K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. XRD Analyses
2.1.2. FTIR Analysis
2.1.3. Scanning Electron Microscopy (SEM)-Electron Dispersion Spectroscopy (EDS)
2.1.4. Porosimetry Analysis: BET Specific Surface Area
2.1.5. Catalyst Basicity
2.2. Analyze Reactions Qualitatively and Quantitatively
2.3. Catalytic Activity Tests
2.3.1. Effect of K2CO3 Loading
2.3.2. Effects of Calcination Temperature
2.3.3. Effect of Catalyst Concentration
2.3.4. Effect of the Propylene Carbonate/Glycerol Molar Ratio
2.3.5. Effect of Reaction Temperature
2.3.6. Catalyst Reuse
2.4. Kinetic Modeling
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Purification of Clay
3.2.2. Catalyst Preparation
3.2.3. Catalyst Characterization
3.3. The Transesterification of Glycerol-to-Glycerol Carbonate
3.4. Catalyst Reusability
3.5. Glycerol Carbonate Analysis
3.5.1. Qualitative Analysis
3.5.2. Quantitative Analysis
3.5.3. Statistical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The circular economy: New or refurbished as CE 3.0?—Exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Silva Filho, S.C.d.; Miranda, A.C.; Silva, T.A.F.; Calarge, F.A.; Souza, R.R.d.; Santana, J.C.C.; Tambourgi, E.B. Considérations environnementales et technico-économiques sur la production de biodiesel à partir d’huiles de friture usées dans la ville de São Paulo. J. Clean. Prod. 2018, 183, 1034–1042. [Google Scholar] [CrossRef]
- Hajjari, M.; Tabatabaei, M.; Aghbashlo, M.; Ghanavati, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renew. Sustain. Energy Rev. 2017, 72, 445–464. [Google Scholar] [CrossRef]
- Das, B.; Mohanty, K. Exploring the promotional effects of K. Sr. and Mg on the catalytic stability of red mud for the synthesis of glycerol carbonate from renewable glycerol. Ind. Eng. Chem. Res. 2018, 58, 15803–15817. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Kugelmeier, C.L.; Pinheiro, R.S.; Batalha, M.O.; da Silva Cesar, A. Glycerol from biodiesel production: Technological paths for sustainability. Renew. Sustain. Energy Rev. 2018, 88, 109–122. [Google Scholar] [CrossRef]
- Kumar, P.; With, P.; Srivastava, V.C.; Glaser, R.; Mishra, I.M. Glycerol carbonate synthesis by hierarchically structured catalysts: Catalytic activity and characterization. Ind. Eng. Chem. Res. 2015, 54, 12543–12552. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; De Frutos, P.; Iborra, S.; Noy, M.; Velty, A.; Concepcion, P. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs. J. Catal. 2010, 269, 140–149. [Google Scholar] [CrossRef]
- Okoye, P.U.; Abdullah, A.Z.; Hameed, B.H. Stabilized ladle furnace steel slag for glycerol carbonate synthesis via glycerol transesterification reaction with dimethyl carbonate. Energy Convers. Manag. 2017, 133, 477–485. [Google Scholar] [CrossRef]
- Esteban, J.; Ladero, M.; Fuente, E.; Blanco, A.; Garcia-Ochoa, F. Experimental and modelling approach to the catalytic coproduction of glycerol carbonate and ethylene glycol as a means to valorise glycerol. J. Taiwan Inst. Chem. Eng. 2016, 63, 89–100. [Google Scholar] [CrossRef]
- Esteban, J.; Vorholt, A.J. Obtaining glycerol carbonate and glycols using thermomorphic systems based on glycerol and cyclic organic carbonates: Kinetic studies. J. Ind. Eng. Chem. 2018, 63, 124–132. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y.; Cai, F.; Pan, D.; Xiao, G. High-efficiency and low-cost Li/ZnO catalysts for synthesis of glycerol carbonate from glycerol transesterification: The role of Li and ZnO interaction. Appl. Catal. Gen. 2017, 532, 77–85. [Google Scholar] [CrossRef]
- Simanjuntak, F.S.H.; Widyaya, V.T.; Kim, C.S.; Ahn, B.S.; Kim, Y.J.; Lee, H. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate using magnesium-lanthanum mixed oxide catalyst. Chem. Eng. Sci. 2013, 94, 265–270. [Google Scholar] [CrossRef]
- Hu, K.; Wang, H.; Liu, Y.; Yang, C. KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. J. Ind. Eng. Chem. 2015, 28, 334–343. [Google Scholar] [CrossRef]
- Singh, D.; Reddy, B.; Ganesh, A.; Mahajani, S. Zinc/lanthanum mixed-oxide catalyst for the synthesis of glycerol carbonate by transesterification of glycerol. Ind. Eng. Chem. Res. 2014, 53, 18786–18795. [Google Scholar] [CrossRef]
- Narkhede, N.; Patel, A. Biodiesel production by esterification of oleic acid and transesterification of soybean oil using a new solid acid catalyst comprising 12-tungstosilicic acid and zeolite Hb. Ind. Eng. Chem. Res. 2013, 52, 13637–13644. [Google Scholar] [CrossRef]
- Ilgen, O. Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol. 2011, 92, 452–455. [Google Scholar] [CrossRef]
- do Nascimento, L.A.S.; Tito, L.M.Z.; Angélica, R.S.; da Costa, C.E.F.; Zamian, J.R.; da Rocha Filho, G.N. Esterification of oleic acid over solid acid catalysts prepared from Amazon flint kaolin. Appl. Catal. B 2011, 101, 495–503. [Google Scholar] [CrossRef]
- Gomes, C.F. Argilas: O que são e para que Servem. Fundação Calouste Gulbenkian. Lisboa. 1986. Available online: https://www.ecycle.com.br/argila/ (accessed on 26 September 2023).
- Bahri-Laleh, N.; Sadjadi, S.; Poate, A. Pd immobilized on dendrimer decorated halloysite clay: Computational and experimental study on the effect of dendrimer generation. Pd valance and incorporation of terminal functionality on the catalytic activity. J. Colloid Interface Sci. 2018, 531, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, S.; Akbari, M.; Heravi, M.M. Palladated nanocomposite of halloysite–Nitrogen doped porous carbon prepared from a novel cyano/nitrile-free task specific ionic liquid: As an efficient catalyst for hydrogenation. ACS Omega 2019, 4, 19442–19451. [Google Scholar] [CrossRef]
- Sadjadi, S.; Akbari, M.; Léger, B.; Monflier, E.; Heravi, M.M. Eggplant-derived biochar-halloysite nanocomposite as supports of Pd nanoparticles for the catalytic hydrogenation of nitroarenes in the presence of cyclodextrin. ACS Sustain. Chem. Eng. 2019, 7, 6720–6731. [Google Scholar] [CrossRef]
- Sadjadi, S.; Atai, M. Ternary hybrid system of halloysite nanotubes, polyacrylamides and cyclodextrin: An efficient support for immobilization of Pd nanoparticles for catalyzing coupling reaction. Appl. Clay Sci. 2018, 153, 78–89. [Google Scholar] [CrossRef]
- Sadjadi, S.; Atai, M. Palladated halloysite hybridized with photo-polymerized hydrogel in the presence of cyclodextrin: An efficient catalytic system benefiting from nanoreactor concept. Appl. Organomet. Chem. 2019, 33, e4776. [Google Scholar] [CrossRef]
- Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-In, S.A. comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew. Energy 2009, 34, 1145–1150. [Google Scholar] [CrossRef]
- Amri, S.; Gómez, J.; Balea, A.; Merayo, N.; Srasra, E.; Besbes, N.; Ladero, M. Solventless production of glycerol ketals with a clay-based heterogeneous acid catalyst. Appl. Sci. 2019, 9, 4488. [Google Scholar] [CrossRef]
- Castillo, L.; López, O.; López, C.; Zaritzky, N.; García, M.A.; Barbosa, S.; Villar, M. Thermoplastic starch films reinforced with talc nanoparticles. Carbohydr. Polym. 2013, 95, 664–674. [Google Scholar] [CrossRef]
- Zheng, L.; Xia, S.; Lu, X.; Hou, Z. Transesterification of glycerol with dimethyl carbonate over calcined Ca-Al hydrocalumite. Chin. J. Catal. 2015, 36, 1759–1765. [Google Scholar]
- Malyaadri, M.; Jagadeeswaraiah, K.; Sai Prasad, P.S.; Lingaiah, N. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl. Catal. A Gen. 2011, 401, 153–157. [Google Scholar] [CrossRef]
- Fiorani, G.; Perosa, A.; Selva, M. Sustainable valorisation of renewables through dialkyl carbonates and isopropenyl esters. GreenChem. 2023, 25, 4878–4911. [Google Scholar] [CrossRef]
- Esteban, J.; Fuente, E.; Blanco, A.; Ladero, M.; Garcia-Ochoa, F. Phenomenological kinetic model of the synthesis of glycerol carbonate assisted by focused beam reflectance measurements. Chem. Eng. J. 2015, 260, 434–443. [Google Scholar] [CrossRef]
- Mnasri, S.; Besbes, N.; Frini-Srasra, N.; Srasra, E. Study of the catalytic activity of aluminum. Zirconium and cerium bridged clays in the synthesis of 2,2-dimethyl-1,3-dioxolane. Comptes Rendus Chim. 2012, 15, 437–443. [Google Scholar] [CrossRef]
- Hagui, W.; Essid, R.; Amri, S.; Feris, N.; Khabbouchi, M.; Tabbene, O.; Limam, F.; Srasra, E.; Besbes, N. Acid activated clay as heterogeneous and reusable catalyst for the synthesis 2 of bioactive cyclic ketal derivatives. Turk. J. Chem. 2019, 43, 435–451. [Google Scholar]
- Snoussi, Y.; Escanciano, I.A.; Serafini, M.A.; Besbes, N.; Bolivar, J.M.; Ladero, M. Production of glycerol carbonate from ethylene carbonate and glycerol with a Tunisian smectite clay: Activity, stability and kinetic Studies. Appl. Sci. 2023, 13, 7182. [Google Scholar] [CrossRef]
- Soetaredjo, F.E.; Ayucitra, A.; Ismadji, S.; Maukar, A.L. KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Appl. Clay Sci. 2011, 53, 341–346. [Google Scholar] [CrossRef]
- Boz, N.; Degirmenbasi, N.; Kalyon, D.M. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Appl. Catal. B Environ. 2013, 138, 236–242. [Google Scholar] [CrossRef]
- Liu, H.; Su, L.; Shao, Y.; Zou, L. Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst. Fuel 2012, 97, 651–657. [Google Scholar] [CrossRef]
Pos. [°2Th.] RC | Spacing d [Å] | Pos. [°2Th.] 10% | Spacing d [Å] | Pos. [°2Th.] 20% | Spacing d [Å] | Pos. [°2Th.] 30% | Spacing d [Å] | Pos. [°2Th.] 40% | Spacing d [Å] |
---|---|---|---|---|---|---|---|---|---|
8.78 | 10.06 | 8.82 | 10.01 | 5.1 | 17.13 | 8.77 | 10.07 | 7.70 | 11.47 |
13.89 | 6.37 | 13.70 | 6.46 | 8.81 | 10.03 | 17.63 | 5.02 | 8.57 | 10.31 |
15.81 | 5.60 | 14.88 | 5.95 | 17.79 | 4.98 | 19.82 | 4.47 | 17.50 | 5.06 |
17.66 | 5.02 | 17.77 | 4.99 | 19.85 | 4.47 | 20.85 | 4.25 | 19.85 | 4.47 |
19.82 | 4.47 | 19.81 | 4.48 | 20.85 | 4.25 | 25.33 | 3.51 | 20.85 | 4.26 |
20.87 | 4.25 | 20.86 | 4.25 | 25.36 | 3.51 | 26.64 | 3.34 | 21.41 | 4.15 |
23.50 | 3.78 | 23.54 | 3.77 | 26.64 | 3.34 | 31.98 | 2.79 | 22.06 | 4.02 |
25.36 | 3.51 | 25.33 | 3.51 | 27.47 | 3.24 | 33.15 | 2.70 | 23.62 | 3.76 |
26.66 | 3.34 | 26.64 | 3.34 | 31.97 | 2.79 | 34.84 | 2.57 | 25.30 | 3.51 |
27.52 | 3.24 | 27.56 | 3.23 | 33.10 | 2.70 | 36.53 | 2.45 | 26.63 | 3.34 |
30.83 | 2.89 | 31.95 | 2.80 | 34.84 | 2.57 | 39.4 | 2.28 | 32.05 | 2.79 |
33.17 | 2.70 | 33.15 | 2.70 | 36.53 | 2.45 | 33.10 | 2.70 | ||
34.81 | 2.57 | 34.76 | 2.58 | 39.44 | 2.28 | 34.65 | 2.58 | ||
36.57 | 2.45 | 36.54 | 2.45 | 35.31 | 2.54 | ||||
37.88 | 2.37 | 39.46 | 2.28 | 36.53 | 2.45 | ||||
39.48 | 2.28 | 37.79 | 2.38 |
Pos. [°2Th.] RC | Spacing d [Å] | Pos. [°2Th.] 450 °C | Spacing d [Å] | Pos. [°2Th.] 650 °C | Spacing d [Å] | Pos. [°2Th.] 800 °C | Spacing d [Å] |
---|---|---|---|---|---|---|---|
8.78 | 10.06 | 6.33 | 13.94 | 8.75 | 10.09 | 18.25 | 4.85 |
13.89 | 6.37 | 8.09 | 10.92 | 17.58 | 5.04 | 19.80 | 4.48 |
15.81 | 5.60 | 8.75 | 10.10 | 19.78 | 4.48 | 20.78 | 4.27 |
17.66 | 5.02 | 17.28 | 5.13 | 20.84 | 4.26 | 24.24 | 3.67 |
19.82 | 4.47 | 17.76 | 4.99 | 23.53 | 3.78 | 25.38 | 3.50 |
20.87 | 4.25 | 19.88 | 4.46 | 25.34 | 3.51 | 25.78 | 3.45 |
23.50 | 3.78 | 20.87 | 4.25 | 26.6542 | 3.34 | 26.60 | 3.35 |
25.36 | 3.51 | 23.53 | 3.77 | 31.92 | 2.80 | 27.37 | 3.25 |
26.66 | 3.34 | 25.37 | 3.51 | 33.12 | 2.70 | 27.54 | 3.23 |
27.52 | 3.24 | 26.66 | 3.34 | 34.85 | 2.57 | 29.93 | 2.98 |
30.83 | 2.89 | 27.44 | 3.25 | 35.69 | 2.51 | 31.08 | 2.87 |
33.17 | 2.70 | 29.45 | 3.03 | 36.57 | 2.45 | 31.94 | 2.80 |
34.81 | 2.57 | 32.04 | 2.79 | 39.50 | 2.28 | 33.32 | 2.68 |
36.57 | 2.45 | 33.29 | 2.69 | 35.84 | 2.50 | ||
37.88 | 2.37 | 34.80 | 2.57 | 39.42 | 2.28 | ||
39.48 | 2.28 | 36.58 | 2.45 |
Spectrum | C | O | Na | Mg | Al | Si | K | Ca | Fe |
---|---|---|---|---|---|---|---|---|---|
Raw clay | 34.71 | 51.92 | 0.67 | 0.50 | 3.51 | 7.33 | 0.31 | 0.35 | 0.71 |
Spect 10%-550 °C | 46.43 | 41.55 | 0.00 | 0.28 | 5.11 | 5.56 | 0.53 | 0.00 | 0.55 |
Spect20%-550 °C | 25.80 | 52.55 | 0.26 | 0.57 | 4.61 | 11.14 | 1.50 | 0.00 | 3.56 |
Spect 30%-550 °C | 41.50 | 45.52 | 0.53 | 0.42 | 3.09 | 7.26 | 0.83 | 0.13 | 0.73 |
Spect40%-550 °C | 39.35 | 46.91 | 0.00 | 0.53 | 3.35 | 7.75 | 0.84 | 0.52 | 0.74 |
Spect 40%-450 °C | 42.00 | 46.46 | 0.00 | 0.44 | 2.88 | 6.23 | 0.80 | 0.58 | 0.60 |
Spect 40%-650 °C | 51.59 | 40.37 | 0.00 | 0.28 | 2.21 | 4.30 | 0.55 | 0.11 | 0.59 |
Spect 40%-800 °C | 34.71 | 51.92 | 0.67 | 0.50 | 3.51 | 7.33 | 0.31 | 0.35 | 0.71 |
Raw Clay | K2CO3 (10%)/Smectite | K2CO3 (20%)/Smectite | K2CO3 (30%)/Smectite | K2CO3 (40%)/Smectite | ||
---|---|---|---|---|---|---|
Area (m2;/g) | BET area: | 74.235 | 61.5113 | 55.8759 | 52.9210 | 45.6611 |
Pore volume (cm3;/g) | Total pore volume of adsorption at a pore point 6925.979 Å diameter at P/P0 = 0.997217394 cm3;/g | 0.141 | 0.1484 | 0.14831 | 0.1380 | 0.1345 |
Pore size (Å) | Average adsorption pore width (4 V/A per BET) | 76.3032 | 96.5361 | 106.177 | 104.3311 | 117.890 |
Raw Clay | K2CO3 (40%)/Smectite at 450 °C | K2CO3 (40%)/Smectite at 550 °C | K2CO3 (40%)/Smectite at 650 °C | K2CO3 (40%)/Smectite at 800 °C | ||
---|---|---|---|---|---|---|
Area (m2;/g) | BET area: | 74.4 | 53.83 | 45.66 | 21.32 | 0.491 |
Pore volume (cm3;/g) | Total pore volume of adsorption at a pore point 6925.979 Å diameter at P/P0 = 0.997217394 cm3;/g | 0.141 | 0.139 | 0.135 | 0.112 | 0.0037 |
Pore size (Å) | Average adsorption pore width (4 V/A per BET) | 76.3 | 103.67 | 117.9 | 210.7 | 308.3 |
Name of the Catalyst | pH before US Treatment | pH after US Treatment |
---|---|---|
Raw clay | 8.84 | 8.58 |
10% at 550 °C | 9.65 | 8.76 |
20% at 550 °C | 9.82 | 8.95 |
30% at 550 °C | 9.99 | 9.2 |
40% at 550 °C | 9.92 | 9.14 |
40% at 450 °C | 9.27 | 8.63 |
40% at 650 °C | 7.87 | 7.92 |
40% at 800 °C | 7.35 | 7.36 |
Catalyst | COH− in Solid [mmol/g Solid] | BET Specific Surface [m2/g] | r0 [molCG/(L·min)] | TOF [s−1] |
---|---|---|---|---|
RC | 3.80 × 10−4 | 74.24 | 0.007 | 12.18 |
CC 10% at 550 °C | 5.75 × 10−4 | 61.31 | 0.017 | 19.54 |
CC 20% at 550 °C | 8.91 × 10−4 | 55.87 | 0.036 | 26.71 |
CC30% at 550 °C | 15.85 × 10−4 | 52.92 | 0.034 | 14.19 |
CC 40% at 550 °C | 13.80 × 10−4 | 45.66 | 0.051 | 24.44 |
Catalyst/Conditions | Ln k10 | Ea1/R | Ln k20 | Ea2/R | RSS | Se | VE% | F |
---|---|---|---|---|---|---|---|---|
CC/70–90 °C | 1.59 ± 0.56 | 3097 ± 204 | 0.48 ± 0.37 | 3650 ± 1344 | 0.0051 | 1.19% | 99.69 | 15,971 |
CC/90–110 °C | 38.81 ± 2.25 | 17,478 ± 822 | 54.78 ± 3.42 | 23,605 ± 1275 | 0.0161 | 2.14% | 99.04 | 8252 |
RC/100–120 °C | 5.40 ± 1.45 | 5250 ± 552 | 8.19 ± 2.67 | 6468 ± 251 | 0.0161 | 2.15% | 98.98 | 8510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snoussi, Y.; Gonzalez-Miranda, D.; Pedregal, T.; Besbes, N.; Bouaid, A.; Ladero, M. K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate. Int. J. Mol. Sci. 2024, 25, 2442. https://doi.org/10.3390/ijms25042442
Snoussi Y, Gonzalez-Miranda D, Pedregal T, Besbes N, Bouaid A, Ladero M. K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate. International Journal of Molecular Sciences. 2024; 25(4):2442. https://doi.org/10.3390/ijms25042442
Chicago/Turabian StyleSnoussi, Yosra, David Gonzalez-Miranda, Tomás Pedregal, Néji Besbes, Abderrahim Bouaid, and Miguel Ladero. 2024. "K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate" International Journal of Molecular Sciences 25, no. 4: 2442. https://doi.org/10.3390/ijms25042442
APA StyleSnoussi, Y., Gonzalez-Miranda, D., Pedregal, T., Besbes, N., Bouaid, A., & Ladero, M. (2024). K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate. International Journal of Molecular Sciences, 25(4), 2442. https://doi.org/10.3390/ijms25042442