Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma
Abstract
:1. Glioblastoma
2. miRNAs
3. miRNAs Function in Glioblastoma
3.1. Upregulated miRNAs in Glioblastoma
3.1.1. miR-10b
3.1.2. miR-21
3.1.3. miR-25
3.1.4. miR-33a
3.1.5. miR-93
3.1.6. miR-125b
3.1.7. miR-141-3p
3.1.8. miR-155-3p
3.1.9. miR-182
3.1.10. miR-210-3p
3.2. Downregulated miRNAs in Glioblastoma
3.2.1. miR-7
3.2.2. miR-9
3.2.3. miR-29a
3.2.4. miR-30a
3.2.5. miR-34a
3.2.6. miR-101-3p
3.2.7. miR-124-3p
3.2.8. miR-128-3p
3.2.9. miR-142-3p
3.2.10. miR-146a-5p/miR-146b-5p
3.2.11. miR-181a/b/c/d
4. miRNAs as Biomarkers in Liquid Biopsies
5. Modulation of miRNA Expression Levels as a Therapeutic Strategy in Glioblastoma
6. Current FDA-Approved RNA-Based Therapies to Treat Cancer
7. The Future of RNA-Based Therapies for Glioblastoma
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mafi, A.; Rahmati, A.; Aghdam, Z.B.; Salami, R.; Salami, M.; Vakili, O. Recent Insights into the microRNA-dependent Modulation of Gliomas from Pathogenesis to Diagnosis and Treatment. Cell. Mol. Biol. Lett. 2022, 27, 2–32. [Google Scholar] [CrossRef]
- Lapointe, S.; Perry, A.; Butowski, N. Primary Brain Tumours in Adults. Lancet 2018, 392, 432–446. [Google Scholar] [CrossRef]
- Holdhoff, M. Role of Molecular Pathology in the Treatment of Anaplastic Gliomas and Glioblastomas. J. Natl. Compr. Cancer Netw. 2018, 16, 642–645. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Malzkorn, B.; Wolter, M.; Liesenberg, F.; Grzendowski, M.; Stühler, K.; Meyer, H.E.; Reifenberger, G. Identification and Functional Characterization of microRNAs Involved in the Malignant Progression of Gliomas. Brain Pathol. 2010, 20, 539–550. [Google Scholar] [CrossRef]
- Tomar, M.S.; Shrivastava, A. Role of MiRNA in Glioma Pathogenesis, Diagnosis, and Therapeutic Outcomes. In Molecular Biology and Treatment Strategies for Gliomas; IntechOpen: London, UK, 2023. [Google Scholar]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; Van den Ben, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular Targeted Therapy of Glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, S.; Lamfers, M.L.M.; Dirven, C.M.F.; Leenstra, S. Genetic Biomarkers of Drug Response for Small-Molecule Therapeutics Targeting the RTK/Ras/PI3K, P53 or Rb Pathway in Glioblastoma. Rev. CNS Oncol. 2016, 5, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Ali, S.; Liu, L.; Li, Y.; Liu, X.; Zhang, L.; Dong, L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front. Oncol. 2020, 10, 1569. [Google Scholar] [CrossRef] [PubMed]
- Wiedemeyer, W.R.; Dunn, I.F.; Quayle, S.N.; Zhang, J.; Chheda, M.G. Pattern of Retinoblastoma Pathway Inactivation Dictates Response to CDK4/6 Inhibition in GBM. Proc. Natl. Acad. Sci. USA 2010, 107, 11501–11506. [Google Scholar] [CrossRef] [PubMed]
- Karkare, S.; Chhipa, R.R.; Anderson, J.; Liu, X.; Henry, H.; Gasilina, A.; Nassar, N.; Ghosh, J.; Clark, J.P.; Kumar, A.; et al. Direct Inhibition of Retinoblastoma Phosphorylation by Nimbolide Causes Cell Cycle Arrest and Suppresses Glioblastoma Growth. Clin. Cancer Res. 2014, 20, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Makowska, M.; Smolarz, B.; Romanowicz, H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)—Recent Literature Review. Int. J. Mol. Sci. 2023, 24, 3521. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef]
- Ghildiyal, M.; Zamore, P.D. Small Silencing RNAs: An Expanding Universe. Nat. Rev. Genet. 2009, 10, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Plotnikova, O.; Baranova, A.; Skoblov, M. Comprehensive Analysis of Human microRNA-MRNA Interactome. Front. Genet. 2019, 10, 933. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.; Bulut, R.; Kantar, M.; Alptekin, B. microRNA Nomenclature and the Need for a Revised Naming Prescription. Brief. Funct. Genom. 2016, 15, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Roth, A.; Yu, M.; Morris, R.; Bersani, F.; Rivera, N.; Lu, J.; Shioda, T.; Vasudevan, S.; Ramaswamy, S.; et al. The IGF2 Intronic MiR-483 Selectively Enhances Transcription from IGF2 Fetal Promoters and Enhances Tumorigenesis. Genes Dev. 2013, 27, 2543–2548. [Google Scholar] [CrossRef] [PubMed]
- Dharap, A.; Pokrzywa, C.; Murali, S.; Pandi, G.; Vemuganti, R. microRNA MiR-324-3p Induces Promoter-Mediated Expression of RelA Gene. PLoS ONE 2013, 8, e79467. [Google Scholar] [CrossRef] [PubMed]
- Ørom, U.A.; Nielsen, F.C.; Lund, A.H. microRNA-10a Binds the 5′ UTR of Ribosomal Protein MRNAs and Enhances Their Translation. Mol. Cell 2008, 30, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, X.; Qian, W.; Cai, H.; Sun, X.; Zhang, W.; Tan, S. CCAR1 5′ UTR as a Natural MiRancer of MiR-1254 Overrides Tamoxifen Resistance. Cell Res. 2016, 26, 655–673. [Google Scholar] [CrossRef]
- Agrawal, R.; Pandey, P.; Jha, P.; Dwivedi, V.; Sarkar, C.; Kulshreshtha, R. Hypoxic Signature of microRNAs in Glioblastoma: Insights from Small RNA Deep Sequencing. BMC Genom. 2014, 15, 686. [Google Scholar] [CrossRef]
- Bassot, A.; Dragic, H.; Al Haddad, S.; Moindrot, L.; Odouard, S.; Corlazzoli, F.; Marinari, E.; Bomane, A.; Brassens, A.; Marteyn, A.; et al. Identification of a MiRNA Multi-Targeting Therapeutic Strategy in Glioblastoma. Cell Death Dis. 2023, 14, 630. [Google Scholar] [CrossRef]
- Chen, M.; Medarova, Z.; Moore, A. Role of microRNAs in Glioblastoma. Oncotarget 2021, 12, 1707–1723. [Google Scholar] [CrossRef]
- Dong, L.U.N.; Li, Y.; Han, C.; Wang, X. MiRNA Microarray Reveals Specific Expression in the Peripheral Blood of Glioblastoma Patients. Int. J. Oncol. 2014, 45, 746–756. [Google Scholar] [CrossRef]
- Huang, S.; Ali, N.; Zhong, L.; Shi, J. microRNAs as Biomarkers for Human Glioblastoma: Progress and Potential. Acta Pharmacol. Sin. 2018, 39, 1405–1413. [Google Scholar] [CrossRef]
- Kim, T.-M.; Huang, W.; Park, R.; Park, P.J.; Johnson, M.D. A Developmental Taxonomy of Glioblastoma Defined and Maintained by microRNAs. Cancer Res. 2011, 71, 3387–3399. [Google Scholar] [CrossRef]
- Sun, J.; Gong, X.; Purow, B.; Zhao, Z. Uncovering microRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma. PLoS Comput. Biol. 2012, 8, e1002488. [Google Scholar] [CrossRef] [PubMed]
- Visani, M.; De Biase, D.; Marucci, G.; Cerasoli, S.; Nigrisoli, E.; Letizia, M.; Reggiani, B. Expression of 19 microRNAs in Glioblastoma and Comparison with Other Brain Neoplasia of Grades I–III. Mol. Oncol. 2013, 8, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting Effective microRNA Target Sites in Mammalian MRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; Fagny, M.; Marin, A.; Quackenbush, J. Systems Biology PUMA:PANDA Using microRNA Associations. Bioinformatics 2020, 36, 4765–4773. [Google Scholar] [CrossRef]
- Babae, N.; Bourajjaj, M.; Liu, Y.; Van Beijnum, J.R.; Prevost, G.P.; Griffioen, A.W.; Noort, P.I. Van Systemic MiRNA-7 Delivery Inhibits Tumor Angiogenesis and Growth in Murine Xenograft Glioblastoma. Oncotarget 2014, 5, 6687–6700. [Google Scholar] [CrossRef]
- Meza-Sosa, K.F.; Pérez-García, E.I.; Camacho-Concha, N.; López-Gutiérrez, O.; Pedraza-Alva, G.; Pérez-Martínez, L. MiR-7 Promotes Epithelial Cell Transformation by Targeting the Tumor Suppressor KLF4. PLoS ONE 2014, 9, e103987. [Google Scholar] [CrossRef]
- Okuda, H.; Xing, F.; Pandey, P.R. MiR-7 Suppresses Brain Metastasis of Breast Cancer Stem-Like Cells by Modulating KLF4. Cancer Res. 2013, 73, 1434–1444. [Google Scholar] [CrossRef]
- Xiong, S.; Zheng, Y.; Jiang, P.; Liu, R.; Liu, X.; Chu, Y. microRNA-7 Inhibits the Growth of Human Non-Small Cell Lung Cancer A549 Cells through Targeting BCL-2. Int. J. Biol. Sci. 2011, 7, 805–814. [Google Scholar] [CrossRef]
- De Chevigny, A.; Coré, N.; Follert, P.; Gaudin, M.; Barbry, P.; Béclin, C.; Cremer, H. MiR-7a Regulation of Pax6 Controls Spatial Origin of Forebrain Dopaminergic Neurons. Nat. Neurosci. 2012, 15, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xiao, Z.; Chen, T.; Wei, J.; Chen, L.; Liu, L.; Chen, B.; Wang, X.; Li, X.; Dai, J. The MiR-7 Identified from Collagen Biomaterial-Based Three-Dimensional Cultured Cells Regulates Neural Stem Cell Differentiation. Stem Cells Dev. 2014, 23, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; Bian, S.; Zhang, C.; Chen, Z.; Sun, T. Growth of the Developing Cerebral Cortex Is Controlled by microRNA-7 through the P53 Pathway. Cell Rep. 2014, 7, 1184–1196. [Google Scholar] [CrossRef] [PubMed]
- Sempere, L.F.; Freemantle, S.; Pitha-Rowe, I.; Moss, E.; Dmitrovsky, E.; Ambros, V. Expression Profiling of Mammalian microRNAs Uncovers a Subset of Brain-Expressed microRNAs with Possible Roles in Murine and Human Neuronal Differentiation. Genome Biol. 2004, 5, R13. [Google Scholar] [CrossRef] [PubMed]
- Junn, E.; Lee, K.-W.; Jeong, B.S.; Chan, T.W.; Im, J.-Y.; Mouradian, M.M. Repression of Alpha-Synuclein Expression and Toxicity by microRNA-7. Proc. Natl. Acad. Sci. USA 2009, 106, 13052–13057. [Google Scholar] [CrossRef] [PubMed]
- Sangiao-Alvarellos, S.; Pena-Bello, L.; Manfredi-Lozano, M.; Tena-Sempere, M.; Cordido, F. Perturbation of Hypothalamic microRNA Expression Patterns in Male Rats after Metabolic Distress: Impact of Obesity and Conditions of Negative Energy Balance. Endocrinology 2014, 155, 1838–1850. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA Circles Function as Efficient microRNA Sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Jia, B.; Liu, W.; Gu, J.; Wang, J.; Lv, W.; Zhang, W.; Hao, Q.; Pang, Z.; Mu, N.; Zhang, W.; et al. MiR-7-5p Suppresses Stemness and Enhances Temozolomide Sensitivity of Drug-Resistant Glioblastoma Cells by Targeting Yin Yang 1. Exp. Cell Res. 2019, 375, 73–81. [Google Scholar] [CrossRef]
- Kefas, B.; Godlewski, J.; Comeau, L.; Li, Y.; Abounader, R.; Hawkinson, M.; Lee, J.; Fine, H.; Chiocca, E.A.; Lawler, S.; et al. microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is down-Regulated in Glioblastoma. Cancer Res. 2008, 68, 3566–3572. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Li, L.; Xu, Z. MiR-7-5p Is Frequently Downregulated in Glioblastoma Microvasculature and Inhibits Vascular Endothelial Cell Proliferation by Targeting RAF1. Tumour Biol. 2014, 35, 10177–10184. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Huang, J.; Huang, S.; Li, Y.; Yu, S.; Liu, X. MiR-7 Inhibits Glioblastoma Growth by Simultaneously Interfering with the PI3K/ATK and Raf/MEK/ERK Pathways. Int. J. Oncol. 2014, 44, 1571–1580. [Google Scholar] [CrossRef]
- Wu, D.G.; Wang, Y.Y.; Fan, L.G.; Luo, H.; Han, B.; Sun, L.H.; Wang, X.F.; Zhang, J.X.; Cao, L.; Wang, X.R.; et al. microRNA-7 Regulates Glioblastoma Cell Invasion via Targeting Focal Adhesion Kinase Expression. Chin. Med. J. 2011, 124, 2616–2621. [Google Scholar] [CrossRef]
- Yin, Y.; Kong, W.; Jiang, J.; Xu, H.; Zhao, W. MiR-7-5p Inhibits Cell Migration and Invasion in Glioblastoma through Targeting SATB1. Oncol. Lett. 2019, 17, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Matos, B.; Bostjancic, E.; Matjasic, A.; Popovic, M.; Glavac, D. Dynamic Expression of 11 MiRNAs in 83 Consecutive Primary and Corresponding Recurrent Glioblastoma: Correlation to Treatment, Time to Recurrence, Overall Survival and MGMT Methylation Status. Radiol. Oncol. 2018, 52, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Vogel, G.; Yu, Z.; Richard, S. The QKI-5 and QKI-6 RNA Binding Proteins Regulate the Expression of microRNA 7 in Glial Cells. Mol. Cell. Biol. 2013, 33, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Young, J.; Nuovo, G.J.; Jeon, Y.; Kim, S.; Jin, T.; Kim, T. microRNAs/TP53 Feedback Circuitry in Glioblastoma Multiforme. Proc. Natl. Acad. Sci. USA 2012, 109, 5316–5321. [Google Scholar] [CrossRef]
- Rezaei, O.; Honarmand, K.; Nateghinia, S.; Taheri, M.; Ghafouri-Fard, S. MiRNA Signature in Glioblastoma: Potential Biomarkers and Therapeutic Targets. Exp. Mol. Pathol. 2020, 117, 104550. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wei, F.; Xia, H.; Liu, H.; Dong, X. microRNA-10b Mediates TGF-Β1-Regulated Glioblastoma Proliferation, Migration and Epithelial-Mesenchymal Transition. Int. J. Oncol. 2017, 50, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Teo, S.; Lam, D.H.; Jeyaseelan, K.; Wang, S. microRNA-10b Pleiotropically Regulates Invasion, Angiogenicity and Apoptosis of Tumor Cells Resembling Mesenchymal Subtype of Glioblastoma Multiforme. Cell Death Dis. 2012, 3, e398. [Google Scholar] [CrossRef] [PubMed]
- Gabriely, G.; Yi, M.; Narayan, R.S.; Niers, J.M.; Wurdinger, T.; Imitola, J.; Ligon, K.L.; Kesari, S.; Esau, C.; Stephens, R.M.; et al. Human Glioma Growth Is Controlled by microRNA-10b. Cancer Res. 2011, 71, 3563–3572. [Google Scholar] [CrossRef] [PubMed]
- Zhen, L.; Li, J.; Zhang, M.; Yang, K. MiR-10b Decreases Sensitivity of Glioblastoma Cells to Radiation by Targeting AKT. J. Biol. Res.-Thessaloniki 2016, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Ananta, J.S.; Paulmurugan, R.; Massoud, T.F. Tailored Nanoparticle Codelivery of AntimiR-21 and AntimiR-10b Augments Glioblastoma Cell Kill by Temozolomide: Toward a “Personalized” Anti-microRNA Therapy. Mol. Pharm. 2016, 13, 3164–3175. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Yue, J.; Pfeffer, S.R.; Fan, M.; Paulus, E.; Hosni-Ahmed, A.; Sims, M.; Qayyum, S.; Davidoff, A.M.; Handorf, C.R.; et al. microRNA-21 Promotes Glioblastoma Tumorigenesis by down-Regulating Insulin-like Growth Factor-Binding Protein-3 (IGFBP3). J. Biol. Chem. 2014, 289, 25079–25087. [Google Scholar] [CrossRef] [PubMed]
- Gabriely, G.; Wurdinger, T.; Kesari, S.; Esau, C.C.; Burchard, J.; Linsley, P.S.; Krichevsky, A.M. microRNA 21 Promotes Glioma Invasion by Targeting Matrix Metalloproteinase Regulators. Mol. Cell. Biol. 2008, 28, 5369–5380. [Google Scholar] [CrossRef]
- Akers, J.C.; Ramakrishnan, V.; Kim, R.; Phillips, S.; Kaimal, V.; Mao, Y.; Hua, W.; Yang, I.; Fu, C.-C.; Nolan, J.; et al. MiRNA Contents of Cerebrospinal Fluid Extracellular Vesicles in Glioblastoma Patients. J. Neurooncol. 2015, 123, 205–216. [Google Scholar] [CrossRef]
- Peng, G.; Yuan, X.; Yuan, J.; Liu, Q.; Dai, M. MiR-25 Promotes Glioblastoma Cell Proliferation and Invasion by Directly Targeting NEFL. Mol. Cell. Biochem. 2015, 409, 103–111. [Google Scholar] [CrossRef]
- Visvader, J.E. Cells of Origin in Cancer. Nat. Rev. 2011, 469, 314–322. [Google Scholar] [CrossRef]
- Wang, H.; Sun, T.; Hu, J.; Zhang, R.; Rao, Y.; Wang, S.; Chen, R.; Mclendon, R.E.; Friedman, A.H.; Keir, S.T.; et al. MiR-33a Promotes Glioma-Initiating Cell Self-Renewal via PKA and NOTCH Pathways. J. Clin. Investig. 2014, 124, 4489–4502. [Google Scholar] [CrossRef]
- Teoh, S.L.; Das, S. Notch Signalling Pathways and Their Importance in the Treatment of Cancers. Curr. Drug Targets 2018, 19, 128–143. [Google Scholar] [CrossRef]
- Xia, W.; Zhu, J.; Tang, Y.; Wang, X.; Wei, X.; Zheng, X. PD-L1 Inhibitor Regulates the MiR-33a-5p/PTEN Signaling Pathway and Can Be Targeted to Sensitize Glioblastomas to Radiation. Front. Oncol. 2020, 10, 821. [Google Scholar] [CrossRef]
- Fang, L.; Deng, Z.; Shatseva, T.; Yang, J.; Peng, C.; Du, W.; Yee, A.; Ang, L.; He, C.; Shan, S.; et al. microRNA MiR-93 Promotes Tumor Growth and Angiogenesis by Targeting Integrin-Β8. Oncogene 2011, 30, 806–821. [Google Scholar] [CrossRef]
- Peng, B.; Theng, P.Y.; Le, M.T.N. Essential Functions of MiR-125b in Cancer. Cell Prolif. 2021, 54, e12913. [Google Scholar] [CrossRef]
- Rampazzo, E.; Manfreda, L.; Bresolin, S.; Cani, A.; Mariotto, E.; Bortolozzi, R.; Della Puppa, A.; Viola, G.; Persano, L. Histone Deacetylase Inhibitors Impair Glioblastoma Cell Motility and Proliferation. Cancers 2022, 14, 1897. [Google Scholar] [CrossRef]
- Huang, T.; Alvarez, A.A.; Pangeni, R.P.; Horbinski, C.M.; Lu, S.; Kim, S.; James, C.D.; Raizer, J.J.; Kessler, J.A.; Brenann, C.W.; et al. A Regulatory Circuit of MiR-125b/MiR-20b and Wnt Signalling Controls Glioblastoma Phenotypes through FZD6-Modulated Pathways. Nat. Commun. 2016, 7, 12885. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, S.; Feng, K.; Wu, F.; Wan, Y.; Wang, Z. microRNA-125b-2 Confers Human Glioblastoma Stem Cells Resistance to Temozolomide through the Mitochondrial Pathway of Apoptosis. Int. J. Oncol. 2012, 40, 119–129. [Google Scholar] [CrossRef]
- Shi, L.; Fei, X.; Wang, Z.; You, Y. PI3K Inhibitor Combined with MiR-125b Inhibitor Sensitize TMZ-Induced Anti-Glioma Stem Cancer Effects through Inactivation of Wnt/β-Catenin Signaling Pathway. In Vitro Cell. Dev. Biol.-Anim. 2015, 51, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Haemmig, S.; Baumgartner, U.; Glück, A.; Zbinden, S.; Tschan, M.P.; Kappeler, A.; Mariani, L.; Vajtai, I.; Vassella, E. MiR-125b Controls Apoptosis and Temozolomide Resistance by Targeting TNFAIP3 and NKIRAS2 in Glioblastomas. Cell Death Dis. 2014, 5, e1279. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, W.; Zeng, A.; Nie, E.; Jin, X.; Yu, T.; Zhi, T.; Jiang, K.; Wang, Y.; Zhang, J.; et al. microRNA-141-3p Promotes Glioma Cell Growth Temozolomide Resistance by Directly Targeting P53 And. Oncotarget 2017, 8, 71080–71094. [Google Scholar] [CrossRef]
- La, X.; Zhang, L.; Li, Z.; Li, H.; Yang, Y. Epigallocatechin Gallate (EGCG) Enhances the Sensitivity of Colorectal Cancer Cells to 5-FU by Inhibiting GRP78/NF-κB/MiR-155-5p/MDR1 Pathway. J. Agric. Food Chem. 2019, 67, 2510–2518. [Google Scholar] [CrossRef]
- De la Parra, C.; Castillo-Pichardo, L.; Cruz-Collazo, A.; Cubano, L.; Redis, R.; Calin, G.; Dharmawardhane, S. Soy Isoflavone Genistein-Mediated Downregulation of MiR-155 Contributes to the Anticancer Effects of Genistein. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Wu, X.; Liu, P.; Zhang, H.; Li, Y.; Salmani, J.M.M.; Wang, F.; Yang, K.; Fu, R.; Chen, Z.; Chen, B. Wogonin as a Targeted Therapeutic Agent for EBV (+) Lymphoma Cells Involved in LMP1/NF-ΚB/MiR-155/PU.1 Pathway. BMC Cancer 2017, 17, 147. [Google Scholar] [CrossRef]
- Li, B.; Jin, X.; Meng, H.; Hu, B.; Zhang, T.; Yu, J.; Chen, S.; Guo, X.; Wang, W.; Jiang, W.; et al. Morin Promotes Prostate Cancer Cells Chemosensitivity to Paclitaxel through MiR-155/GATA3 Axis. Oncotarget 2017, 8, 47849–47860. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Z.; Zhao, H. microRNA-155-3p Promotes Glioma Progression and Temozolomide Resistance by Targeting Six1. J. Cell. Mol. Med. 2020, 24, 5363–5374. [Google Scholar] [CrossRef]
- Leng, R.-X.; Pan, H.-F.; Qin, W.-Z.; Chen, G.-M.; Ye, D.-Q. Role of microRNA-155 in Autoimmunity. Cytokine Growth Factor Rev. 2011, 22, 141–147. [Google Scholar] [CrossRef]
- Cardoso, A.L.; Guedes, J.R. MiR-155 Modulates Microglia-Mediated Immune Response by down-Regulating SOCS-1 and Promoting Cytokine and Nitric Oxide Production. Immunology 2011, 135, 73–88. [Google Scholar] [CrossRef]
- Li, H.F.; Wu, Y.L.; Tseng, T.L.; Chao, S.W.; Lin, H.; Chen, H.H. Inhibition of MiR-155 Potentially Protects against Lipopolysaccharide-Induced Acute Lung Injury through the IRF2BP2-NFAT1 Pathway. Am. J. Physiol. Cell Physiol. 2020, 319, C1070–C1081. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Zeng, G.; Zheng, X.; Wang, W.; Ling, Y.; Tang, H.; Zhang, J. Increased MiR-155 and Heme Oxygenase-1 Expression Is Involved in the Protective Effects of Formononetin in Traumatic Brain Injury in Rats. Am. J. Transl. Res. 2017, 9, 5653–5661. [Google Scholar]
- Chen, J.; Qi, Y.; Liu, C.F.; Lu, J.M.; Shi, J.; Shi, Y. microRNA Expression Data Analysis to Identify Key MiRNAs Associated with Alzheimer’s Disease. J. Gene Med. 2018, 20, e3014. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Zhang, L.; Dong, Y.; Ji, H.; Shen, L. The Potential Markers of Circulating microRNAs and Long Non-Coding RNAs in Alzheimer’s Disease. Aging Dis. 2019, 10, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Hambardzumyan, D.; Gutmann, D.; Kettenmann, H. The Role of Microglia and Macrophages in Glioma Maintenance and Progression. Nat. Neurosci. 2017, 19, 86–168. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Roth, T.L.; McGavern, D.B. Microglia Development and Function. Annu. Rev. Immunol. 2014, 32, 367–402. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, L.; Wu, Z.; Li, Y.; Ying, Z.; Lin, C.; Wu, J.; Hu, B.; Cheng, S.; Li, M.; et al. TGF-β Induces MiR-182 to Sustain NF-ΚB Activation in Glioma Subsets. J. Clin. Investig. 2012, 122, 3563–3578. [Google Scholar] [CrossRef] [PubMed]
- Kouri, F.M.; Ritner, C.; Stegh, A.H. MiRNA-182 and the Regulation of the Glioblastoma Phenotype-toward MiRNA-Based Precision Therapeutics. Cell Cycle 2015, 14, 3794–3800. [Google Scholar] [CrossRef]
- He, H.; Liu, J.; Li, W.; Yao, X.; Ren, Q.; Shen, B.; Xue, C.; Zou, L.; Zhao, H. MiR-210-3p Inhibits Proliferation and Migration of C6 Cells by Targeting Iscu. Neurochem. Res. 2020, 45, 1813–1824. [Google Scholar] [CrossRef]
- Pan, C.; Chan, K.; Chen, C.; Jan, C. microRNA-7 Targets T-Box 2 to Inhibit Epithelial-Mesenchymal Transition and Invasiveness in Glioblastoma Multiforme. Cancer Lett. 2020, 493, 133–142. [Google Scholar] [CrossRef]
- Nowek, K.; Wiemer, E.A.C.; Jongen-lavrencic, M. The Versatile Nature of MiR-9/9* in Human Cancer. Oncotarget 2018, 9, 20838–20854. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Tan, Y.; Liu, Q.; Jiang, S.; Liu, D. MiR-9-5p Inhibits Glioblastoma Cells Proliferation through Directly Targeting FOXP2 (Forkhead Box P2). Front. Oncol. 2019, 9, 1176. [Google Scholar] [CrossRef]
- Katakowski, M.; Charteris, N.; Chopp, M.; Khain, E. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by MiR-9. Cancer Microenviron. 2016, 9, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Ben-hamo, R.; Zilberberg, A.; Cohen, H.; Efroni, S. Hsa-MiR-9 Controls the Mobility Behavior of Glioblastoma Cells via Regulation of MAPK14 Signaling Elements. Oncotarget 2015, 7, 23170–23181. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Wang, S.; Yang, B.; Zhu, L.; Yin, B.; Chao, T.; Zhao, J.; Yuan, J.; Qiang, B.; Peng, X. The CREB-MiR-9 Negative Feedback Minicircuitry Coordinates the Migration and Proliferation of Glioma Cells. PLoS ONE 2012, 7, e49570. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Liao, Y.; Zhao, H.; Zhang, J.; Muyiti, K.; Mu, K. ANXA2P2/MiR-9/LDHA Axis Regulates Warburg Effect and Affects Glioblastoma Proliferation and Apoptosis. Cell Signal 2020, 74, 109718. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Mu, L.; Han, X. microRNA-9 Inhibits Vasculogenic Mimicry of Glioma Cell Lines by Suppressing Stathmin Expression. J. Neurooncol. 2013, 115, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Yang, D.; Gao, L.; Jin, P.; Zhang, P.; Fu, J. MiR-9 Promotes Apoptosis via Suppressing SMC1A Expression in GBM Cell Lines. Curr. Chem. Genomics Transl. Med. 2017, 11, 31–40. [Google Scholar] [CrossRef]
- Shi, C.; Luo, W.; Sun, C.; Yu, L.; Zhou, X.; Hua, D.; Jiang, Z.; Wang, Q.; Yu, S. The MiR-29 Family Members Induce Glioblastoma Cell Apoptosis by Targeting Cell Division Cycle 42 in a P53-Dependent Manner. Eur. J. Clin. Investig. 2023, 53, e13964. [Google Scholar] [CrossRef]
- Shi, C.; Ren, L.; Sun, C.; Yu, L.; Bian, X.; Zhou, X.; Wen, Y.; Hua, D.; Zhao, S.; Luo, W.; et al. MiR-29a/b/c Function as Invasion Suppressors for Gliomas by Targeting CDC42 and Predict the Prognosis of Patients. Br. J. Cancer 2017, 117, 1036–1047. [Google Scholar] [CrossRef]
- Xu, H.; Sun, J.; Shi, C.; Sun, C.; Yu, L.; Wen, Y.; Zhao, S.; Liu, J.; Xu, J.; Li, H.; et al. MiR-29s Inhibit the Malignant Behavior of U87MG Glioblastoma Cell Line by Targeting DNMT3A and 3B. Neurosci. Lett. 2015, 590, 40–46. [Google Scholar] [CrossRef]
- Xi, Z.; Wang, P.; Xue, Y.; Shang, C.; Liu, X.; Ma, J.; Li, Z. Overexpression of MiR-29a Reduces the Oncogenic Properties of Glioblastoma Stem Cells by Downregulating Quaking Gene. Oncotarget 2017, 8, 24949–24963. [Google Scholar] [CrossRef]
- Wang, X.; Prager, B.C.; Wu, Q.; Kim, L.J.Y.; Gimple, R.C.; Shi, Y.; Yang, K.; Morton, A.R.; Zhou, W.; Zhu, Z.; et al. Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell 2018, 22, 514–528.e5. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dodbele, S.; Park, T.; Glass, R.; Bhat, K.; Sulman, E.P.; Zhang, Y.; Abounader, R. microRNA-29a Inhibits Glioblastoma Stem Cells and Tumor Growth by Regulating the PDGF Pathway. J. Neurooncol. 2019, 145, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Huang, H.E.; Peng, R.; Ding, X.; Jiang, B.; Yuan, X.; Xi, J. microRNA-30a Increases the Chemosensitivity of U251 Glioblastoma Cells to Temozolomide by Directly Targeting Beclin 1 and Inhibiting Autophagy. Exp. Ther. Med. 2018, 15, 4798–4804. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Croce, N.; Spalletta, G.; Dinallo, V.; Gravnia, P.; Bossú, P.; Federici, G.; Caltagirone, C.; Bernardini, S. Paroxetine Rapidly Modulates the Expression of Brain-Derived Neurotrophic Factor MRNA and Protein in a Human Glioblastoma-Astrocytoma. Pharmacology 2011, 87, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Silber, J.; Jacobsen, A.; Ozawa, T.; Harinath, G.; Pedraza, A.; Sander, C.; Holland, E.C.; Huse, J.T. MiR-34a Repression in Proneural Malignant Gliomas Upregulates Expression of Its Target PDGFRA and Promotes Tumorigenesis. PLoS ONE 2012, 7, e33844. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guessous, F.; Zhang, Y.; Dipierro, C.; Kefas, B.; Marcinkiewicz, L.; Jiang, J.; Yang, Y.; Schmittgen, T.D.; Lopes, B.; et al. microRNA-34a Inhibits Glioblastoma Growth by Targeting Multiple Oncogenes. Cancer Res. 2009, 69, 7569–7576. [Google Scholar] [CrossRef]
- Li, W.; Ma, M.; Dong, L.; Wang, F.; Chen, L.; Li, X. microRNA-34a Targets Notch1 and Inhibits Cell Proliferation in Glioblastoma Multiforme. Cancer Biol. Ther. 2011, 12, 477–483. [Google Scholar] [CrossRef]
- Yin, D.; Ogawa, S.; Kawamata, N.; Leiter, A.; Ham, M.; Li, D.; Doan, N.; Said, J.; Black, K.; Koeffler, H. MiR-34a Functions as a Tumor Suppressor Modulating EGFR in Glioblastoma Multiforme. Oncogene 2013, 32, 1155–1163. [Google Scholar] [CrossRef]
- Ma, Z.; Cai, S.; Xiong, Q.; Liu, W.; Xia, H.; Zhu, Z.; Huang, Z. WNT Signaling Modulates Chemoresistance to Temozolomide in P53—Mutant Glioblastoma Multiforme. Apoptosis 2022, 27, 80–89. [Google Scholar] [CrossRef]
- Genovese, G.; Ergun, A.; Shukla, S.A.; Campos, B.; Ghosh, P.; Quayle, S.N.; Rai, K.; Colla, S.; Ying, H.; Wu, C.; et al. microRNA Regulatory Network Inference Identifies MiR-34a as a Novel Regulator of TGF-β Signaling in GBM. Cancer Discov. 2014, 2, 736–749. [Google Scholar] [CrossRef]
- Wang, C.-Z.; Deng, F.; Li, H.; Wang, D.-D.; Zhang, W.; Ding, L.; Tang, J.-H. MiR-101: A Potential Therapeutic Target of Cancers. Am. J. Transl. Res. 2018, 10, 3310–3321. [Google Scholar]
- Liu, N.; Zhang, L.; Wang, Z.; Cheng, Y.; Zhang, P.; Wang, X.; Wen, W.; Yang, H.; Liu, H.; Jin, W.; et al. microRNA-101 Inhibits Proliferation, Migration and Invasion of Human Glioblastoma by Targeting SOX9. Oncotarget 2017, 8, 19244–19254. [Google Scholar] [CrossRef]
- Ma, C.; Zheng, C.; Bai, E.; Yang, K. MiR-101 Inhibits Glioma Cell Invasion via the Downregulation of COX-2. Oncol. Lett. 2016, 12, 2538–2544. [Google Scholar] [CrossRef]
- Li, L.; Shao, M.-Y.; Zou, S.-C.; Xiao, Z.-F.; Chen, Z.-C. MiR-101-3p Inhibits EMT to Attenuate Proliferation and Metastasis in Glioblastoma by Targeting TRIM44. J. Neurooncol. 2019, 141, 19–30. [Google Scholar] [CrossRef]
- Tian, T.; Mingyi, M.; Qiu, X.; Qiu, Y. microRNA-101 Reverses Temozolomide Resistance by Inhibition of GSK3β in Glioblastoma. Oncotarget 2016, 7, 79584–79595. [Google Scholar] [CrossRef]
- Meza-Sosa, K.F.; Valle-García, D.; Pedraza-Alva, G.; Pérez-Martínez, L. Role of microRNAs in Central Nervous System Development and Pathology. J. Neurosci. Res. 2012, 90, 1–12. [Google Scholar] [CrossRef]
- Cai, S.; Shi, C.-J.; Lu, J.-X.; Wang, Y.-P.; Yuan, T.; Wang, X.-P. MiR-124-3p Inhibits the Viability and Motility of Glioblastoma Multiforme by Targeting RhoG. Int. J. Mol. Med. 2021, 47, 69. [Google Scholar] [CrossRef]
- Qiao, W.; Guo, B.; Zhou, H.; Xu, W.; Chen, Y.; Liang, Y.; Dong, B. MiR-124 Suppresses Glioblastoma Growth and Potentiates Chemosensitivity by Inhibiting AURKA. Biochem. Biophys. Res. Commun. 2017, 486, 43–48. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, L. MiR-124 Inhibits the Growth of Glioblastoma through the Downregulation of SOS1. Mol. Med. Rep. 2013, 8, 345–349. [Google Scholar] [CrossRef]
- Luo, L.; Chi, H.; Ling, J. MiR-124-3p Suppresses Glioma Aggressiveness via Targeting of Fra-2. Pathol. Res. Pract. 2018, 214, 1825–1834. [Google Scholar] [CrossRef]
- Budi, H.S.; Younus, L.A.; Lafta, M.H.; Parveen, S.; Mohammad, H.J.; Al-qaim, Z.H.; Jawad, M.A.; Parra, R.M.R.; Mustafa, Y.F.; Alhachami, F.R.; et al. The Role of MiR-128 in Cancer Development, Prevention, Drug Resistance, and Immunotherapy. Front. Oncol. 2023, 12, 1067974. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, Z. microRNA-128 Inhibits Proliferation and Invasion of Glioma Cells by Targeting COX-2. Gene 2018, 658, 63–69. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, R.; Guan, F.; Ma, S.; Li, M.; Wu, J.; Liu, X.; Li, H.; Yang, B. microRNA-128-3p Enhances the Chemosensitivity of Temozolomide in Glioblastoma by Targeting c-Met and EMT. Sci. Rep. 2020, 10, 9471. [Google Scholar] [CrossRef]
- Shan, Z.; Tian, R.; Zhang, M.; Gui, Z.; Wu, J.; Ding, M.; Zhou, X.-F.; He, J. MiR128-1 Inhibits the Growth of Glioblastoma Multiforme and Glioma Stem-like Cells via Targeting BMI1 and E2F3. Oncotarget 2016, 7, 78813–78826. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Yarmishyn, A.; Wang, M.-L.; Chen, H.-Y.; Chiou, S.-H.; Yang, Y.-P.; Lin, C.-F.; Huang, P.-I.; Chen, Y.-W.; Ma, H.-I.; et al. microRNA-142-3p Is Involved in Regulation of MGMT Expression in Glioblastoma Cells. Cancer Manag. Res. 2018, 10, 775–785. [Google Scholar] [CrossRef]
- Chiou, G.-Y.; Chien, C.-S.; Wang, M.-L.; Chen, M.-T.; Yang, Y.-P.; Yu, Y.-L.; Chien, Y.; Chang, Y.-C.; Shen, C.-C.; Chio, C.-C.; et al. Epigenetic Regulation of the MiR142-3p/Interleukin-6 Circuit in Glioblastoma. Mol. Cell 2013, 52, 693–706. [Google Scholar] [CrossRef]
- Qin, W.; Rong, X.; Dong, J.; Yu, C.; Yang, J. MiR-142 Inhibits the Migration and Invasion of Glioma by Targeting Rac1. Oncol. Rep. 2017, 38, 1543–1550. [Google Scholar] [CrossRef]
- Gheidari, F.; Arefian, E.; Jamshidi Adegani, F.; Fallah Atanaki, F.; Soleimani, M. The MiR-142 Suppresses U-87 Glioblastoma Cell Growth by Targeting EGFR Oncogenic Signaling Pathway. Iran J. Pharm. Res. 2021, 20, 202–212. [Google Scholar] [CrossRef]
- Xu, S.; Wei, J.; Wang, F.; Kong, L.-Y.; Ling, X.-Y.; Nduom, E.; Gabrusiewicz, K.; Doucette, T.; Yang, Y.; Yaghi, N.K.; et al. Effect of MiR-142-3p on the M2 Macrophage and Therapeutic Efficacy against Murine Glioblastoma. JNCI J. Natl. Cancer Inst. 2014, 106, dju162. [Google Scholar] [CrossRef]
- Chithanathan, K.; Jürgenson, M.; Guha, M.; Yan, L.; Žarkovskaja, T.; Pook, M.; Magilnick, N.; Boldin, M.P.; Rebane, A.; Tian, L.; et al. Paradoxical Attenuation of Neuroinflammatory Response upon LPS Challenge in MiR-146b Deficient Mice. Front. Immunol. 2022, 13, 996415. [Google Scholar] [CrossRef]
- Saba, R.; Sorensen, D.L.; Booth, S.A. microRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front. Immunol. 2014, 5, 578. [Google Scholar] [CrossRef]
- Hu, H.; Sun, L.; Guo, W. Decreased MiRNA-146A in Glioblastoma Multiforme and Regulation of Cell Proliferation and Apoptosis by Target Notch1. Int. J. Biol. Markers 2016, 31, 270–275. [Google Scholar] [CrossRef]
- Cui, T.; Bell, E.H.; McElroy, J.; Liu, K.; Sebastian, E.; Johnson, B.; Gulati, P.M.; Becker, A.P.; Gray, A.; Geurts, M.; et al. A Novel MiR-146a-POU3F2/SMARCA5 Pathway Regulates Stemness and Therapeutic Response in Glioblastoma. Mol. Cancer Res. 2021, 19, 48–60. [Google Scholar] [CrossRef]
- Mei, J.; Bachoo, R.; Zhang, C.-L. microRNA-146a Inhibits Glioma Development by Targeting Notch1. Mol. Cell. Biol. 2011, 31, 3584–3592. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Yu, L.; Sun, C.; Cheng, D.; Yu, S.; Wang, Q.; Yan, Y.; Kang, C.; Jin, S.; et al. MiR-146b-5p Inhibits Glioma Migration and Invasion by Targeting MMP16. Cancer Lett. 2013, 339, 260–269. [Google Scholar] [CrossRef]
- Xia, H.; Qi, Y.; Ng, S.S.; Chen, X.; Li, D.; Chen, S.; Ge, R.; Jiang, S.; Li, G.; Chen, Y.; et al. microRNA-146b Inhibits Glioma Cell Migration and Invasion by Targeting MMPs. Brain Res. 2009, 1269, 158–165. [Google Scholar] [CrossRef]
- Qian, Z.; Zhou, S.; Zhou, Z.; Yang, X.; Que, S.; Lan, J.; Qiu, Y.; Lin, Y. MiR-146b-5p Suppresses Glioblastoma Cell Resistance to Temozolomide through Targeting TRAF6. Oncol. Rep. 2017, 38, 2941–2950. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Li, H.; Sun, C.; Yu, L.; Li, Y.; Shi, C.; Zhou, X.; Bian, X.; Ping, Y.; et al. MiR-146b-5p Functions as a Tumor Suppressor by Targeting TRAF6 and Predicts the Prognosis of Human Gliomas. Oncotarget 2015, 6, 29129–29142. [Google Scholar] [CrossRef]
- Katakowski, M.; Zheng, X.; Jiang, F.; Rogers, T.; Szalad, A.; Chopp, M. MiR-146b-5p Suppresses EGFR Expression and Reduces In Vitro Migration and Invasion of Glioma. Cancer Investig. 2010, 28, 1024–1030. [Google Scholar] [CrossRef]
- Khwaja, S.S.; Cai, C.; Badiyan, S.N.; Wang, X.; Huang, J. The Immune-Related microRNA MiR-146b Is Upregulated in Glioblastoma Recurrence. Oncotarget 2018, 9, 29036–29046. [Google Scholar] [CrossRef] [PubMed]
- Bell-Hensley, A.; Das, S.; McAlinden, A. The MiR-181 Family: Wide-ranging Pathophysiological Effects on Cell Fate and Function. J. Cell. Physiol. 2023, 238, 698–713. [Google Scholar] [CrossRef]
- Yang, L.; Ma, Y.; Xin, Y.; Han, R.; Li, R.; Hao, X. Role of the microRNA 181 Family in Glioma Development. Mol. Med. Rep. 2018, 17, 322–329. [Google Scholar] [CrossRef]
- She, X.; Yu, Z.; Cui, Y.; Lei, Q.; Wang, Z.; Xu, G.; Luo, Z.; Li, G.; Wu, M. MiR-181 Subunits Enhance the Chemosensitivity of Temozolomide by Rap1B-Mediated Cytoskeleton Remodeling in Glioblastoma Cells. Med. Oncol. 2014, 31, 892. [Google Scholar] [CrossRef]
- Wen, X.; Li, S.; Guo, M.; Liao, H.; Chen, Y.; Kuang, X.; Liao, X.; Ma, L.; Li, Q. MiR-181a-5p Inhibits the Proliferation and Invasion of Drug-resistant Glioblastoma Cells by Targeting F-box Protein 11 Expression. Oncol. Lett. 2020, 20, 235. [Google Scholar] [CrossRef]
- Yin, J.; Shi, Z.; Wei, W.; Lu, C.; Wei, Y.; Yan, W.; Li, R.; Zhang, J.; You, Y.; Wang, X. MiR-181b Suppress Glioblastoma Multiforme Growth through Inhibition of SP1-Mediated Glucose Metabolism. Cancer Cell Int. 2020, 20, 69. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Hoadley, K.; Kushwaha, D.; Ramakrishnan, V.; Li, S.; Kang, C.; You, Y.; Jiang, C.; Song, S.W.; et al. MiR-181d: A Predictive Glioblastoma Biomarker That Downregulates MGMT Expression. Neuro Oncol. 2012, 14, 712–719. [Google Scholar] [CrossRef]
- Roth, P.; Wischhusen, J.; Happold, C.; Chandran, P.A.; Hofer, S.; Eisele, G.; Weller, M.; Keller, A. A Specific MiRNA Signature in the Peripheral Blood of Glioblastoma Patients. J. Neurochem. 2011, 118, 449–457. [Google Scholar] [CrossRef]
- Teplyuk, N.M.; Mollenhauer, B.; Gabriely, G.; Giese, A.; Kim, E.; Smolsky, M.; Kim, R.Y.; Saria, M.G.; Pastorino, S.; Kesari, S.; et al. microRNAs in Cerebrospinal Fluid Identify Glioblastoma and Metastatic Brain Cancers and Reflect Disease Activity. Neuro Oncol. 2012, 14, 689–700. [Google Scholar] [CrossRef]
- Akers, J.C.; Hua, W.; Li, H.; Ramakrishnan, V.; Yang, Z.; Quan, K.; Zhu, W.; Li, J.; Figueroa, J.; Hirshman, B.R.; et al. A Cerebrospinal Fluid microRNA Signature as Biomarker for Glioblastoma. Oncotarget 2017, 8, 68769–68779. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Li, A.; Jiang, W.; Wang, H.; Wang, J.; Xie, K. Plasma Specific MiRNAs as Predictive Biomarkers for Diagnosis and Prognosis of Glioma. J. Exp. Clin. Cancer Res. 2012, 31, 97. [Google Scholar] [CrossRef]
- Shao, N.; Wang, L.; Xue, L.; Wang, R.; Lan, Q. Plasma MiR-454-3p as a Potential Prognostic Indicator in Human Glioma. Neurol. Sci. 2015, 36, 309–313. [Google Scholar] [CrossRef]
- Yang, C.; Wang, C.; Chen, X.; Chen, S.; Zhang, Y.; Zhi, F.; Wang, J.; Li, L.; Zhou, X.; Li, N.; et al. Identification of Seven Serum microRNAs from a Genome-wide Serum microRNA Expression Profile as Potential Noninvasive Biomarkers for Malignant Astrocytomas. Int. J. Cancer 2013, 132, 116–127. [Google Scholar] [CrossRef]
- Swellam, M.; Bakr, N.M.; El Magdoub, H.M.; Hamza, M.S.; Ezz El Arab, L.R. Emerging Role of MiRNAs as Liquid Biopsy Markers for Prediction of Glioblastoma Multiforme Prognosis. J. Mol. Neurosci. 2021, 71, 836–844. [Google Scholar] [CrossRef]
- Shao, N.; Xue, L.; Wang, R.; Luo, K.; Zhi, F.; Lan, Q. MiR-454-3p Is an Exosomal Biomarker and Functions as a Tumor Suppressor in Glioma. Mol. Cancer Ther. 2019, 18, 459–469. [Google Scholar] [CrossRef]
- Lan, F.; Yue, X.; Xia, T. Exosomal microRNA-210 Is a Potentially Non-invasive Biomarker for the Diagnosis and Prognosis of Glioma. Oncol. Lett. 2020, 19, 1967–1974. [Google Scholar] [CrossRef]
- Rivera-Díaz, M.; Miranda-Román, M.A.; Soto, D.; Quintero-Aguilo, M.; Ortiz-Zuazaga, H.; Marcos-Martinez, M.J.; Vivas-Mejía, P.E. microRNA-27a Distinguishes Glioblastoma Multiforme from Diffuse and Anaplastic Astrocytomas and Has Prognostic Value. Am. J. Cancer Res. 2015, 5, 201–218. [Google Scholar]
- Ahmed, S.P.; Castresana, J.S. Glioblastoma and MiRNAs. Cancers 2021, 13, 1581. [Google Scholar] [CrossRef]
- Sadeghipour, N.; Kumar, S.U.; Massoud, T.F. OPEN A Rationally Identified Panel of microRNAs Targets Multiple Oncogenic Pathways to Enhance Chemotherapeutic Effects in Glioblastoma Models. Sci. Rep. 2022, 12, 12017. [Google Scholar] [CrossRef]
- Szczepanek, J.; Skorupa, M. microRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022, 11, 1008. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, S.; Fu, R.; Zhang, L.; Huang, K.; Peng, H.; Dai, L.; Chen, Q. Therapeutic Prospects of MRNA-Based Gene Therapy for Glioblastoma. Front. Oncol. 2019, 9, 1208. [Google Scholar] [CrossRef]
- Melnick, K.; Dastmalchi, F.; Mitchell, D.; Rahman, M.; Sayour, E.J. Contemporary RNA Therapeutics for Glioblastoma. Neuromol. Med. 2022, 24, 8–12. [Google Scholar] [CrossRef]
- Ors-kumoglu, G. Therapeutic microRNAs in Human Cancer. Cytotechnology 2019, 71, 411–425. [Google Scholar] [CrossRef]
- Xiong, H.; Veedu, R.N.; Diermeier, S.D. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int. J. Mol. Sci. 2021, 22, 3295. [Google Scholar] [CrossRef]
- Ebert, M.S.; Neilson, J.R.; Sharp, P.A. microRNA Sponges: Competitive Inhibitors of Small RNAs in Mammalian Cells. Nat. Methods 2007, 4, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Jurkowski, T.P.; Ravichandran, M.; Stepper, P. Synthetic Epigenetics—Towards Intelligent Control of Epigenetic States and Cell Identity. Clin. Epigenetics 2015, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K. RNA Therapy: Rich History, Various Applications and Unlimited Future Prospects. Exp. Mol. Med. 2022, 54, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Zogg, H.; Singh, R. Current Advances in RNA Therapeutics for Human Diseases. Int. J. Mol. Sci. 2022, 23, 2736. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L.; Wang, X.; Jin, H. RNA-Based Therapeutics: An Overview and Prospectus. Cell Death Dis. 2022, 13, 644. [Google Scholar] [CrossRef]
- Cuciniello, R.; Filosa, S.; Crispi, S. Novel Approaches in Cancer Treatment: Preclinical and Clinical Development of Small Non-Coding RNA Therapeutics. J. Exp. Clin. Cancer Res. 2021, 40, 383. [Google Scholar] [CrossRef]
- Upton, D.H.; Ung, C.; George, S.M.; Tsoli, M.; Kavallaris, M.; Ziegler, D.S. Challenges and Opportunities to Penetrate the Blood-Brain Barrier for Brain Cancer Therapy. Theranostics 2022, 12, 4734–4752. [Google Scholar] [CrossRef] [PubMed]
- Meza-Sosa, K.F.; Pedraza-Alva, G.; Pérez-Martínez, L. microRNAs: Key Triggers of Neuronal Cell Fate. Front. Cell. Neurosci. 2014, 8, 175. [Google Scholar] [CrossRef]
- Baumann, V.; Winkler, J. MiRNA-Based Therapies: Strategies and Delivery Platforms for Oligonucleotide and Non-Oligonucleotide Agents. Future Med. Chem. 2014, 6, 1967–1984. [Google Scholar] [CrossRef]
- Mo, F.; Pellerino, A.; Soffietti, R. Blood–Brain Barrier in Brain Tumors: Biology and Clinical Relevance. Int. J. Mol. Sci. 2021, 22, 12654. [Google Scholar] [CrossRef]
- Yun, W.S.; Kim, J.; Lim, D.-K.; Kim, D.-H.; Jeon, S.I.; Kim, K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. Nanomaterials 2023, 13, 2225. [Google Scholar] [CrossRef]
- Peruzzi, P.; Dominas, C.; Fell, G.; Bernstock, J.D.; Blitz, S.; Mazzetti, D.; Zdioruk, M.; Dawood, H.Y.; Triggs, D.V.; Ahn, S.W.; et al. Intratumoral Drug-Releasing Microdevices Allow In Situ High-Throughput Pharmaco Phenotyping in Patients with Gliomas. Sci. Transl. Med. 2023, 15, eadi0069. [Google Scholar] [CrossRef]
- Kaczmarek, J.C.; Kowalski, P.S.; Anderson, D.G. Advances in the Delivery of RNA Therapeutics: From Concept to Clinical Reality. Genome Med. 2017, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug Delivery Systems for RNA Therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef]
- Oswald, M.; Geissler, S.; Goepferich, A. Targeting the Central Nervous System (CNS): A Review of Rabies Virus—Targeting Strategies. Mol. Pharm. 2017, 14, 2177–2196. [Google Scholar] [CrossRef] [PubMed]
- Tsakiri, M.; Zivko, C.; Demetzos, C.; Mahairaki, V. Lipid-Based Nanoparticles and RNA as Innovative Neuro-Therapeutics. Front. Pharmacol. 2022, 13, 900610. [Google Scholar] [CrossRef]
- Wilson, B.; Geetha, K.M. Lipid Nanoparticles in the Development of MRNA Vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 2022, 74, 103553. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Di, K.; Fan, B.; Wu, J.; Gu, X.; Sun, Y.; Khan, A.; Li, P.; Li, Z. microRNAs in Extracellular Vesicles: Sorting Mechanisms, Diagnostic Value, Isolation, and Detection Technology. Front. Bioeng. Biotechnol. 2022, 10, 948959. [Google Scholar] [CrossRef] [PubMed]
- Pineda, B.; Javier, F.; García, S.; Olascoaga, N.K.; Pérez, V.; Cruz, D.; Salazar, A.; Moreno-jiménez, S.; Pedro, N.H.; Márquez-navarro, A.; et al. Malignant Glioma Therapy by Vaccination with Irradiated C6 Cell-Derived Microvesicles Promotes an Antitumoral Immune Response. Mol. Ther. 2019, 27, 1612–1620. [Google Scholar] [CrossRef]
miRNA | Target Genes | Carcinogenic Effect | References |
---|---|---|---|
miR-10b | APAF1, BCL2L11, CDH1, CDKN1A, CDKN2A, CYLD, FOXO3, HOXD10, NOTCH1, PAX6, PTCH1, PTEN, TFAP2C, TP53 | Increased cell proliferation, migration, invasion, and EMT. Reduced cell sensitivity to radiotherapy-induced cell death. | [53,54,55] |
miR-21 | IGFBP3, RECK, TIMP3 | Increased cell migration and invasion. Reduced apoptosis. | [58,59,60] |
miR-25 | MDM2, NEFL | Increased cell viability and proliferation. Reduced apoptosis. | [5,51,61] |
miR-33a | PDE8A, PDL1, PTEN, UVRAG | Increased growth and self-renewal of glioma-initiating cells. Reduced patients’ survival rate. | [63,65] |
miR-93 | ITGB8 | Increased cell survival, growth, sphere formation, and angiogenesis. Reduced apoptosis. | [66] |
miR-125b | BCL2, FZD6, NKIRAS2, TNFAIP3 | Increased cell proliferation, sphere formation, and chemo-resistance. Reduced apoptosis. | [69,71,72] |
miR-141-3p | TP53 | Increased cell proliferation and chemo-resistance. Reduced apoptosis. | [73] |
miR-155-3p | PCDH7, SIX1 | Increased cell proliferation, immune system evasion, and chemo-resistance. Reduced apoptosis. | [55,78] |
miR-182 | BCL2L12, CYLD, HIF2A, MET, PCDH8, STAT3 | Increased cell proliferation, invasion, NF-κB-mediated inflammation, and chemo-resistance. Reduced apoptosis. | [56,87,88] |
miR-210-3p | HIF3A, Iscu | Increased cell proliferation, migration, tumor hypoxia, and chemo-resistance. | [22,89] |
miRNA | Target Genes | Carcinogenic Effect | References |
---|---|---|---|
miR-7 | EGFR, FAK, IRS2, OGT, RAF1, SATB1, TBX2, YY1 | Increased cell viability, migration, invasion, angiogenesis, and EMT. | [32,43,44,45,47,48,90] |
miR-9 | CAMTA1, CREB, FOXP2, JAK1, JAK2, JAK3, LDHA, MAPK14, MAPKAP3, NF1, PTCH1, S1PR1, SMC1A, SOX2, STMN1 | Increased cell proliferation, migration, invasion, aerobic glycolysis, chemo-resistance, and EMT. Reduced apoptosis. | [27,92,94,95,96,97,98] |
miR-29a | CDC42, DNMT3A, DNMT3B, PDGFA, PDGFC, QKI-6, TRAF4 | Increased cell proliferation, migration, and invasion. Reduced apoptosis. | [99,100,101,102,104] |
miR-30a | BDNF, BECN1 | Increased chemo-resistance. | [105,106] |
miR-34a | BCL2, CDK6, MET, MSI1, NOTCH1, NOTCH2, PDGFRA, RICTOR, SIRT1, SMAD4, WNT6, YY1 | Increased cell survival, proliferation, invasion, and chemo-resistance. Reduced apoptosis. | [28,107,108,109,110,111] |
miR-101-3p | GSK3B, PTGS2, SOX9, TRIM44 | Increased cell proliferation, invasion, migration, metastasis, and chemo-resistance. | [114,115,116,117] |
miR-124-3p | AURKA, FOSL2, RHOG, SOS1 | Increased cell proliferation, invasion, and chemo-resistance. Reduced apoptosis. | [119,120,121,122] |
miR-128-3p | BMI1, E2F3, MET, PDGFRα, PTGS2 | Increased cell proliferation, migration, invasion, and chemo-resistance. | [124,125,126] |
miR-142-3p | AKT1, HMGA2, IL6, MGMT, RAC1 | Increased cell proliferation, migration, invasion, chemo-resistance, and immunosuppression. | [127,128,129,130] |
miR-146a-5p | NOTCH1, POU3F2, SMARCA5 | Increased cell survival, proliferation, and stemness. | [134,135,136] |
miR-146b-5p | EGFR, MMP16, TRAF6 | Increased cell proliferation, migration, and invasion. | [137,138,139,140,141] |
miR-181a/b/c/d | FBXO11 (miR-181a), MGMT (miR-181d), RAP1B (all), SP1 (miR-181b) | Increased cell migration, invasion, and chemo-resistance. | [145,146,147,148] |
Sample Type | miRNA(s) | Patient Cohort | Method of Detection | Use | Sensitivity/ Specificity | References |
---|---|---|---|---|---|---|
Blood | miR-128 and miR-342-3p | 20 GB patients vs. 20 age- and sex-matched healthy controls | miRNA microarray and qPCR | Diagnosis | 83%/79% | [149] |
CSF | miR-10b and miR-21 | 19 GB patients vs. 15 patients with non-neoplastic neurological conditions | qPCR | Diagnosis | NA/NA | [150] |
Cisternal CSF | miR-21-5p, miR-218-5p, miR-193b-3p, miR-331-3p, miR-548c-3p, miR-520f-3p, miR-27b-3p, miR-30b-3p, and miR-374a-5p | 10 GB patients vs. 12 healthy controls | qPCR | Diagnosis | 80%/67% | [151] |
CSF-derived exosomes | miR-21 | 9 GB patients | qPCR | Diagnosis | NA/NA | [60] |
Lumbar CSF | miR-21-5p, miR-218-5p, miR-193b-3p, miR-331-3p, miR-548c-3p, miR-520f-3p, miR-27b-3p, miR-30b-3p, and miR-374a-5p | 18 GB patients vs. 20 healthy controls | qPCR | Diagnosis | 28%/95% | [151] |
Plasma | miR-7 | 3 untreated GB patients vs. 3 age- and sex-matched healthy controls | qPCR | Diagnosis | NA/NA | [25] |
Plasma | miR-21, miR-128, and miRi-342-3p | 50 GB patients vs. 10 healthy donors | qPCR | Diagnosis | 90%/100% | [152] |
Plasma | miR-454-3p | 70 glioma patients vs. 70 healthy controls; 70 pre- vs. 70 postoperative glioma patients | qPCR | Diagnosis (glioma vs. healthy) and prognosis (pre- vs. postoperative) | NA/NA | [153] |
Serum | miR-15b-3p, miR-23a, miR-133a, miR-150-3p, miR-197, miR-497, and miR-548b-5p | 122 untreated high-grade astrocytoma (III-IV) patients vs. 123 healthy controls | Small RNAs sequencing and qPCR | Diagnosis | 88%/97.87% | [154] |
Serum | miR-17-5p, miR-125b, and miR-221 | 25 GB patients vs. 20 healthy controls | qPCR | Diagnosis | 96%/100% for miR-17-5p; 95%/88% for miR-125b; 92%/100% for miR-221 | [155] |
Serum | miR-17-5p | 324 treatment-responder GB patients vs. 302 non-responder GB patients | qPCR | Prognosis | 50.5%/100% | [155] |
Serum | miR-221 | 45 treatment-responder GB patients vs. 66 non-responder GB patients | qPCR | Prognosis | 76.5%/100% | [155] |
Serum-derived exosomes | miR-454-3p | Paired pre- vs. postoperative glioma patients | qPCR | Prognosis | NA/NA | [156] |
Serum-derived exosomes | miR-454-3p | 24 glioma patients vs. 24 age- and sex-matched healthy controls | qPCR | Diagnosis | 79.17%/91.67% | [156] |
Serum-derived exosomes | miR-210 | 91 glioma patients vs. 50 healthy controls | qPCR | Diagnosis | 83.2%/95.3% | [157] |
Tissue | miR-454-3p | 24 glioma patients vs. 12 healthy controls | qPCR | Diagnosis | NA/NA | [156] |
Tissue | miR-27a | 19 GB patients vs. 7 surrounding non-tumor tissues | qPCR | Diagnosis | NA/NA | [158] |
Tissue | miR-29a | 147 astrocytic glioma vs. 20 non-tumoral controls | qPCR | Diagnosis | NA/NA | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle-Garcia, D.; Pérez de la Cruz, V.; Flores, I.; Salazar, A.; Pineda, B.; Meza-Sosa, K.F. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int. J. Mol. Sci. 2024, 25, 2464. https://doi.org/10.3390/ijms25052464
Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. International Journal of Molecular Sciences. 2024; 25(5):2464. https://doi.org/10.3390/ijms25052464
Chicago/Turabian StyleValle-Garcia, David, Verónica Pérez de la Cruz, Itamar Flores, Aleli Salazar, Benjamín Pineda, and Karla F. Meza-Sosa. 2024. "Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma" International Journal of Molecular Sciences 25, no. 5: 2464. https://doi.org/10.3390/ijms25052464
APA StyleValle-Garcia, D., Pérez de la Cruz, V., Flores, I., Salazar, A., Pineda, B., & Meza-Sosa, K. F. (2024). Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. International Journal of Molecular Sciences, 25(5), 2464. https://doi.org/10.3390/ijms25052464