Screening for Rare Mitochondrial Genome Variants Reveals a Potentially Novel Association between MT-CO1 and MT-TL2 Genes and Diabetes Phenotype
Abstract
:1. Introduction
2. Results and Discussion
2.1. tRNA Mutations
2.1.1. m.3243A>G Variant
2.1.2. Other tRNA Variants
2.2. rRNA Mutations
2.3. Variants in Coding Regions
2.4. NUMTs Interpretation Problems
3. Materials and Methods
3.1. Subjects
3.2. Library Preparation and Sequencing Reaction
3.3. Bioinformatic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tosur, M.; Philipson, L.H. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J. Diabetes Investig. 2022, 13, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Laloi-Michelin, M.; Meas, T.; Ambonville, C.; Bellanné-Chantelot, C.; Beaufils, S.; Massin, P.; Vialettes, B.; Gin, H.; Timsit, J.; Bauduceau, B.; et al. The Clinical Variability of Maternally Inherited Diabetes and Deafness Is Associated with the Degree of Heteroplasmy in Blood Leukocytes. J. Clin. Endocrinol. Metab. 2009, 94, 3025–3030. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wu, L.; Liu, J.; Lin, W.; Qi, Q.; Zhao, T. Maternally Inherited Diabetes Mellitus Associated with a Novel m.15897G>A Mutation in Mitochondrial tRNAThr Gene. J. Diabetes Res. 2020, 2020, 2057187. [Google Scholar] [CrossRef] [PubMed]
- Tabebi, M.; Charfi, N.; Kallabi, F.; Alila-Fersi, O.; Ben Mahmoud, A.; Tlili, A.; Keskes-Ammar, L.; Kamoun, H.; Abid, M.; Mnif, M.; et al. Whole mitochondrial genome screening of a family with maternally inherited diabetes and deafness (MIDD) associated with retinopathy: A putative haplotype associated to MIDD and a novel MT-CO2 m.8241T>G mutation. J. Diabetes Its Complicat. 2017, 31, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Bolze, A.; Mendez, F.; White, S.; Tanudjaja, F.; Isaksson, M.; Jiang, R.; Rossi, A.D.; Cirulli, E.T.; Rashkin, M.; Metcalf, W.J.; et al. A catalog of homoplasmic and heteroplasmic mitochondrial DNA variants in humans. BioRxiv 2020. bioRxiv 2020:798264. [Google Scholar] [CrossRef]
- Pickett, S.J.; Grady, J.P.; Ng, Y.S.; Gorman, G.S.; Schaefer, A.M.; Wilson, I.J.; Cordell, H.J.; Turnbull, D.M.; Taylor, R.W.; McFarland, R. Phenotypic heterogeneity in m.3243A>G mitochondrial disease: The role of nuclear factors. Ann. Clin. Transl. Neurol. 2018, 5, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Nowak, A. Analysis of Human Mitochondrial DNA in Multifactorial and Mitochondrial Diseases by High-Throughput Sequencing Methods; Warsaw University: Warsaw, Poland, 2019. [Google Scholar]
- Jühling, F.; Mörl, M.; Hartmann, R.K.; Sprinzl, M.; Stadler, P.F.; Pütz, J. tRNAdb 2009: Compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 2009, 37, D159–D162. [Google Scholar] [CrossRef] [PubMed]
- Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical Guide to Life Science Databases; Abugessaisa, I., Kasukawa, T., Eds.; Springer: Singapore, 2021; pp. 27–56. [Google Scholar]
- Laricchia, K.M.; Lake, N.J.; Watts, N.A.; Shand, M.; Haessly, A.; Gauthier, L.; Benjamin, D.; Banks, E.; Soto, J.; Garimella, K.; et al. Mitochondrial DNA variation across 56,434 individuals in gnomAD. Genome Res. 2022, 32, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.; Pickett, S.J.; Fleischmann, Z.; Khrapko, M.; Cote-L’Heureux, A.; Aidlen, D.; Stein, D.; Markuzon, N.; Popadin, K.; Braverman, M.; et al. Dynamics of the most common pathogenic mtDNA variant m.3243A > G demonstrate frequency-dependency in blood and positive selection in the germline. Hum. Mol. Genet. 2022, 31, 4075–4086. [Google Scholar] [CrossRef] [PubMed]
- Chiaratti, M.R.; Chinnery, P.F. Modulating mitochondrial DNA mutations: Factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol. Res. 2022, 185, 106466. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Schon, K.R.; Elgar, G.; Orioli, A.; Tanguy, M.; Giess, A.; Tischkowitz, M.; Caulfield, M.J.; Chinnery, P.F. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature 2022, 611, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Pagnamenta, A.T.; Gleadall, N.; Sanchis-Juan, A.; Stephens, J.; Broxholme, J.; Tuna, S.; Odhams, C.A.; Genomics England Research Consortium; NIHR BioResource; et al. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat. Commun. 2020, 11, 1740. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Broad Institute. Picard Tools. Secondary Picard Tools. Available online: https://broadinstitute.github.io/picard/ (accessed on 13 February 2023).
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef] [PubMed]
- Weissensteiner, H.; Forer, L.; Fuchsberger, C.; Schöpf, B.; Kloss-Brandstätter, A.; Specht, G.; Kronenberg, F.; Schönherr, S. mtDNA-Server: Next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res. 2016, 44, W64–W69. [Google Scholar] [CrossRef] [PubMed]
- Lott, M.T.; Leipzig, J.N.; Derbeneva, O.; Xie, H.M.; Chalkia, D.; Sarmady, M.; Procaccio, V.; Wallace, D.C. mtDNA Variation and Analysis Using Mitomap and Mitomaster. Curr. Protoc. Bioinform. 2013, 44, 1.23.1-1.23.26. [Google Scholar] [CrossRef] [PubMed]
- Castellana, S.; Biagini, T.; Petrizzelli, F.; Parca, L.; Panzironi, N.; Caputo, V.; Vescovi, A.L.; Carella, M.; Mazza, T. MitImpact 3: Modeling the residue interaction network of the Respiratory Chain subunits. Nucleic Acids Res. 2021, 49, D1282–D1288. [Google Scholar] [CrossRef] [PubMed]
- Sonney, S.; Leipzig, J.; Lott, M.T.; Zhang, S.; Procaccio, V.; Wallace, D.C.; Sondheimer, N. Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP. PLOS Comput. Biol. 2017, 13, e1005867. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Simone, D.; Diroma, M.A.; Santorsola, M.; Guttà, C.; Gasparre, G.; Picardi, E.; Pesole, G.; Attimonelli, M. MToolBox: A highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 2014, 30, 3115–3117. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.-Y.; Singh, K.; Kotiadis, V.N.; Valdebenito, G.E.; Ahn, J.H.; Topley, E.; Tan, J.; Andrews, W.D.; Bilanges, B.; Pitceathly, R.D.S.; et al. Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A>G mtDNA mutation. Nat. Commun. 2021, 12, 6409. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Gene | Position/ AA Change | Variant Level | Discovery Cohort (%) | Helix Database * (%) | Odds Ratio (95% CI) | p-Value | ACMG Classification |
---|---|---|---|---|---|---|---|---|
19-1225 | MT-RNR1 | 811G>A | 1 | 1 (0.5) | 10 (0.0051) | 100.3 (12.8–787.1) | <0.0001 | VUS |
19-1643 | MT-RNR1 | 1170G>A | 0.0545 | 1 (0.5) | 1 (0.00051) | 1002.8 (62.5–16,090.3) | <0.0001 | VUS |
20-737 | MT-RNR2 | 2030T>C | 0.0863 | 1 (0.5) | 2 (0.00102) | 501.4 (45.3–5552.6) | <0.0001 | VUS |
20-801 | MT-RNR2 | 2960T>C | 0.0156 | 1 (0.5) | 3 (0.00153) | 334.3 (34.6–3227.6) | <0.0001 | VUS |
19-1777 | MT-TR | 10426C>T | 0.0181 | 1 (0.5) | 0 (0) | - | VUS | |
19-2120 | MT-TL2 | 12278T>C | 0.0173 | 1 (0.5) | 10 (0.0051) | 100.3 (12.8–787.1) | <0.0001 | Likely Pathogenic |
19-2197, 19-2168, 19-1884, 19-1178,19-1620, 19-1773, 20-1492 | MT-TL1 | 3243A>G | 0.19;0.444;0.234; 0.0901; 0.2574; 0.2585; 0.3884 | 7 (3.5) | 51 (0.02602) | 137.6 (64.7–307.0) | <0.0001 | Pathogenic |
19-1971 | MT-CO1 | 5970G>A; G23S | 0.0216 | 1 (0.5) | 3 (0.00153) | 334.3 (34.6–3227.6) | <0.0001 | VUS |
19-1541 | MT-CO1 | 6036G>A; G45S | 0.0254 | 1 (0.5) | 1 (0.00051) | 1002.8 (62.5–16,090.3) | <0.0001 | VUS |
19-1417 | MT-CO1 | 6054G>A; D51N | 0.1559 | 1 (0.5) | 9 (0.00453) | 111.4 (14.0–883.7) | <0.0001 | VUS |
20-358 | MT-ND4 | 11711G>A; A318T | 0.0147 | 1 (0.5) | 1 (0.00051) | 1002.8 (62.5–16,090.3) | <0.0001 | VUS |
20-963 | MT-CYB | 15045G>A; R100Q | 0.013 | 1 (0.5) | 1 (0.00051) | 1002.8 (62.5–16,090.3) | <0.0001 | VUS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płoszaj, T.; Skoczylas, S.; Gadzalska, K.; Jakiel, P.; Juścińska, E.; Gorządek, M.; Robaszkiewicz, A.; Borowiec, M.; Zmysłowska, A. Screening for Rare Mitochondrial Genome Variants Reveals a Potentially Novel Association between MT-CO1 and MT-TL2 Genes and Diabetes Phenotype. Int. J. Mol. Sci. 2024, 25, 2438. https://doi.org/10.3390/ijms25042438
Płoszaj T, Skoczylas S, Gadzalska K, Jakiel P, Juścińska E, Gorządek M, Robaszkiewicz A, Borowiec M, Zmysłowska A. Screening for Rare Mitochondrial Genome Variants Reveals a Potentially Novel Association between MT-CO1 and MT-TL2 Genes and Diabetes Phenotype. International Journal of Molecular Sciences. 2024; 25(4):2438. https://doi.org/10.3390/ijms25042438
Chicago/Turabian StylePłoszaj, Tomasz, Sebastian Skoczylas, Karolina Gadzalska, Paulina Jakiel, Ewa Juścińska, Monika Gorządek, Agnieszka Robaszkiewicz, Maciej Borowiec, and Agnieszka Zmysłowska. 2024. "Screening for Rare Mitochondrial Genome Variants Reveals a Potentially Novel Association between MT-CO1 and MT-TL2 Genes and Diabetes Phenotype" International Journal of Molecular Sciences 25, no. 4: 2438. https://doi.org/10.3390/ijms25042438
APA StylePłoszaj, T., Skoczylas, S., Gadzalska, K., Jakiel, P., Juścińska, E., Gorządek, M., Robaszkiewicz, A., Borowiec, M., & Zmysłowska, A. (2024). Screening for Rare Mitochondrial Genome Variants Reveals a Potentially Novel Association between MT-CO1 and MT-TL2 Genes and Diabetes Phenotype. International Journal of Molecular Sciences, 25(4), 2438. https://doi.org/10.3390/ijms25042438