro, M.; Nociti, V.; Lucchini, M.; De Fino, C.; Losavio, F.A.; Mirabella, M. Expression Profile of Long Non-Coding RNAs in Serum of Patients with Multiple Sclerosis. J. Mol. Neurosci. 2016, 59, 18–23. [Google Scholar] [CrossRef]
- Santoro, M.; Nociti, V.; Lucchini, M.; Loiodice, M.; Centofanti, F.; Botta, A.; Losavio, F.A.; De Fino, C.; Mirabella, M. A pilot study of lncRNAs expression profile in serum of progressive multiple sclerosis patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3267–3273. [Google Scholar] [CrossRef]
- Imamura, K.; Imamachi, N.; Akizuki, G.; Kumakura, M.; Kawaguchi, A.; Nagata, K.; Kato, A.; Kawaguchi, Y.; Sato, H.; Yoneda, M.; et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 2014, 53, 393–406. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.; Wang, Y.; Zhao, L.; Chen, W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 2012, 496, 8–16. [Google Scholar] [CrossRef]
- Dastmalchi, R.; Omrani, m.d.; Mazdeh, M.; Arsang-Jang, S.; Movafagh, A.; Sayad, A.; Taheri, M. Expression of Long Non-Coding RNAs (UCA1 and CCAT2) in the Blood of Multiple Sclerosis Patients. Iran. Red Crescent Med. J. 2018; in press. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Li, D.; Wei, C.; Hao, J. DDIT4 and Associated lncDDIT4 Modulate Th17 Differentiation through the DDIT4/TSC/mTOR Pathway. J. Immunol. 2018, 200, 1618–1626. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Wei, C.; Gao, C.; Hao, J. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB J. 2017, 31, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Chao, J.; Yao, H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol. Ther. 2018, 187, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Sciaccotta, R.; Murdaca, G.; Caserta, S.; Rizzo, V.; Gangemi, S.; Allegra, A. Circular RNAs: A New Approach to Multiple Sclerosis. Biomedicines 2023, 11, 2883. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Tanaka, S.; Fujii, T.; Aoki, A.; Komiyama, H.; Ezawa, K.; Sumiyama, K.; Sagai, T.; Shiroishi, T. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 2007, 89, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Iparraguirre, L.; Muñoz-Culla, M.; Prada-Luengo, I.; Castillo-Triviño, T.; Olascoaga, J.; Otaegui, D. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum. Mol. Genet. 2017, 26, 3564–3572. [Google Scholar] [CrossRef] [PubMed]
- Cardamone, G.; Paraboschi, E.M.; Rimoldi, V.; Duga, S.; Soldà, G.; Asselta, R. The Characterization of GSDMB Splicing and Backsplicing Profiles Identifies Novel Isoforms and a Circular RNA That Are Dysregulated in Multiple Sclerosis. Int. J. Mol. Sci. 2017, 18, 576. [Google Scholar] [CrossRef] [PubMed]
- Schmiedel, B.J.; Seumois, G.; Samaniego-Castruita, D.; Cayford, J.; Schulten, V.; Chavez, L.; Ay, F.; Sette, A.; Peters, B.; Vijayanand, P. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nat. Commun. 2016, 7, 13426. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Miller, M.; Beppu, A.K.; Mueller, J.; McGeough, M.D.; Vuong, C.; Karta, M.R.; Rosenthal, P.; Chouiali, F.; Doherty, T.A.; et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc. Natl. Acad. Sci. USA 2016, 113, 13132–13137. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, G.; Hosseini Quchani, S.; Sahraian, M.A.; Abolhassani, F.; Sadighi Gilani, M.A.; Dehghan Tarzjani, M.; Atoof, F. Leukocyte Gene Expression and Plasma Concentration in Multiple Sclerosis: Alteration of Transforming Growth Factor-βs, Claudin-11, and Matrix Metalloproteinase-2. Cell. Mol. Neurobiol. 2016, 36, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Lamkanfi, M.; Vande Walle, L.; Kanneganti, T.D. Deregulated inflammasome signaling in disease. Immunol. Rev. 2011, 243, 163–173. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526, 666–671. [Google Scholar] [CrossRef]
- Memczak, S.; Papavasileiou, P.; Peters, O.; Rajewsky, N. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. PLoS ONE 2015, 10, e0141214. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Fan, X.; Wang, Z.; Zhang, L.; Guo, S. Circ_HECW2 functions as a miR-30e-5p sponge to regulate LPS-induced endothelial-mesenchymal transition by mediating NEGR1 expression. Brain Res. 2020, 1748, 147114. [Google Scholar] [CrossRef] [PubMed]
- Paraboschi, E.M.; Cardamone, G.; Soldà, G.; Duga, S.; Asselta, R. Interpreting Non-coding Genetic Variation in Multiple Sclerosis Genome-Wide Associated Regions. Front. Genet. 2018, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Sağır, F.; Ersoy Tunalı, N.; Tombul, T.; Koral, G.; Çırak, S.; Yılmaz, V.; Türkoğlu, R.; Tüzün, E. miR-132-3p, miR-106b-5p, and miR-19b-3p Are Associated with Brain-Derived Neurotrophic Factor Production and Clinical Activity in Multiple Sclerosis: A Pilot Study. Genet. Test. Mol. Biomark. 2021, 25, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Piotrzkowska, D.; Miller, E.; Kucharska, E.; Niwald, M.; Majsterek, I. Association of miRNA and mRNA Levels of the Clinical Onset of Multiple Sclerosis Patients. Biology 2021, 10, 554. [Google Scholar] [CrossRef]
- Shademan, B.; Zakeri, M.; Abbasi, S.; Biray Avci, C.; Karamad, V.; Sogutlu, F.; Laghousi, D.; Nouri, M.; Hassanpour, M.; Nourazarian, A. Relationship between miRNA-21, miRNA-155, and miRNA-182 expression and inflammatory factors in cerebrospinal fluid from patients with multiple sclerosis. Clin. Neurol. Neurosurg. 2023, 232, 107873. [Google Scholar] [CrossRef]
- Martin, N.A.; Hyrlov, K.H.; Elkjaer, M.L.; Thygesen, E.K.; Wlodarczyk, A.; Elbaek, K.J.; Aboo, C.; Okarmus, J.; Benedikz, E.; Reynolds, R.; et al. Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Front. Immunol. 2020, 11, 1110. [Google Scholar] [CrossRef]
- Khakdan, F.; Javanmard, A.S.; Shahmoradipour, P.; Jahromi, M.J. The fluctuations of expression profiles of critical genes in the miRNA maturation process and pro-and anti-inflammatory cytokines in the pathogenesis and progression of multiple sclerosis. Mol. Biol. Rep. 2023, 50, 9405–9416. [Google Scholar] [CrossRef]
- Thompson, J.W.; Hu, R.; Huffaker, T.B.; Ramstead, A.G.; Ekiz, H.A.; Bauer, K.M.; Tang, W.W.; Ghazaryan, A.; Round, J.L.; Fujinami, R.S.; et al. MicroRNA-155 Plays Selective Cell-Intrinsic Roles in Brain-Infiltrating Immune Cell Populations during Neuroinflammation. J. Immunol. 2023, 210, 926–934. [Google Scholar] [CrossRef]
- Wu, T.; Lei, Y.; Jin, S.; Zhao, Q.; Cheng, W.; Xi, Y.; Wang, L.; Wang, Z.; Niu, X.; Chen, G. miRNA-467b inhibits Th17 differentiation by targeting eIF4E in experimental autoimmune encephalomyelitis. Mol. Immunol. 2021, 133, 23–33. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, L.; Guo, R.; Shao, X.; Shi, M.; Yuan, C.; Li, X.; Li, B. miR-485 regulates Th17 generation and pathogenesis in experimental autoimmune encephalomyelitis through targeting STAT3. J. Neuroimmunol. 2023, 379, 578100. [Google Scholar] [CrossRef]
- Angelou, C.C.; Wells, A.C.; Vijayaraghavan, J.; Dougan, C.E.; Lawlor, R.; Iverson, E.; Lazarevic, V.; Kimura, M.Y.; Peyton, S.R.; Minter, L.M.; et al. Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Front. Immunol. 2019, 10, 3125. [Google Scholar] [CrossRef]
- Cwiklinska, H.; Cichalewska-Studzinska, M.; Selmaj, K.W.; Mycko, M.P. The Heat Shock Protein HSP70 Promotes Th17 Genes’ Expression via Specific Regulation of microRNA. Int. J. Mol. Sci. 2020, 21, 2823. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, S.F.; Cummings, S.E.; Fathi, S.; Bonin, S.R.; Kothary, R. MiRNA-145-5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. J. Cell. Physiol. 2021, 236, 997–1012. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Pandit, I.; Perles, A.; Zhou, Y.; Cheng, F.; Dutta, R. Identifying miRNAs in multiple sclerosis gray matter lesions that correlate with atrophy measures. Ann. Clin. Transl. Neurol. 2021, 8, 1279–1291. [Google Scholar] [CrossRef]
- Ma, Q.; Matsunaga, A.; Ho, B.; Oksenberg, J.R.; Didonna, A. Oligodendrocyte-specific Argonaute profiling identifies microRNAs associated with experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2020, 17, 297. [Google Scholar] [CrossRef]
- Fritsche, L.; Teuber-Hanselmann, S.; Soub, D.; Harnisch, K.; Mairinger, F.; Junker, A. MicroRNA profiles of MS gray matter lesions identify modulators of the synaptic protein synaptotagmin-7. Brain Pathol. 2020, 30, 524–540. [Google Scholar] [CrossRef]
- Long, H.C.; Wu, R.; Liu, C.F.; Xiong, F.L.; Xu, Z.; He, D.; Zhang, Y.F.; Shao, B.; Zhang, P.A.; Xu, G.Y.; et al. MiR-125a-5p Regulates Vitamin D Receptor Expression in a Mouse Model of Experimental Autoimmune Encephalomyelitis. Neurosci. Bull. 2020, 36, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Khedr, A.M.B.; Shaker, O.G.; Hassan, A.; Hussein, M.; Kamal, Y.S.; Azouz, T.A. MicroRNA-22 Level in Patients with Multiple Sclerosis and Its Relationship with Vitamin D and Vitamin D Receptor Levels. Neuroimmunomodulation 2022, 29, 128–134. [Google Scholar] [CrossRef]
- Geiger, L.; Orsi, G.; Cseh, T.; Gombos, K.; Illés, Z.; Czéh, B. Circulating microRNAs correlate with structural and functional MRI parameters in patients with multiple sclerosis. Front. Mol. Neurosci. 2023, 16, 1173212. [Google Scholar] [CrossRef]
- De Vito, F.; Musella, A.; Fresegna, D.; Rizzo, F.R.; Gentile, A.; Stampanoni Bassi, M.; Gilio, L.; Buttari, F.; Procaccini, C.; Colamatteo, A.; et al. MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis. Neuropathol. Appl. Neurobiol. 2022, 48, e12765. [Google Scholar] [CrossRef]
- Vistbakka, J.; Sumelahti, M.L.; Lehtimäki, T.; Hagman, S. Temporal variability of serum miR-191, miR-223, miR-128, and miR-24 in multiple sclerosis: A 4-year follow-up study. J. Neurol. Sci. 2022, 442, 120395. [Google Scholar] [CrossRef] [PubMed]
- Perdaens, O.; Dang, H.A.; D’Auria, L.; van Pesch, V. CSF microRNAs discriminate MS activity and share similarity to other neuroinflammatory disorders. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e673. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Bose, G.; Lokhande, H.; Saxena, S.; Healy, B.C.; Polgar-Turcsanyi, M.; Weiner, H.L.; Chitnis, T. Early miR-320b and miR-25-3p miRNA levels correlate with multiple sclerosis severity at 10 years: A cohort study. J. Neuroinflamm. 2023, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Shademan, B.; Nourazarian, A.; Nikanfar, M.; Biray Avci, C.; Hasanpour, M.; Isazadeh, A. Investigation of the miRNA146a and miRNA155 gene expression levels in patients with multiple sclerosis. J. Clin. Neurosci. 2020, 78, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.B.; Feng, X.; Zhu, W.N.; Qiu, M.L. Identification of key genes and microRNAs for multiple sclerosis using bioinformatics analysis. Medicine 2021, 100, e27667. [Google Scholar] [CrossRef]
- Sohan Forooshan Moghadam, A.; Ataei, M.; Arabzadeh, G.; Falahati, K.; Roshani, F.; Sanati, M.H. Analysis of MicroRNA-18a Expression in Multiple Sclerosis Patients. Rep. Biochem. Mol. Biol. 2020, 8, 429–437. [Google Scholar]
- Søndergaard, H.B.; Airas, L.; Christensen, J.R.; Nielsen, B.R.; Börnsen, L.; Oturai, A.; Sellebjerg, F. Pregnancy-Induced Changes in microRNA Expression in Multiple Sclerosis. Front. Immunol. 2020, 11, 552101. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; El-Mehdawy, K.M.; Seleem, M.; El-Sawalhi, M.M.; Shaheen, A.A. Serum ROCK2, miR-300 and miR-450b-5p levels in two different clinical phenotypes of multiple sclerosis: Relation to patient disability and disease progression. J. Neuroimmunol. 2020, 347, 577356. [Google Scholar] [CrossRef]
- Rahimirad, S.; Navaderi, M.; Alaei, S.; Sanati, M.H. Identification of hsa-miR-106a-5p as an impact agent on promotion of multiple sclerosis using multi-step data analysis. Neurol. Sci. 2021, 42, 3791–3799. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; AlZahrani, A.; Hanieh, H.; Ahmed, E.A.; Thirugnanasambantham, K. MicroRNA-7188-5p and miR-7235 regulates Multiple sclerosis in an experimental mouse model. Mol. Immunol. 2021, 139, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ali Ashrafi, S.; Asadi, M.; Shanehbandi, D.; Sadigh Eteghad, S.; Fazlollahi, A.; Nejadghaderi, S.A.; Shaafi, S. Association between miRNA-145 and miRNA-155 expression in peripheral blood mononuclear cells of patients with multiple sclerosis: A case-control study. BMC Neurol. 2022, 22, 405. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinasr, M.; Montazersaheb, S.; Molavi, O.; Kahroba, H.; Talebi, M.; Ayromlou, H.; Hejazi, M.S. Multiplex Analysis of Cerebrospinal Fluid and Serum Exosomes MicroRNAs of Untreated Relapsing Remitting Multiple Sclerosis (RRMS) and Proposing Noninvasive Diagnostic Biomarkers. Neuromolecular Med. 2023, 25, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-San Martín, M.; Gómez, I.; Quiroga-Varela, A.; Gonzalez-Del Río, M.; Robles Cedeño, R.; Álvarez, G.; Buxó, M.; Miguela, A.; Villar, L.M.; Castillo-Villalba, J.; et al. miRNA Signature in CSF From Patients With Primary Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200069. [Google Scholar] [CrossRef] [PubMed]
- Balkan, E.; Bilge, N. Expression levels of IL-17/IL-23 cytokine-targeting microRNAs 20, 21, 26, 155, and Let-7 in patients with relapsing-remitting multiple sclerosis. Neurol. Res. 2021, 43, 778–783. [Google Scholar] [CrossRef]
- Shareef, S.; Ebrahimi, S.O.; Reiisi, S. Contribution of hsa-miR-146a and hsa-miR-223 gene variations in patients with multiple sclerosis reveals association of rs2910164 and rs1044165 with risk of multiple sclerosis susceptibility. J. Investig. Med. 2021, 69, 1015–1021. [Google Scholar] [CrossRef]
- Basak, J.; Piotrzkowska, D.; Majsterek, I.; Kucharska, E. Relationship between the Occurrence of Genetic Variants of Single Nucleotide Polymorphism in microRNA Processing Genes and the Risk of Developing Multiple Sclerosis. Biomedicines 2022, 10, 3124. [Google Scholar] [CrossRef]
- Sun, X.; Ren, X.; Zhang, J.; Nie, Y.; Hu, S.; Yang, X.; Jiang, S. Discovering miRNAs Associated With Multiple Sclerosis Based on Network Representation Learning and Deep Learning Methods. Front. Genet. 2022, 13, 899340. [Google Scholar] [CrossRef]
- Erkal, B.; Vural Korkut, S. Identification of miRNAs and their potential effects on multiple sclerosis related pathways using ın silico analysis. Mult. Scler. Relat. Disord. 2022, 59, 103642. [Google Scholar] [CrossRef] [PubMed]
- Moraghebi, M.; Negahi, A.A.; Bazireh, H.; Abbasi, H.; Ahmadi, M.; Sarikhani, Z.; Mousavi, P. The Analysis of SNPs’ Function in miR-21 and miR146a/b in Multiple Sclerosis and Active Lesions: An In Silico Study. Bioinform. Biol. Insights 2022, 16, 11779322221116322. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Huang, B.; Gu, M.; Qin, B.E.; Su, Z.; Dai, K.; Peng, F.H.; Jiang, Y. Exploring Shared Genetic Signatures of Alzheimer’s Disease and Multiple Sclerosis: A Bioinformatic Analysis Study. Eur. Neurol. 2023, 86, 363–376. [Google Scholar] [CrossRef]
- Prabahar, A.; Raja, K. Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics 2022, 12, 1914. [Google Scholar] [CrossRef]
- Han, Z.; Xue, W.; Tao, L.; Lou, Y.; Qiu, Y.; Zhu, F. Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief. Bioinform. 2020, 21, 1023–1037. [Google Scholar] [CrossRef]
- Krementsov, D.N.; Thornton, T.M.; Teuscher, C.; Rincon, M. The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol. Cell. Biol. 2013, 33, 3728–3734. [Google Scholar] [CrossRef]
- Sabaie, H.; Khorami Rouz, S.; Kouchakali, G.; Heydarzadeh, S.; Asadi, M.R.; Sharifi-Bonab, M.; Hussen, B.M.; Taheri, M.; Ayatollahi, S.A.; Rezazadeh, M. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis. Front. Genet. 2022, 13, 1011350. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Gholipour, M.; Eslami, S.; Hussen, B.M.; Taheri, M.; Samadian, M.; Omrani, M.D. Abnormal expression of MAPK14-related lncRNAs in the peripheral blood of patients with multiple sclerosis. Non-Coding RNA Res. 2023, 8, 335–339. [Google Scholar] [CrossRef]
- Ding, Y.; Li, T.; Yan, X.; Cui, M.; Wang, C.; Wang, S.; Zhang, F.; Zhang, R. Identification of hub lncRNA ceRNAs in multiple sclerosis based on ceRNA mechanisms. Mol. Genet. Genom. 2021, 296, 423–435. [Google Scholar] [CrossRef]
- Yan, J.; Winterford, C.M.; Catts, V.S.; Pat, B.K.; Pender, M.P.; McCombe, P.A.; Greer, J.M. Increased constitutive activation of NF-κB p65 (RelA) in peripheral blood cells of patients with progressive multiple sclerosis. J. Neuroimmunol. 2018, 320, 111–116. [Google Scholar] [CrossRef]
- Safa, A.; Arsang-Jang, S.; Taheri, M.; Omrani, M.D.; Ghafouri-Fard, S. Dysregulation of NF-κB-Associated lncRNAs in Multiple Sclerosis Patients. J. Mol. Neurosci. 2021, 71, 80–88. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Chen, Y.; Wang, Y.; Qin, S.; Lv, R.; Zhou, M.; Yu, Q.; Li, X.; Li, X.; et al. The LncRNA AK018453 regulates TRAP1/Smad signaling in IL-17-activated astrocytes: A potential role in EAE pathogenesis. Glia 2022, 70, 2079–2092. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, F.; Wang, W.; Chen, G.; Zhang, Q.; Lv, R.; Zhao, Z.; Li, X.; Yu, Q.; Meves, J.M.; et al. IL-9-triggered lncRNA Gm13568 regulates Notch1 in astrocytes through interaction with CBP/P300: Contribute to the pathogenesis of experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2021, 18, 108. [Google Scholar] [CrossRef]
- Moser, T.; Akgün, K.; Proschmann, U.; Sellner, J.; Ziemssen, T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun. Rev. 2020, 19, 102647. [Google Scholar] [CrossRef]
- Jadidi-Niaragh, F.; Mirshafiey, A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand. J. Immunol. 2011, 74, 1–13. [Google Scholar] [CrossRef]
- Balasa, R.; Barcutean, L.; Balasa, A.; Motataianu, A.; Roman-Filip, C.; Manu, D. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum. Immunol. 2020, 81, 237–243. [Google Scholar] [CrossRef]
- Bian, Z.; Lei, W.; Li, Q.; Xue, W.; Gao, Y.; Zeng, Y.; Wang, Y.; Tang, L.; Tang, T.; Chen, C.; et al. Gm15575 functions as a ceRNA to up-regulate CCL7 expression through sponging miR-686 in Th17 cells. Mol. Immunol. 2020, 125, 32–42. [Google Scholar] [CrossRef]
- Wang, T.; Xu, S.; Liu, L.; Li, S.; Zhang, H.; Lu, X.; Kong, X.; Li, D.; Wang, J.; Wang, L. Integrated analysis of differentially expressed genes and a ceRNA network to identify hub lncRNAs and potential drugs for multiple sclerosis. Am. J. Transl. Res. 2022, 14, 772–787. [Google Scholar]
- Rodríguez-Lorenzo, S.; Ferreira Francisco, D.M.; Vos, R.; van Het Hof, B.; Rijnsburger, M.; Schroten, H.; Ishikawa, H.; Beaino, W.; Bruggmann, R.; Kooij, G.; et al. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol. Commun. 2020, 8, 35. [Google Scholar] [CrossRef]
- Saeinasab, M.; Atlasi, Y.; Matin, M.M. Functional role of lncRNAs in gastrointestinal malignancies: The peculiar case of small nucleolar RNA host gene family. FEBS J. 2022. [Google Scholar] [CrossRef]
- Tan, A.Q.; Zheng, Y.F. The Roles of SNHG Family in Osteoblast Differentiation. Genes 2022, 13, 2268. [Google Scholar] [CrossRef]
- Chu, Q.; Gu, X.; Zheng, Q.; Guo, Z.; Shan, D.; Wang, J.; Zhu, H. Long noncoding RNA SNHG4: A novel target in human diseases. Cancer Cell Int. 2021, 21, 583. [Google Scholar] [CrossRef]
- Sabaie, H.; Salkhordeh, Z.; Asadi, M.R.; Ghafouri-Fard, S.; Amirinejad, N.; Askarinejad Behzadi, M.; Hussen, B.M.; Taheri, M.; Rezazadeh, M. Long Non-Coding RNA- Associated Competing Endogenous RNA Axes in T-Cells in Multiple Sclerosis. Front. Immunol. 2021, 12, 770679. [Google Scholar] [CrossRef]
- Dadyar, M.; Hussen, B.M.; Eslami, S.; Taheri, M.; Emadi, F.; Ghafouri-Fard, S.; Sayad, A. Expression of T cell-related lncRNAs in multiple sclerosis. Front. Genet. 2022, 13, 967157. [Google Scholar] [CrossRef]
- Ysrraelit, M.C.; Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019, 156, 9–22. [Google Scholar] [CrossRef]
- Patoughi, M.; Ghafouri-Fard, S.; Arsang-Jang, S.; Taheri, M. Expression analysis of PINK1 and PINK1-AS in multiple sclerosis patients versus healthy subjects. Nucleosides Nucleotides Nucleic Acids 2021, 40, 157–165. [Google Scholar] [CrossRef]
- Bahrami, T.; Taheri, M.; Javadi, S.; Omrani, M.D.; Karimipour, M. Expression Analysis of Long Non-coding RNA Lnc-DC in HLA-DRB1*15:01-Negative Patients with Multiple Sclerosis: A Probable Cause for Gender Differences in Multiple Sclerosis Susceptibility? J. Mol. Neurosci. 2021, 71, 821–825. [Google Scholar] [CrossRef]
- Kamal, A.; Swellam, M.; Shalaby, N.M.; Darwish, M.K.; El-Nahrery, E.M. Long non-coding RNAs BACE1-AS and BC200 in multiple sclerosis and their relation to cognitive function: A gene expression analysis. Brain Res. 2023, 1814, 148424. [Google Scholar] [CrossRef]
- Haridy, S.F.A.; Shahin, N.N.; Shabayek, M.I.; Selim, M.M.; Abdelhafez, M.A.; Motawi, T.K. Diagnostic and prognostic value of the RUNXOR/RUNX1 axis in multiple sclerosis. Neurobiol. Dis. 2023, 178, 106032. [Google Scholar] [CrossRef]
- Moradi, A.; Rahimi Naiini, M.; Yazdanpanahi, N.; Tabatabaeian, H.; Nabatchian, F.; Baghi, M.; Azadeh, M.; Ghaedi, K. Evaluation of The Expression Levels of Three Long Non-Coding RNAs in Multiple Sclerosis. Cell J. 2020, 22, 165–170. [Google Scholar] [CrossRef]
- Safa, A.; Taheri, M.; Fallah, H.; Salmani, T.; Arsang-Jang, S.; Ghafouri-Fard, S.; Omrani, M.D. Downregulation of Cancer-Associated lncRNAs in Peripheral Blood of Multiple Sclerosis Patients. J. Mol. Neurosci. 2020, 70, 1533–1540. [Google Scholar] [CrossRef]
- Ghoveud, E.; Teimuri, S.; Vatandoost, J.; Hosseini, A.; Ghaedi, K.; Etemadifar, M.; Nasr Esfahani, M.H.; Megraw, T.L. Potential Biomarker and Therapeutic LncRNAs in Multiple Sclerosis Through Targeting Memory B Cells. Neuromol. Med. 2020, 22, 111–120. [Google Scholar] [CrossRef]
- Pahlevan Kakhki, M.; Rakhshi, N.; Emami Aleagha, M.S.; Abdari, M.; Alikhah, A.; Safarian, G.; Behmanesh, M.; Nikravesh, A. Differential expression of STAT3 gene and its regulatory long non-coding RNAs, namely lnc-DC and THRIL, in two eastern Iranian ethnicities with multiple sclerosis. Neurol. Sci. 2020, 41, 561–568. [Google Scholar] [CrossRef]
- Cardamone, G.; Paraboschi, E.M.; Soldà, G.; Liberatore, G.; Rimoldi, V.; Cibella, J.; Airi, F.; Tisato, V.; Cantoni, C.; Gallia, F.; et al. The circular RNA landscape in multiple sclerosis: Disease-specific associated variants and exon methylation shape circular RNA expression profile. Mult. Scler. Relat. Disord. 2023, 69, 104426. [Google Scholar] [CrossRef]
- Iparraguirre, L.; Alberro, A.; Sepúlveda, L.; Osorio-Querejeta, I.; Moles, L.; Castillo-Triviño, T.; Hansen, T.B.; Muñoz-Culla, M.; Otaegui, D. RNA-Seq profiling of leukocytes reveals a sex-dependent global circular RNA upregulation in multiple sclerosis and 6 candidate biomarkers. Hum. Mol. Genet. 2020, 29, 3361–3372. [Google Scholar] [CrossRef]
- Zurawska, A.E.; Mycko, M.P.; Selmaj, I.; Raine, C.S.; Selmaj, K.W. Multiple Sclerosis: circRNA Profile Defined Reveals Links to B-Cell Function. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1041. [Google Scholar] [CrossRef]
- Mycko, M.P.; Zurawska, A.E.; Selmaj, I.; Selmaj, K.W. Impact of Diminished Expression of circRNA on Multiple Sclerosis Pathomechanisms. Front. Immunol. 2022, 13, 875994. [Google Scholar] [CrossRef]
- Han, J.; Zhuang, W.; Feng, W.; Dong, F.; Hua, F.; Yao, R.; Qu, X. The circular RNA circINPP4B acts as a sponge of miR-30a to regulate Th17 cell differentiation during progression of experimental autoimmune encephalomyelitis. Cell. Mol. Immunol. 2021, 18, 2177–2187. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, X.; Cui, X.; Hu, J.; Wang, L.; Xue, F.; Guo, S.; Wang, X. Circ_0000518 Promotes Macrophage/Microglia M1 Polarization via the FUS/CaMKKβ/AMPK Pathway to Aggravate Multiple Sclerosis. Neuroscience 2022, 490, 131–143. [Google Scholar] [CrossRef]
- Doghish, A.S.; Elazazy, O.; Mohamed, H.H.; Mansour, R.M.; Ghanem, A.; Faraag, A.H.I.; Elballal, M.S.; Elrebehy, M.A.; Elesawy, A.E.; Abdel Mageed, S.S.; et al. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol. Res. Pract. 2023, 251, 154880. [Google Scholar] [CrossRef]
MS Type | Sample | Experimental Models | MicroRNAs | Role | Ref. |
---|---|---|---|---|---|
RRMS SPMS | PBMC and serum | 19 MS patients + 14 HC | ↓ miR-132-3p, miR-106b-5p, and miR-19b-3p | BDNF increment as a compensatory and protective mechanism | [85] |
RRMS SPMS | Blood samples | 28 MS patient PBMCs | ↑ miR-132-3p, miR-34a, and miR-132 | Negative correlation with SIRT1 and BDNF | [86] |
RRMS | CSF | 25 MS patients and 25 HC | ↑ miRNA-21, miRNA-155, and miRNA-182 | ↑ levels of IL-1β, IL-6, TNF-α, and hs-CRP | [87] |
MS | Microglia from mice | miRNA-146a KO mice | miRNA-146a KO | When knocked out, increments of IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 | [88] |
RRMS SPMS | PBMCs | 40 MS patients and 20 HC | ↑ DROSHA in RRMS; ↓ DROSHA in SPMS | ↑ IL-6 in SPMS; ↓ of INF-α and INF-β | [89] |
MS | Various analysis | mouse model for EAE | miR-155 role, depending on the cell type | Different roles in infiltrating cells and the MS immune environment | [90] |
EAE | Cells | EAE model on mice | ↓ miRNA-467b | Targeting of eIF4E suppresses Th17 differentiation, delaying disease progression | [91] |
MS | mice | ↑ miR-485 | ↓ STAT3 differentiation of Th17 cells | [92] | |
MS | Various analysis | mouse model for EAE | ↑ let-7 | Il1r1 and Il23r, Ccr2, and Ccr5 (it confers protection against EAE-deactivating CD4 cells) | [93] |
- | T cell line resembling Th17 | C57BL/6J mice and EL4 cell line cells | ↑ miR-21, miR-146a, miR-155-3p, miR-155-5p, and miR-301a | T cell gene expression via HSP70 interaction with the RISC complex and miRNAs | [94] |
- | OPCs | Rats | ↑ mir-145-5p | ↓ MYRF prevents OPC differentiation | [95] |
SPMS PPMS | / | human brain slices | miR-149*, miR-20a, miR-29c, and miR-25 dysregulation | axonal guidance, TGF-β signaling, and FOXO signaling | [96] |
MS | Various analysis | EAE mice | 15 miRNAs ↑ 3 miRNAs ↓ | KEGG: peroxisome, FoxO signaling, glutathione metabolism, and ferroptosis | [97] |
MS | FFPE autopsy tissue | 16 autopsied MS patients | ↑ miR-330-3p, miR-4286, miR-4488, let-7e-5p, and miR-432-5p | synaptotagmin-7 as a target | [98] |
MS | Various analysis | mouse model for EAE | ↑ miR-125a-5p | VDR expression ↓ | [99] |
SPMS RRMS | Serum | 50 MS patients and 50 HC | ↓ miR-22 | ↓ VDR and VD levels in MS patients vs. HC | [100] |
MS Type | Sample | Sperimental Models | LncRNAs | Role | Ref. |
---|---|---|---|---|---|
Unspecified | blood samples | 51 MS patients and 91 controls | 2383 differentially expressed lncRNAs | Antigen processing/presentation MAPK pathway | [124] |
Unspecified | GSE52139 | unspecified | ↑ TUG1 ↑ ASB16-AS1 ↑ LINC01094 | MAPK pathway Kaposi sarcoma-associated herpesvirus infection Human immunodeficiency virus one infection Lipids and atherosclerosis Amphetamine addiction | [126] |
Unspecified | blood samples | 12 males and 38 females with MS and 50 controls | ↑ NORAD ↑ RAD51-AS1 ↓ ZNRD1ASP | MAPK pathway | [127] |
Unspecified | GSE21942, GSE26484, GSE43591, GSE17846, GSE43590, and GSE74579 | unspecified | * XIST * OIP5-AS1 * CTB-89H12.4 | Spliceosome RNA transport mTOR signaling pathway | [128] |
RRMS | blood samples | 38 female MS, 12 male MS, 37 female control, and 13 male control | ↓ LINC00305 ↓ LNC-MKI67IP ↓ HNF1A-AS1 | NF-κB pathway | [130] |
- | primary astrocytes | EAE model (C57BL/6 mice) | ↑ AK018453 | TRAP1/Smad pathway TGF-β/Smad pathway NF-κB p65 CBP/P300 signaling | [131] |
- | primary astrocytes | EAE model (C57BL/6 mice) | ↑ Gm13568 | Notch1/STAT3 pathway | [132] |
- | spleens | EAE model (C57BL/6 mice) | ↑ Gm15575 ↑ NR_131249.1 ↓ 1110038B12Rik ↓ Gm5843 | Th17 cell differentiation | [136] |
Unspecified | PBMCs, GSE21942, and GSE61741 | 12 MS patients and 15 controls | ↑ LINC00649 TP73-AS1 MALAT1 | B cell receptor signaling pathway and Epstein–Barr virus infection | [137] |
MS Type | Sample | Sperimental Models | LncRNAs | Role | Ref. |
---|---|---|---|---|---|
Progressive MS | CP samples | 6 MS (2 females, 4 males) and 6 controls | ↑ HIF1A-AS3 ↑ SNHG15 | - | [138] |
RRMS | GSE43590 and GSE43591 | 21 MS patients and 19 controls | ↑ SNHG1 | - | [142] |
RRMS | blood | 12 male MS patients, 38 female MS patients, and 50 controls | ↑ RMRP ↑ FLICR | - | [143] |
RRMS | blood | 50 MS patients and 50 controls | ↑ PINK1-AS (only male) | - | [145] |
RRMS | blood | 50 MS female patients and 50 female controls | ↑ lnc-DC | - | [146] |
RRMS SPMS PPMS | serum | 118 MS patients and 20 controls | ↑ BACE1-AS ↑ BC200 | - | [147] |
Clinically isolated syndrome RRMS in relapse RRMS in remission SPMS | serum | 120 MS patients and 30 controls | ↓ RUNXOR | - | [148] |
RRMS | blood | 20 MS patients and 10 controls | ↓ NR_003531.3 | - | [149] |
RRMS | blood | 40 patients (31 female, 9 male) and 40 controls | ↓ SPRY4-IT1 (only female) ↓ HOXA-AS2 (only female) ↓ LINC-ROR (only female) ↓ MEG3 (female and male) | - | [150] |
RRMS | PBMCs | 50 MS patients and 25 controls | ↑ RP11-530C5.1 ↓ AL928742.12 | - | [151] |
MS | PBMCs | north Khorasan: 30 MS patients (30% male, 70% female) and 30 controls Sistani: 21 MS patients (30% male, 70% female) and 21 controls | ↑ THRIL (only north Khorasan) | - | [152] |
MS Type | Sample | Sperimental Models | circRNAs | Role | Ref. |
---|---|---|---|---|---|
RRMS | PBMCs | 10 MS patients and 10 controls | 166 (↓125) | - | [153] |
RRMS SPMS | leukocytes | 30 MS patients and 20 controls | ↑ 22835 | - | [154] |
RRMS | PBMCs | 67 MS patients and 37 controls | 914 ↑ hsa_circRNA_101348 ↑ hsa_circRNA_102611 ↑ hsa_circRNA_104361 | - | [155] |
RRMS | PBMCs | 65 MS patients and 37 controls | ↓ hsa_circRNA_101145 ↓ hsa_circRNA_001896 | - | [156] |
RRMS | CD4+ Tn cells | 18 MS patients murine model of EAE | ↑ circINPP4B | Th17 differentiation | [157] |
RRMS PPMS SPMS | cerebrospinal fluid peripheral blood HMC3 cells | 56 MS patients and 20 controls murine model of EAE | ↑ circ_0000518 | FUS/CaMKKβ/AMPK pathway | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipriano, G.L.; Schepici, G.; Mazzon, E.; Anchesi, I. Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways. Int. J. Mol. Sci. 2024, 25, 2255. https://doi.org/10.3390/ijms25042255
Cipriano GL, Schepici G, Mazzon E, Anchesi I. Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways. International Journal of Molecular Sciences. 2024; 25(4):2255. https://doi.org/10.3390/ijms25042255
Chicago/Turabian StyleCipriano, Giovanni Luca, Giovanni Schepici, Emanuela Mazzon, and Ivan Anchesi. 2024. "Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways" International Journal of Molecular Sciences 25, no. 4: 2255. https://doi.org/10.3390/ijms25042255
APA StyleCipriano, G. L., Schepici, G., Mazzon, E., & Anchesi, I. (2024). Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways. International Journal of Molecular Sciences, 25(4), 2255. https://doi.org/10.3390/ijms25042255