A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology
Abstract
:1. Introduction
2. Results
2.1. An LC-MS/MS Approach to Quantify NAD(H) in Biological Samples
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity
2.2.3. Intra-Day Accuracy
2.2.4. Inter-Day Precision
2.2.5. Injection Carryover
2.2.6. Sample Stability
2.3. Absolute Quantification of NAD(H) in Biological Samples
3. Discussion
3.1. An LC-MS/MS Approach to Quantify NAD(H) in Biological Samples
3.2. Method Validation
3.3. Absolute Quantification of NAD(H) in Biological Samples
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals
4.3. Human Cells
4.4. Sample Extraction
4.4.1. Mouse Brain Tissue
4.4.2. Mouse Plasma
4.4.3. Mouse Whole Blood
4.4.4. Human Cells
4.5. Instrumentation and Analytical Conditions
4.6. Preparation of Calibration Standards and QC Samples
4.7. Method Validation
4.7.1. Selectivity
4.7.2. Linearity
4.7.3. Intra-Day Accuracy
4.7.4. Inter-Day Precision
4.7.5. Injection Carryover
4.7.6. Stability of Samples before and after Protein Precipitation
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5, 253–295. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, N.; Martino, E.; Balestrieri, A.; Mele, L.; Neglia, G.; Balestrieri, M.L.; Campanile, G. SIRT3 and Metabolic Reprogramming Mediate the Antiproliferative Effects of Whey in Human Colon Cancer Cells. Cancers 2021, 13, 5196. [Google Scholar] [CrossRef]
- Lin, S.-J.; Guarente, L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol. 2003, 15, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; Latorre-Esteves, M.; Neves, A.R.; Lavu, S.; Medvedik, O.; Taylor, C.; Howitz, K.T.; Santos, H.; Sinclair, D.A. Yeast Life-Span Extension by Calorie Restriction Is Independent of NAD Fluctuation. Science 2003, 302, 2124–2126. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, A.R.; Larrick, J.W. The NAD+/PARP1/SIRT1 Axis in Aging. Rejuvenation Res. 2017, 20, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Guillemin, G.J.; Mansour, H.; Chan-Ling, T.; Poljak, A.; Grant, R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 2011, 6, e19194. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.A.; Madsen, A.S.; Olsen, C.A.; Hirschey, M.D. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim. Biophys. Acta-Bioenerg. 2017, 1858, 991–998. [Google Scholar] [CrossRef]
- Sun, C.K.; Wang, K.; Stock, A.J.; Gong, Y.; Demarest, T.G.; Yang, B.M.; Giri, N.; Harrington, L.; Alter, B.P.; Savage, S.A.; et al. Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. EMBO J. 2020, 39, e103420. [Google Scholar] [CrossRef]
- Amjad, S.; Nisar, S.; Bhat, A.A.; Shah, A.R.; Frenneaux, M.P.; Fakhro, K.; Haris, M.; Reddy, R.; Patay, Z.; Baur, J.; et al. Role of NAD(+) in regulating cellular and metabolic signaling pathways. Mol. Metab. 2021, 49, 101195. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.H.; Huber, P.E.; Zhou, X.B.; Li, C.L.; Shen, G.B.; Zou, B.W. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef]
- Braidy, N.; Poljak, A.; Grant, R.; Jayasena, T.; Mansour, H.; Chan-Ling, T.; Guillemin, G.J.; Smythe, G.; Sachdev, P. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: Potential targets for influencing brain senescence. Biogerontology 2014, 15, 177–198. [Google Scholar] [CrossRef]
- Massudi, H.; Grant, R.; Braidy, N.; Guest, J.; Farnsworth, B.; Guillemin, G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 2012, 7, e42357. [Google Scholar] [CrossRef] [PubMed]
- Graeff, R.; Lee, H.C. A novel cycling assay for nicotinic acid–adenine dinucleotide phosphate with nanomolar sensitivity. Biochem. J. 2002, 367, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Graeff, R.; Lee, H.C. A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem. J. 2002, 361, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, E.L.; Jacobson, M.K. Tissue NAD as a biochemical measure of niacin status in humans. Methods Enzymol. 1997, 280, 221–230. [Google Scholar] [PubMed]
- Fukuwatari, T.; Shibata, K.; Ishihara, K.; Fushiki, T.; Sugimoto, E. Elevation of blood NAD level after moderate exercise in young women and mice. J. Nutr. Sci. Vitaminol. 2001, 47, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, E.L.; Shieh, W.M.; Huang, A.C. Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis. Mol. Cell Biochem. 1999, 193, 69–74. [Google Scholar] [CrossRef]
- Schwartz, J.P.; Passonneau, J.V.; Johnson, G.S.; Pastan, I. The Effect of Growth Conditions on NAD+ and NADH Concentrations and the NAD+:NADH Ratio in Normal and Transformed Fibroblasts. J. Biol. Chem. 1974, 249, 4138–4143. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.S.; Kapoor, V. Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J. Neurochem. 1998, 70, 1759–1763. [Google Scholar] [CrossRef]
- Gibon, Y.; Larher, F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal. Biochem. 1997, 251, 153–157. [Google Scholar] [CrossRef]
- Bernofsky, C.; Swan, M. An improved cycling assay for nicotinamide adenine dinucleotide. Anal. Biochem. 1973, 53, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Creeke, P.I.; Dibari, F.; Cheung, E.; van den Briel, T.; Kyroussis, E.; Seal, A.J. Whole blood NAD and NADP concentrations are not depressed in subjects with clinical pellagra. J. Nutr. 2007, 137, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, S.; Jayasena, T.; Richani, D.; Gilchrist, R.B.; Wu, L.E.; Sinclair, D.A.; Sachdev, P.S.; Braidy, N. Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics 2017, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Grob, M.K.; O’Brien, K.; Chu, J.J.; Chen, D.D. Optimization of cellular nucleotide extraction and sample preparation for nucleotide pool analyses using capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 788, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Shabalin, K.; Nerinovski, K.; Yakimov, A.; Kulikova, V.; Svetlova, M.; Solovjeva, L.; Khodorkovskiy, M.; Gambaryan, S.; Cunningham, R.; Migaud, M.E.; et al. NAD Metabolome Analysis in Human Cells Using (1)H NMR Spectroscopy. Int. J. Mol. Sci. 2018, 19, 3906. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, V.; Cucchiarini, L.; Magnani, M.; Fornaini, G. Adenine and pyridine nucleotides in the erythrocyte of different mammalian species. Biochem. Int. 1987, 14, 1043–1053. [Google Scholar] [PubMed]
- Litt, M.R.; Potter, J.J.; Mezey, E.; Mitchell, M.C. Analysis of pyridine dinucleotides in cultured rat hepatocytes by high-performance liquid chromatography. Anal. Biochem. 1989, 179, 34–36. [Google Scholar] [CrossRef]
- Ryll, T.; Wagner, R. Improved ion-pair high-performance liquid chromatographic method for the quantification of a wide variety of nucleotides and sugar-nucleotides in animal cells. J. Chromatogr. 1991, 570, 77–88. [Google Scholar] [CrossRef]
- Long, A.; Park, J.H.; Klimova, N.; Fowler, C.; Loane, D.J.; Kristian, T. CD38 Knockout Mice Show Significant Protection against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation. Neurochem. Res. 2017, 42, 283–293. [Google Scholar] [CrossRef]
- Jones, D.P. Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J. Chromatogr. 1981, 225, 446–449. [Google Scholar] [CrossRef]
- Giannattasio, S.; Gagliardi, S.; Samaja, M.; Marra, E. Simultaneous determination of purine nucleotides, their metabolites and beta-nicotinamide adenine dinucleotide in cerebellar granule cells by ion-pair high performance liquid chromatography. Brain Res. Brain Res. Protoc. 2003, 10, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Pálfi, M.; Halász, A.S.; Tábi, T.; Magyar, K.; Szöko, E. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase. Anal. Biochem. 2004, 326, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Wang, T.C.; Heyes, M.P.; Markey, S.P. LC/MS analysis of NAD biosynthesis using stable isotope pyridine precursors. Anal. Biochem. 2002, 306, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, L.; Chen, L.; Hui, S.; Rabinowitz, J.D. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Antioxid. Redox Signal 2018, 28, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Cordell, R.L.; Hill, S.J.; Ortori, C.A.; Barrett, D.A. Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, J.; Schmitz, V.; Klawitter, J.; Leibfritz, D.; Christians, U. Development and validation of an assay for the quantification of 11 nucleotides using LC/LC-electrospray ionization-MS. Anal. Biochem. 2007, 365, 230–239. [Google Scholar] [CrossRef]
- Trammell, S.A.; Schmidt, M.S.; Weidemann, B.J.; Redpath, P.; Jaksch, F.; Dellinger, R.W.; Li, Z.; Abel, E.D.; Migaud, M.E.; Brenner, C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 2016, 7, 12948. [Google Scholar] [CrossRef]
- Trammell, S.A.; Brenner, C. Targeted, LCMS-based Metabolomics for Quantitative Measurement of NAD(+) Metabolites. Comput. Struct. Biotechnol. J. 2013, 4, e201301012. [Google Scholar] [CrossRef]
- Evans, C.; Bogan, K.L.; Song, P.; Burant, C.F.; Kennedy, R.T.; Brenner, C. NAD+ metabolite levels as a function of vitamins and calorie restriction: Evidence for different mechanisms of longevity. BMC Chem. Biol. 2010, 10, 2. [Google Scholar] [CrossRef]
- Yamada, K.; Hara, N.; Shibata, T.; Osago, H.; Tsuchiya, M. The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal. Biochem. 2006, 352, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Demarest, T.G.; Truong, G.T.D.; Lovett, J.; Mohanty, J.G.; Mattison, J.A.; Mattson, M.P.; Ferrucci, L.; Bohr, V.A.; Moaddel, R. Assessment of NAD+ metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. Anal. Biochem. 2019, 572, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cui, Z.; Deng, Y.; Dean, B.; Hop, C.E.; Liang, X. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1011, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Airhart, S.E.; Shireman, L.M.; Risler, L.J.; Anderson, G.D.; Nagana Gowda, G.A.; Raftery, D.; Tian, R.; Shen, D.D.; O’Brien, K.D. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS ONE 2017, 12, e0186459. [Google Scholar] [CrossRef]
- Clement, J.; Wong, M.; Poljak, A.; Sachdev, P.; Braidy, N. The Plasma NAD+ Metabolome Is Dysregulated in “Normal” Aging. Rejuvenation Res. 2019, 22, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yang, L.; Qin, A.R.; Ly, J.; Liederer, B.M.; Messick, K.; Ma, S.; Zak, M.; Dragovich, P.S.; Dean, B.J.; et al. Measuring NAD(+) levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis 2014, 6, 1445–1457. [Google Scholar] [CrossRef] [PubMed]
- Sporty, J.L.; Kabir, M.M.; Turteltaub, K.W.; Ognibene, T.; Lin, S.J.; Bench, G. Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae. J. Sep. Sci. 2008, 31, 3202–3211. [Google Scholar] [CrossRef]
- Yaku, K.; Okabe, K.; Nakagawa, T. Simultaneous measurement of NAD metabolome in aged mice tissue using liquid chromatography tandem-mass spectrometry. Biomed. Chromatogr. 2018, 32, e4205. [Google Scholar] [CrossRef]
- He, L.; Wei, X.; Ma, X.; Yin, X.; Song, M.; Donninger, H.; Yaddanapudi, K.; McClain, C.J.; Zhang, X. Simultaneous Quantification of Nucleosides and Nucleotides from Biological Samples. J. Am. Soc. Mass Spectrom. 2019, 30, 987–1000. [Google Scholar] [CrossRef]
- Hiefner, J.; Rische, J.; Bunders, M.J.; Worthmann, A. A liquid chromatography-tandem mass spectrometry based method for the quantification of adenosine nucleotides and NAD precursors and products in various biological samples. Front. Immunol. 2023, 14, 1250762. [Google Scholar] [CrossRef]
- US Food and Drug Administration Centre for Drug Evaluation and Research (FDA). Guidance for Industry-Bioanalytical Method Validation; Center for Drug Evaluation and Research, US Department for Health and Human Services: Silver Spring, MD, USA, 2018. [Google Scholar]
- van de Merbel, N.C. Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. TrAC-Trends Anal. Chem. 2008, 27, 924–933. [Google Scholar] [CrossRef]
- Azouaoui, D.; Choiniere, M.R.; Khan, M.; Sayfi, S.; Jaffer, S.; Yousef, S.; Patten, D.A.; Green, A.E.; Menzies, K.J. Meta-analysis of NAD(P)(H) quantification results exhibits variability across mammalian tissues. Sci. Rep. 2023, 13, 2464. [Google Scholar] [CrossRef] [PubMed]
- Faijes, M.; Mars, A.E.; Smid, E.J. Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb. Cell Fact. 2007, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.H.; Lund, P.; Krebs, H.A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 1967, 103, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Chamchoy, K.; Pakotiprapha, D.; Pumirat, P.; Leartsakulpanich, U.; Boonyuen, U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem. 2019, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Schwarzmann, L.; Pliquett, R.U.; Simm, A.; Bartling, B. Sex-related differences in human plasma NAD+/NADH levels depend on age. Biosci. Rep. 2021, 41, BSR20200340. [Google Scholar] [CrossRef] [PubMed]
- Majamaa, K.; Rusanen, H.; Remes, A.; Hassinen, I.E. Metabolic interventions against complex I deficiency in MELAS syndrome. Mol. Cell Biochem. 1997, 174, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Reinstadler, B.; Engelstad, K.; Skinner, O.S.; Stackowitz, E.; Haller, R.G.; Clish, C.B.; Pierce, K.; Walker, M.A.; Fryer, R.; et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J. Clin. Investig. 2021, 131, e136055. [Google Scholar] [CrossRef]
- Harlan, B.A.; Killoy, K.M.; Pehar, M.; Liu, L.; Auwerx, J.; Vargas, M.R. Evaluation of the NAD(+) biosynthetic pathway in ALS patients and effect of modulating NAD(+) levels in hSOD1-linked ALS mouse models. Exp. Neurol. 2020, 327, 113219. [Google Scholar] [CrossRef]
- Piacente, F.; Caffa, I.; Ravera, S.; Sociali, G.; Passalacqua, M.; Vellone, V.G.; Becherini, P.; Reverberi, D.; Monacelli, F.; Ballestrero, A.; et al. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Res. 2017, 77, 3857–3869. [Google Scholar] [CrossRef]
- Weidele, K.; Beneke, S.; Bürkle, A. The NAD(+) precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation. DNA Repair 2017, 52, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Moon, P.K.; Minhas, P.S. Reevaluating the role of IDO1: Examining NAD+ metabolism in inflammation. J. Neuroimmunol. 2017, 307, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Guarente, L. Linking DNA damage, NAD(+)/SIRT1, and aging. Cell Metab. 2014, 20, 706–707. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, C.; Osaka, H.; Watanabe, M.; Miyauchi, A.; Jimbo, E.F.; Tokuyama, T.; Uosaki, H.; Kishita, Y.; Okazaki, Y.; Onuki, T.; et al. Total and reduced/oxidized forms of coenzyme Q(10) in fibroblasts of patients with mitochondrial disease. Mol. Genet. Metab. Rep. 2023, 34, 100951. [Google Scholar] [CrossRef]
Relative Area Ratio | |||||
---|---|---|---|---|---|
Analyte | Spiked Conc. (μM) | 0 h | 24 h | 48 h | CV (%) |
NAD+ | 0 | 1.00 | 1.01 | 1.01 | 0.51 |
0.05 | 1.00 | 1.00 | 1.01 | 0.26 | |
0.1 | 1.00 | 1.01 | 1.01 | 0.59 | |
0.5 | 1.00 | 1.02 | 0.99 | 1.13 | |
1 | 1.00 | 0.99 | 0.99 | 0.55 | |
10 | 1.00 | 0.99 | 0.98 | 0.90 | |
NADH | 0 | 1.00 | 0.89 | 1.05 | 6.69 |
0.05 | 1.00 | 1.03 | 1.22 | 8.88 | |
0.1 | 1.00 | 1.09 | 1.19 | 7.00 | |
0.5 | 1.00 | 1.28 | 1.15 | 9.89 | |
1 | 1.00 | 1.23 | 1.63 | 20.11 | |
10 | 1.00 | 0.76 | 0.72 | 14.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishima, T.; Kimura, N.; Kobayashi, M.; Nagai, R.; Osaka, H.; Aizawa, K. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology. Int. J. Mol. Sci. 2024, 25, 2325. https://doi.org/10.3390/ijms25042325
Ishima T, Kimura N, Kobayashi M, Nagai R, Osaka H, Aizawa K. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology. International Journal of Molecular Sciences. 2024; 25(4):2325. https://doi.org/10.3390/ijms25042325
Chicago/Turabian StyleIshima, Tamaki, Natsuka Kimura, Mizuki Kobayashi, Ryozo Nagai, Hitoshi Osaka, and Kenichi Aizawa. 2024. "A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology" International Journal of Molecular Sciences 25, no. 4: 2325. https://doi.org/10.3390/ijms25042325
APA StyleIshima, T., Kimura, N., Kobayashi, M., Nagai, R., Osaka, H., & Aizawa, K. (2024). A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology. International Journal of Molecular Sciences, 25(4), 2325. https://doi.org/10.3390/ijms25042325