The Interaction of the Endocannabinoid Anandamide and Paracannabinoid Lysophosphatidylinositol during Cell Death Induction in Human Breast Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Cell Lines
2.2. Individual Effects of AEA and LPI on the Cell Lines
2.3. The Effect of LPI–AEA Combinations on the Viability of the Cell Lines
- No effect of LPI on AEA activity (BT-20);
- LPI decreases AEA’s anti-proliferative effect (BT-474);
- LPI increases AEA’s anti-proliferative and cytotoxic effects (MCF-10A, MCF-7, SK-BR-3, MDA-MB-231).
2.4. Receptor Participation in the Individual and Combined Substance Effects
3. Discussion
4. Materials and Methods
4.1. Reagents and Cell Lines
4.2. Chemical Synthesis
4.3. Cell Culture
4.4. Cytotoxicity and Proliferation Evaluation
4.5. Western Blotting
4.6. RNA Isolation and cDNA Synthesis
4.7. qPCR
4.8. BCA Protein Assay
4.9. Resazurin Test
4.10. LDH Test
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEA | anandamide |
LPI | lysophosphatidylinositol |
INT | iodonitrotetrazolium chloride |
LDH | lactate dehydrogenase |
ER | estrogen receptor |
PR | progesterone receptor |
BCIP | 5-bromo-4-chloro-3-indolyl phosphate |
NBT | nitro blue tetrazolium |
BCA | bicinchoninic acid |
References
- Rezende, B.; Alencar, A.K.N.; de Bem, G.F.; Fontes-Dantas, F.L.; Montes, G.C. Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals 2023, 16, 148. [Google Scholar] [CrossRef]
- Bradshaw, H.B.; Walker, J.M. The Expanding Field of Cannabimimetic and Related Lipid Mediators. Br. J. Pharmacol. 2005, 144, 459–465. [Google Scholar] [CrossRef]
- Passani, M.B.; Provensi, G.; Piomelli, D. Editorial: The Paracannabinoid System: Endocannabinoid-like Lipids and Their Functions. Front. Endocrinol. 2023, 14, 1263924. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; Toyang, N.; Steele, B.; Bryant, J.; Ngwa, W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int. J. Mol. Sci. 2021, 22, 9472. [Google Scholar] [CrossRef] [PubMed]
- Oka, S.; Nakajima, K.; Yamashita, A.; Kishimoto, S.; Sugiura, T. Identification of GPR55 as a Lysophosphatidylinositol Receptor. Biochem. Biophys. Res. Commun. 2007, 362, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Lauckner, J.E.; Jensen, J.B.; Chen, H.-Y.; Lu, H.-C.; Hille, B.; Mackie, K. GPR55 Is a Cannabinoid Receptor That Increases Intracellular Calcium and Inhibits M Current. Proc. Natl. Acad. Sci. USA 2008, 105, 2699–2704. [Google Scholar] [CrossRef] [PubMed]
- Reggio, P.H. Endocannabinoid Binding to the Cannabinoid Receptors: What Is Known and What Remains Unknown. Curr. Med. Chem. 2010, 17, 1468–1486. [Google Scholar] [CrossRef] [PubMed]
- Console-Bram, L.; Brailoiu, E.; Brailoiu, G.C.; Sharir, H.; Abood, M.E. Activation of GPR18 by Cannabinoid Compounds: A Tale of Biased Agonism. Br. J. Pharmacol. 2014, 171, 3908–3917. [Google Scholar] [CrossRef]
- Bradshaw, H.B.; Rimmerman, N.; Hu, S.S.-J.; Benton, V.M.; Stuart, J.M.; Masuda, K.; Cravatt, B.F.; O’Dell, D.K.; Walker, J.M. The Endocannabinoid Anandamide Is a Precursor for the Signaling Lipid N-Arachidonoyl Glycine by Two Distinct Pathways. BMC Biochem. 2009, 10, 14. [Google Scholar] [CrossRef]
- Guindon, J.; Hohmann, A.G. The Endocannabinoid System and Cancer: Therapeutic Implication. Br. J. Pharmacol. 2011, 163, 1447–1463. [Google Scholar] [CrossRef]
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A Pathology Atlas of the Human Cancer Transcriptome. Science 2017, 357, eaan2507. [Google Scholar] [CrossRef]
- Almeida, C.F.; Teixeira, N.; Correia-da-Silva, G.; Amaral, C. Cannabinoids in Breast Cancer: Differential Susceptibility According to Subtype. Molecules 2021, 27, 156. [Google Scholar] [CrossRef]
- Ford, L.A.; Roelofs, A.J.; Anavi-Goffer, S.; Mowat, L.; Simpson, D.G.; Irving, A.J.; Rogers, M.J.; Rajnicek, A.M.; Ross, R.A. A Role for L-Alpha-Lysophosphatidylinositol and GPR55 in the Modulation of Migration, Orientation and Polarization of Human Breast Cancer Cells. Br. J. Pharmacol. 2010, 160, 762–771. [Google Scholar] [CrossRef]
- Andradas, C.; Blasco-Benito, S.; Castillo-Lluva, S.; Dillenburg-Pilla, P.; Diez-Alarcia, R.; Juanes-García, A.; García-Taboada, E.; Hernando-Llorente, R.; Soriano, J.; Hamann, S.; et al. Activation of the Orphan Receptor GPR55 by Lysophosphatidylinositol Promotes Metastasis in Triple-Negative Breast Cancer. Oncotarget 2016, 7, 47565–47575. [Google Scholar] [CrossRef] [PubMed]
- Portella, G.; Laezza, C.; Laccetti, P.; De Petrocellis, L.; Di Marzo, V.; Bifulco, M. Inhibitory Effects of Cannabinoid CB1 Receptor Stimulation on Tumor Growth and Metastatic Spreading: Actions on Signals Involved in Angiogenesis and Metastasis. FASEB J. 2003, 17, 1771–1773. [Google Scholar] [CrossRef] [PubMed]
- Balenga, N.A.B.; Aflaki, E.; Kargl, J.; Platzer, W.; Schröder, R.; Blättermann, S.; Kostenis, E.; Brown, A.J.; Heinemann, A.; Waldhoer, M. GPR55 Regulates Cannabinoid 2 Receptor-Mediated Responses in Human Neutrophils. Cell Res. 2011, 21, 1452–1469. [Google Scholar] [CrossRef] [PubMed]
- Anavi-Goffer, S.; Irving, A.J.; Ross, R.A. Modulation of L-α-Lysophosphatidylinositol/GPR55 MAP Kinase Signalling by CB2 Receptor Agonists: Identifying Novel GPR55 Inhibitors. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kargl, J.; Balenga, N.; Parzmair, G.P.; Brown, A.J.; Heinemann, A.; Waldhoer, M. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55. J. Biol. Chem. 2012, 287, 44234–44248. [Google Scholar] [CrossRef] [PubMed]
- Akimov, M.G.; Gamisonia, A.M.; Dudina, P.V.; Gretskaya, N.M.; Gaydaryova, A.A.; Kuznetsov, A.S.; Zinchenko, G.N.; Bezuglov, V.V. GPR55 Receptor Activation by the N-Acyl Dopamine Family Lipids Induces Apoptosis in Cancer Cells via the Nitric Oxide Synthase (NNOS) over-Stimulation. Int. J. Mol. Sci. 2021, 22, 622. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J. Cancer 2017, 8, 3131–3141. [Google Scholar] [CrossRef] [PubMed]
- Subik, K.; Lee, J.-F.; Baxter, L.; Strzepek, T.; Costello, D.; Crowley, P.; Xing, L.; Hung, M.-C.; Bonfiglio, T.; Hicks, D.G.; et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer 2010, 4, 35–41. [Google Scholar] [CrossRef]
- Hillard, C.J.; Manna, S.; Greenberg, M.J.; DiCamelli, R.; Ross, R.A.; Stevenson, L.A.; Murphy, V.; Pertwee, R.G.; Campbell, W.B. Synthesis and Characterization of Potent and Selective Agonists of the Neuronal Cannabinoid Receptor (CB1). J. Pharmacol. Exp. Ther. 1999, 289, 1427–1433. [Google Scholar]
- Ma, L.; Jia, J.; Niu, W.; Jiang, T.; Zhai, Q.; Yang, L.; Bai, F.; Wang, Q.; Xiong, L. Mitochondrial CB1 Receptor Is Involved in ACEA-Induced Protective Effects on Neurons and Mitochondrial Functions. Sci. Rep. 2015, 5, 12440. [Google Scholar] [CrossRef]
- Price, T.J.; Patwardhan, A.; Akopian, A.N.; Hargreaves, K.M.; Flores, C.M. Modulation of Trigeminal Sensory Neuron Activity by the Dual Cannabinoid—Vanilloid Agonists Anandamide, N-arachidonoyl-dopamine and Arachidonyl-2-chloroethylamide. Br. J. Pharmacol. 2004, 141, 1118–1130. [Google Scholar] [CrossRef]
- Khunluck, T.; Lertsuwan, K.; Chutoe, C.; Sooksawanwit, S.; Inson, I.; Teerapornpuntakit, J.; Tohtong, R.; Charoenphandhu, N. Activation of Cannabinoid Receptors in Breast Cancer Cells Improves Osteoblast Viability in Cancer-Bone Interaction Model While Reducing Breast Cancer Cell Survival and Migration. Sci. Rep. 2022, 12, 7398. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cîmpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar] [PubMed]
- Van Slooten, H.J.; Bonsing, B.A.; Hiller, A.J.; Colbern, G.T.; van Dierendonck, J.H.; Cornelisse, C.J.; Smith, H.S. Outgrowth of BT-474 Human Breast Cancer Cells in Immune-Deficient Mice: A New in Vivo Model for Hormone-Dependent Breast Cancer. Br. J. Cancer 1995, 72, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, G.; Liu, J.; Huang, Z.; Wang, F.; Lei, X.; Wu, X.; Huang, S.; Zhong, D.; Xu, X. Anti-Proliferative Effects of Anan-damide in Human Hepatocellular Carcinoma Cells. Oncol. Lett. 2012, 4, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Bilmin, K.; Kopczyńska, B.; Grieb, P. Original Article Influence of Serum and Albumin on the in Vitro Anandamide Cytotoxicity toward C6 Glioma Cells Assessed by the MTT Cell Viability Assay: Implications for the Methodology of the MTT Tests. Folia Neuropathol. 2013, 1, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Movsesyan, V.A.; Stoica, B.A.; Yakovlev, A.G.; Knoblach, S.M.; Lea, P.M., 4th; Cernak, I.; Vink, R.; Faden, A.I. Anandamide-Induced Cell Death in Primary Neuronal Cultures: Role of Calpain and Caspase Pathways. Cell Death Differ. 2004, 11, 1121–1132. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Guo, X.; Song, Y.-P.; Zhu, C.-Y.; Zou, W. The LPI/GPR55 Axis Enhances Human Breast Cancer Cell Migration via HBXIP and p-MLC Signaling. Acta Pharmacol. Sin. 2018, 39, 459–471. [Google Scholar] [CrossRef]
- Hasenoehrl, C.; Feuersinger, D.; Kienzl, M.; Schicho, R. GPR55-Mediated Effects in Colon Cancer Cell Lines. Med. Cannabis Cannabinoids 2019, 2, 22–28. [Google Scholar] [CrossRef]
- Maccarrone, M.; Finazzi-Agró, A. The Endocannabinoid System, Anandamide and the Regulation of Mammalian Cell Apoptosis. Cell Death Differ. 2003, 10, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Fondevila, M.F.; Fernandez, U.; Gonzalez-Rellan, M.J.; Da Silva Lima, N.; Buque, X.; Gonzalez-Rodriguez, A.; Alonso, C.; Iruarrizaga-Lejarreta, M.; Delgado, T.C.; Varela-Rey, M.; et al. The L-α-Lysophosphatidylinositol/G Protein-Coupled Receptor 55 System Induces the Development of Nonalcoholic Steatosis and Steatohepatitis. Hepatology 2021, 73, 606–624. [Google Scholar] [CrossRef] [PubMed]
- Balenga, N.A.; Martínez-Pinilla, E.; Kargl, J.; Schröder, R.; Peinhaupt, M.; Platzer, W.; Bálint, Z.; Zamarbide, M.; Dopeso-Reyes, I.G.; Ricobaraza, A.; et al. Heteromerization of GPR55 and Cannabinoid CB2 Receptors Modulates Signalling. Br. J. Pharmacol. 2014, 171, 5387–5406. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Resina, I.; Navarro, G.; Aguinaga, D.; Canela, E.I.; Schoeder, C.T.; Załuski, M.; Kieć-Kononowicz, K.; Saura, C.A.; Müller, C.E.; Franco, R. Molecular and Functional Interaction between GPR18 and Cannabinoid CB2 G-Protein-Coupled Receptors. Relevance in Neurodegenerative Diseases. Biochem. Pharmacol. 2018, 157, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Callén, L.; Moreno, E.; Barroso-Chinea, P.; Moreno-Delgado, D.; Cortés, A.; Mallol, J.; Casadó, V.; Lanciego, J.L.; Franco, R.; Lluis, C.; et al. Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain. J. Biol. Chem. 2012, 287, 20851–20865. [Google Scholar] [CrossRef] [PubMed]
- Ramer, R.; Wittig, F.; Hinz, B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers 2021, 13, 5701. [Google Scholar] [CrossRef] [PubMed]
- Çetin, İ.; Topçul, M. Investigation of the Effects of the Endogenous Cannabinoid Anandamide on Luminal A Breast Cancer Cell Line MCF-7. Cell. Mol. Biol. 2022, 68, 129–133. [Google Scholar] [CrossRef]
- Laezza, C.; D’Alessandro, A.; Paladino, S.; Maria Malfitano, A.; Chiara Proto, M.; Gazzerro, P.; Pisanti, S.; Santoro, A.; Ciaglia, E.; Bifulco, M.; et al. Anandamide Inhibits the Wnt/β-Catenin Signalling Pathway in Human Breast Cancer MDA MB 231 Cells. Eur. J. Cancer 2012, 48, 3112–3122. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Melck, D.; Palmisano, A.; Bisogno, T.; Laezza, C.; Bifulco, M.; Di Marzo, V. The Endogenous Cannabinoid Anandamide Inhibits Human Breast Cancer Cell Proliferation. Proc. Natl. Acad. Sci. USA 1998, 95, 8375–8380. [Google Scholar] [CrossRef]
- Yang, S.; Hu, B.; Wang, Z.; Zhang, C.; Jiao, H.; Mao, Z.; Wei, L.; Jia, J.; Zhao, J. Cannabinoid CB1 Receptor Agonist ACEA Alleviates Brain Ischemia/Reperfusion Injury via CB1-Drp1 Pathway. Cell Death Discov. 2020, 6, 102. [Google Scholar] [CrossRef]
- McHugh, D.; Page, J.; Dunn, E.; Bradshaw, H.B. Δ(9)-Tetrahydrocannabinol and N-Arachidonyl Glycine Are Full Agonists at GPR18 Receptors and Induce Migration in Human Endometrial HEC-1B Cells. Br. J. Pharmacol. 2012, 165, 2414–2424. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Lago-Fernandez, A.; Hurst, D.P.; Sotudeh, N.; Brailoiu, E.; Reggio, P.H.; Abood, M.E.; Jagerovic, N. Therapeutic Exploitation of GPR18: Beyond the Cannabinoids? J. Med. Chem. 2020, 63, 14216–14227. [Google Scholar] [CrossRef] [PubMed]
- Resnick, R.J.; Tomáska, L. Stimulation of Yeast Adenylyl Cyclase Activity by Lysophospholipids and Fatty Acids. Implications for the Regulation of Ras/Effector Function by Lipids. J. Biol. Chem. 1995, 270, 3462. [Google Scholar] [CrossRef]
- Jha, S.; Jones, V.; Burridge, K.; Mukhopadhyay, S. CB2 Receptor-mediated Regulation of Prostate Cancer Cell Migration: Involvement of RhoA and Stress Fiber Formation. FASEB J. 2012, 26, 782.11. [Google Scholar] [CrossRef]
- Murataeva, N.; Daily, L.; Taylor, X.; Dhopeshwarkar, A.; Hu, S.S.-J.; Miller, S.; McHugh, D.; Oehler, O.; Li, S.; Bonanno, J.A.; et al. Evidence for a GPR18 Role in Chemotaxis, Proliferation, and the Course of Wound Closure in the Cornea. Cornea 2019, 38, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Kitaguchi, T.; Kamiya, T.; Aung, K.H.; Nakamura, K.; Ohta, K.; Tsuboi, T. Lysophosphatidylinositol-Induced Activation of the Cation Channel TRPV2 Triggers Glucagon-like Peptide-1 Secretion in Enteroendocrine L Cells. J. Biol. Chem. 2017, 292, 10855–10864. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Ohishi, T.; Matsui, T.; Saito, T.; Matsumoto, M.; Takasaki, J.; Matsumoto, S.-I.; Kamohara, M.; Hiyama, H.; Yoshida, S.; et al. Lysophosphatidylcholine Enhances Glucose-Dependent Insulin Secretion via an Orphan G-Protein-Coupled Receptor. Biochem. Biophys. Res. Commun. 2005, 326, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Boissonnas, R.A. Une Nouvelle Méthode de Synthèse Peptidique. Helv. Chim. Acta 1951, 34, 874–879. [Google Scholar] [CrossRef]
- Goh, J.J.H.; Goh, C.J.H.; Lim, Q.W.; Zhang, S.; Koh, C.-G.; Chiam, K.-H. Transcriptomics Indicate Nuclear Division and Cell Adhesion Not Recapitulated in MCF7 and MCF10A Compared to Luminal A Breast Tumours. Sci. Rep. 2022, 12, 20902. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Liang, Z.; Yang, Y.; Liu, H.; Ji, J.; Fan, Y. A Resazurin-Based, Nondestructive Assay for Monitoring Cell Proliferation during a Scaffold-Based 3D Culture Process. Regen. Biomater. 2020, 7, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Decker, T.; Lohmann-Matthes, M.L. A Quick and Simple Method for the Quantitation of Lactate Dehydrogenase Release in Measurements of Cellular Cytotoxicity and Tumor Necrosis Factor (TNF) Activity. J. Immunol. Methods 1988, 115, 61–69. [Google Scholar] [CrossRef]
Cell Line | ||||||
---|---|---|---|---|---|---|
MCF-10A | MCF-7 | BT-474 | SK-BR-3 | BT-20 | MDA-MB-231 | |
EC50, µM, mean (95% CI) | ||||||
AEA | 68.78 (63.18 to 74.87) | 49.65 (38.35 to 67.15) | 74.87 (71.99 to 77.87) | 42.99 (38.65 to 47.81) | 66.53 (61.91 to 71.49) | 71.91 (63.80 to 79.36) |
ACEA | 61.18 (58.76 to 63.69) | 50.43 (42.45 to 68.10) | 45.57 * (34.18 to 60.75) | 45.31 * (34.15 to 47.70) | 58.64 (55.31 to 60.96) | 68.99 (65.56 to 72.54) |
LPI | >10 | >10 | >10 | >10 | >10 | >10 |
Cell Line | ||||||
---|---|---|---|---|---|---|
MCF-10A | MCF-7 | BT-474 | SK-BR-3 | BT-20 | MDA-MB-231 | |
EC50, µM, mean (95% CI) | ||||||
AEA | 82.45 ** (70.97 to 95.77) | 55.19 (46.21 to 56.61) | 80.75 (76.30 to 85.45) | 53.81 ** (50.14 to 57.74) | 45.75 ** (35.75 to 55.04) | 37.38 ** (30.78 to 45.40) |
ACEA | 75.87 ** (70.99 to 82.97 | 43.81 (41.60 to 52.30) | 81.03 ** (75.77 to 86.61) | 38.54 * (36.80 to 40.36) | 38.90 *,** (36.72 to 41.22) | 35.01 ** (32.89 to 37.27) |
LPI | >10 | >10 | >10 | >10 | >10 | >10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akimov, M.G.; Gretskaya, N.M.; Gorbacheva, E.I.; Khadour, N.; Chernavskaya, V.S.; Sherstyanykh, G.D.; Kovaleko, T.F.; Fomina-Ageeva, E.V.; Bezuglov, V.V. The Interaction of the Endocannabinoid Anandamide and Paracannabinoid Lysophosphatidylinositol during Cell Death Induction in Human Breast Cancer Cells. Int. J. Mol. Sci. 2024, 25, 2271. https://doi.org/10.3390/ijms25042271
Akimov MG, Gretskaya NM, Gorbacheva EI, Khadour N, Chernavskaya VS, Sherstyanykh GD, Kovaleko TF, Fomina-Ageeva EV, Bezuglov VV. The Interaction of the Endocannabinoid Anandamide and Paracannabinoid Lysophosphatidylinositol during Cell Death Induction in Human Breast Cancer Cells. International Journal of Molecular Sciences. 2024; 25(4):2271. https://doi.org/10.3390/ijms25042271
Chicago/Turabian StyleAkimov, Mikhail G., Natalia M. Gretskaya, Evgenia I. Gorbacheva, Nisreen Khadour, Valeria S. Chernavskaya, Galina D. Sherstyanykh, Tatiana F. Kovaleko, Elena V. Fomina-Ageeva, and Vladimir V. Bezuglov. 2024. "The Interaction of the Endocannabinoid Anandamide and Paracannabinoid Lysophosphatidylinositol during Cell Death Induction in Human Breast Cancer Cells" International Journal of Molecular Sciences 25, no. 4: 2271. https://doi.org/10.3390/ijms25042271
APA StyleAkimov, M. G., Gretskaya, N. M., Gorbacheva, E. I., Khadour, N., Chernavskaya, V. S., Sherstyanykh, G. D., Kovaleko, T. F., Fomina-Ageeva, E. V., & Bezuglov, V. V. (2024). The Interaction of the Endocannabinoid Anandamide and Paracannabinoid Lysophosphatidylinositol during Cell Death Induction in Human Breast Cancer Cells. International Journal of Molecular Sciences, 25(4), 2271. https://doi.org/10.3390/ijms25042271