Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Risk of Bias
3.2. Gross Examination
3.3. Histological Findings
3.4. Radiological Findings
3.5. Genetics
3.6. Genetic Counselling and Family Screening
4. Discussion
4.1. Macroscopical Findings
4.2. Microscopical Findings
4.3. Radiological Imaging
4.4. Post-Mortem Genetic Tests
4.5. Genetic Counselling and Family Screening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jazayeri, M.A.; Emert, M.P. Sudden Cardiac Death: Who Is at Risk? Med. Clin. N. Am. 2019, 103, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Isbister, J.; Semsarian, C. Sudden cardiac death: An update. Intern. Med. J. 2019, 49, 826–833. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhang, G.; Xue, D.; Xi, M.; Qi, J.; Dong, H. Sudden cardiac death owing to arrhythmogenic right ventricular cardiomyopathy: Two case reports and systematic literature review. Medicine 2017, 96, e8808. [Google Scholar] [CrossRef]
- McCartan, C.; Mason, R.; Jayasinghe, S.R.; Griffiths, L.R. Cardiomyopathy classification: Ongoing debate in the genomics era. Biochem. Res. Int. 2012, 2012, 796926. [Google Scholar] [CrossRef] [PubMed]
- Brieler, J.; Breeden, M.A.; Tucker, J. Cardiomyopathy: An Overview. Am. Fam. Physician 2017, 96, 640–646. [Google Scholar]
- Corrado, D.; Perazzolo Marra, M.; Zorzi, A.; Beffagna, G.; Cipriani, A.; Lazzari, M.; Migliore, F.; Pilichou, K.; Rampazzo, A.; Rigato, I.; et al. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria. Int. J. Cardiol. 2020, 319, 106–114. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Adam, M.P.; Alkuraya, F.S.; Amemiya, A.R.; Bamshad, M.J.; Beck, A.E.; Bennett, J.T.; Bird, L.M.; Carey, J.C.; Chung, B.; et al. A dyadic approach to the delineation of diagnostic entities in clinical genomics. Am. J. Hum. Genet. 2021, 108, 8–15. [Google Scholar] [CrossRef]
- Arbustini, E.; Narula, N.; Dec, G.W.; Reddy, K.S.; Greenberg, B.; Kushwaha, S.; Marwick, T.; Pinney, S.; Bellazzi, R.; Favalli, V.; et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: Endorsed by the World Heart Federation. J. Am. Coll. Cardiol. 2013, 62, 2046–2072. [Google Scholar] [CrossRef]
- Basso, C.; Corrado, D.; Marcus, F.I.; Nava, A.; Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009, 373, 1289–1300. [Google Scholar] [CrossRef]
- Murray, B. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C): A review of molecular and clinical literature. J. Genet. Couns. 2012, 21, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; James, C.A.; Calkins, H. Diagnostic and therapeutic strategies for arrhythmogenic right ventricular dysplasia/cardiomyopathy patient. Europace 2019, 21, 9–21. [Google Scholar] [CrossRef]
- Abouzahir, H.; Regragui, M.; Tolba, C.S.; Belhouss, A.; Karkouri, M.; Benyaich, H. Histopathological diagnosis of arrhythmogenic right ventricular cardiomyopathy: A review of three autopsy cases. Malays. J. Pathol. 2022, 44, 277–283. [Google Scholar] [PubMed]
- Austin, K.M.; Trembley, M.A.; Chandler, S.F.; Sanders, S.P.; Saffitz, J.E.; Abrams, D.J.; Pu, W.T. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat. Rev. Cardiol. 2019, 16, 519–537. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Judge, D.P. Arrhythmogenic Cardiomyopathy. Circ. Res. 2017, 121, 784–802. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, G.; Benincasa, G.; Capasso, E.; Graziano, V.; Russo, M.; Niola, M.; Napoli, C.; Buccelli, C. Autoptic findings of sudden cardiac death (SCD) in patients with arrhythmogenic ventricular cardiomiopathy (AVC) from left ventricle and biventricular involvement. Pathol. Res. Pract. 2020, 216, 153269. [Google Scholar] [CrossRef]
- Towbin, A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef]
- Corrado, D.; Link, M.S.; Calkins, H. Arrhythmogenic Right Ventricular Cardiomyopathy. N. Engl. J. Med. 2017, 376, 61–72. [Google Scholar] [CrossRef]
- Haj Salem, N.; Mesrati, M.A.; Hadhri, R.; Besbes, S.; Belhadj, M.; Aissaoui, A.; Zakhama, A. Chadly Arrhythomgenic right ventricular dysplasia and sudden death: An autopsy and histological study. Ann. Cardiol. Angeiol. 2015, 64, 249–254. [Google Scholar] [CrossRef]
- Thiene, G.; Nava, A.; Corrado, D.; Rossi, L.; Pennelli, N. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 1988, 318, 129–133. [Google Scholar] [CrossRef]
- Sayed, A.; Pal, S.; Poplawska, M.; Aronow, W.S.; Frishman, W.H.; Fuisz, A.; Jacobson, J.T. Arrhythmogenic Right Ventricular Cardiomyopathy Diagnosis. Cardiol. Rev. 2020, 28, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Sen-Chowdhry, S.; Morgan, R.D.; Chambers, J.C.; McKenna, W.J. Arrhythmogenic cardiomyopathy: Etiology, diagnosis, and treatment. Annu. Rev. Med. 2010, 61, 233–253. [Google Scholar] [CrossRef]
- Asimaki, A.; Saffitz, J.E. The role of endomyocardial biopsy in ARVC: Looking beyond histology in search of new diagnostic markers. J. Cardiovasc. Electrophysiol. 2011, 22, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Te Riele, A.S.; James, C.A.; Philips, B.; Rastegar, N.; Bhonsale, A.; Groeneweg, J.A.; Murray, B.; Tichnell, C.; Judge, D.P.; Van Der Heijden, J.F.; et al. Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: The triangle of dysplasia displaced. J. Cardiovasc. Electrophysiol. 2013, 24, 1311–1320. [Google Scholar] [CrossRef]
- Hung, P.F.; Chung, F.P.; Hung, C.L.; Lin, Y.J.; Kuo, T.T.; Liao, J.N.; Chen, Y.Y.; Pan, C.H.; Shaw, K.P.; Chen, S.A. Decreased Expression of Plakophilin-2 and αT-Catenin in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Markers for Diagnosis. Int. J. Mol. Sci. 2022, 23, 5529. [Google Scholar] [CrossRef]
- Puranik, R.; Gray, B.; Lackey, H.; Yeates, L.; Parker, G.; Duflou, J.; Semsarian, C. Comparison of conventional autopsy and magnetic resonance imaging in determining the cause of sudden death in the young. J. Cardiovasc. Magn. Reson. 2014, 16, 44. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, C.; Schweitzer, W.; Thali, M.; Yen, K.; Aghayev, E.; Sonnenschein, M.; Vock, P.; Dirnhofer, R. Virtopsy: Postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci. Int. 2005, 149, 11–23. [Google Scholar] [CrossRef]
- Hashimura, H.; Kimura, F.; Ishibashi-Ueda, H.; Morita, Y.; Higashi, M.; Nakano, S.; Iguchi, A.; Uotani, K.; Sugimura, K.; Naito, H. Radiologic-Pathologic Correlation of Primary and Secondary Cardiomyopathies: MR Imaging and Histopathologic Findings in Hearts from Autopsy and Transplantation. Radiographics 2017, 37, 719–736. [Google Scholar] [CrossRef]
- Sato, T.; Nishio, H.; Suzuki, K. Identification of arrhythmogenic right ventricular cardiomyopathy-causing gene mutations in young sudden unexpected death autopsy cases. J. Forensic Sci. 2015, 60, 457–461. [Google Scholar] [CrossRef]
- Cittadini, F.; De Giovanni, N.; Alcalde, M.; Partemi, S.; Carbone, A.; Campuzano, O.; Brugada, R.; Oliva, A. Genetic and toxicologic investigation of Sudden Cardiac Death in a patient with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) under cocaine and alcohol effects. Int. J. Legal Med. 2015, 129, 89–96. [Google Scholar] [CrossRef]
- Zhang, M.; Tavora, F.; Oliveira, J.B.; Li, L.; Franco, M.; Fowler, D.; Zhao, Z.; Burke, A. PKP2 mutations in sudden death from arrhythmogenic right ventricular cardiomyopathy (ARVC) and sudden unexpected death with negative autopsy (SUDNA). Circ. J. 2012, 76, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tang, S.; Peng, L.; Chen, Y.; Cheng, J. Molecular Autopsy of Desmosomal Protein Plakophilin-2 in Sudden Unexplained Nocturnal Death Syndrome. J. Forensic Sci. 2016, 61, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Mak, C.M.; Mok, N.S.; Shum, H.C.; Siu, W.K.; Chong, Y.K.; Lee, H.H.C.; Fong, N.C.; Tong, S.F.; Lee, K.W.; Ching, C.K.; et al. Sudden arrhythmia death syndrome in young victims: A five-year retrospective review and two-year prospective molecular autopsy study by next-generation sequencing and clinical evaluation of their first-degree relatives. Hong Kong Med. J. 2019, 25, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Choung, H.Y.G.; Vyas, M.; Jacoby, D.; West, B. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) in a young female athlete at 36 weeks gestation: A case report. Pathol. Res. Pract. 2017, 213, 1302–1305. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, A.M.; Havulinna, A.S.; Noseworthy, P.A.; Jula, A.; Karhunen, P.J.; Perola, M.; Newton-Cheh, C.; Salomaa, V.; Kontula, K. Prevalence of arrhythmia-associated gene mutations and risk of sudden cardiac death in the Finnish population. Ann. Med. 2013, 45, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Hata, Y.; Kinoshita, K.; Mizumaki, K.; Yamaguchi, Y.; Hirono, K.; Ichida, F.; Takasaki, A.; Mori, H.; Nishida, N. Postmortem genetic analysis of sudden unexplained death syndrome under 50 years of age: A next-generation sequencing study. Heart Rhythm 2016, 13, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Junttila, M.J.; Holmström, L.; Pylkäs, K.; Mantere, T.; Kaikkonen, K.; Porvari, K.; Kortelainen, M.L.; Pakanen, L.; Kerkelä, R.; Myerburg, R.J.; et al. Primary Myocardial Fibrosis as an Alternative Phenotype Pathway of Inherited Cardiac Structural Disorders. Circulation 2018, 137, 2716–2726. [Google Scholar] [CrossRef] [PubMed]
- Hertz, C.L.; Christiansen, S.L.; Ferrero-Miliani, L.; Dahl, M.; Weeke, P.E.; LuCamp; Ottesen, G.L.; Frank-Hansen, R.; Bundgaard, H.; Morling, N. Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int. J. Legal Med. 2016, 130, 91–102. [Google Scholar] [CrossRef]
- Harper, A.R.; Goel, A.; Grace, C.; Thomson, K.L.; Petersen, S.E.; Xu, X.; Waring, A.; Ormondroyd, E.; Kramer, C.M.; Ho, C.Y.; et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet. 2021, 53, 135–142. [Google Scholar] [CrossRef]
- Kumuthini, J.; Zick, B.; Balasopoulou, A.; Chalikiopoulou, C.; Dandara, C.; El-Kamah, G.; Findley, L.; Katsila, T.; Li, R.; Maceda, E.B.; et al. The clinical utility of polygenic risk scores in genomic medicine practices: A systematic review. Hum. Genet. 2022, 141, 1697–1704. [Google Scholar] [CrossRef]
- Arbustini, E.; Behr, E.R.; Carrier, L.; van Duijn, C.; Evans, P.; Favalli, V.; van der Harst, P.; Haugaa, K.H.; Jondeau, G.; Kääb, S.; et al. Interpretation and actionability of genetic variants in cardiomyopathies: A position statement from the European Society of Cardiology Council on cardiovascular genomics. Eur. Heart J. 2022, 43, 1901–1916. [Google Scholar] [CrossRef]
- Argirò, A.; Ho, C.; Day, S.M.; van der Velden, J.; Cerbai, E.; Saberi, S.; Tardiff, J.C.; Lakdawala, N.K.; Olivotto, I. Sex-Related Differences in Genetic Cardiomyopathies. J. Am. Heart Assoc. 2022, 11, e024947. [Google Scholar] [CrossRef]
- Dalal, D.; James, C.; Devanagondi, R.; Tichnell, C.; Tucker, A.; Prakasa, K.; Spevak, P.J.; Bluemke, D.A.; Abraham, T.; Russell, S.D.; et al. J. Penetrance of mutations in plakophilin-2 among families with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am. Coll. Cardiol. 2006, 48, 1416–1424. [Google Scholar] [CrossRef]
- Hansen, B.L.; Jacobsen, E.M.; Kjerrumgaard, A.; Tfelt-Hansen, J.; Winkel, B.G.; Bundgaard, H.; Christensen, A.H. Diagnostic yield in victims of sudden cardiac death and their relatives. Europace 2020, 22, 964–971. [Google Scholar] [CrossRef]
- Angelini, A.; Thiene, G.; Boffa, G.M.; Calliari, I.; Daliento, L.; Valente, M.; Chioin, R.; Nava, A.; Volta, S.D.; Calliari, I. Endomyocardial biopsy in right ventricular cardiomyopathy. Int. J. Cardiol. 1993, 40, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Dalal, P.; Fujisic, K.; Hupart, P.; Schwietzer, P. Arrhythmogenic right ventricular dysplasia: A review. Cardiology 1994, 85, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Dettmeyer, R.B. Forensic Histopathology. Fundamentals and Perspectives; Springer: Berlin/Heidelberg, Germany, 2011; pp. 266–267. [Google Scholar]
- Asimaki, A.; Tandri, H.; Huang, H.; Halushka, M.K.; Gautam, S.; Basso, C.; Thiene, G.; Tsatsopoulou, A.; Protonotarios, N.; McKenna, W.J.; et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 2009, 360, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, L.; Chen, Z.; Chen, X.; Song, J. Remodelling of myocardial intercalated disc protein connexin 43 causes increased susceptibility to malignant arrhythmias in ARVC/D patients. Forensic Sci. Int. 2017, 275, 14–22. [Google Scholar] [CrossRef]
- Ermakov, S.; Ursell, P.C.; Johnson, C.J.; Meadows, A.; Zhao, S.; Marcus, G.M.; Scheinman, M. Plakoglobin immunolocalization as a diagnostic test for arrhythmogenic right ventricular cardiomyopathy. Pacing Clin. Electrophysiol. 2014, 37, 1708–1716. [Google Scholar] [CrossRef]
- Munkholm, J.; Christensen, A.H.; Svendsen, J.H.; Andersen, C.B. Usefulness of immunostaining for plakoglobin as a diagnostic marker of arrhythmogenic right ventricular cardiomyopathy. Am. J. Cardiol. 2012, 109, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Mondello, C.; Ventura Spagnolo, E.; Cardia, L.; Ventura Spagnolo, O.; Gualniera, P.; Argo, A. An unusual case of sudden cardiac death during sexual intercourse. Med. Leg. J. 2018, 86, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Sebire, N.J.; Ashworth, M.T.; Schievano, S.; Scott, R.J.; Wade, A.; Chitty, L.S.; Roberston, N.; Thayyil, S. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: A masked comparison study with conventional autopsy. Circulation 2014, 129, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.; Tandri, H.; Rodriguez, E.R.; Nasir, K.; Rutberg, J.; Calkins, H.; Lima, J.A.; Bluemke, D.A. Arrhythmogenic right ventricular dysplasia: Ex vivo and in vivo fat detection with black-blood MR imaging. Radiology 2004, 232, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Thayyil, S.; Chandrasekaran, M.; Chitty, L.S.; Wade, A.; Skordis-Worrall, J.; Bennett-Britton, I.; Cohen, M.; Withby, E.; Sebire, N.J.; Robertson, N.J.; et al. Diagnostic accuracy of post-mortem magnetic resonance imaging in fetuses, children and adults: A systematic review. Eur. J. Radiol. 2010, 75, e142–e148. [Google Scholar] [CrossRef] [PubMed]
- Semsarian, C.; Hamilton, R.M. Key role of the molecular autopsy in sudden unexpected death. Heart Rhythm 2012, 9, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.; Daubert, J.P.; et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed modification of the task force criteria. Circulation 2010, 121, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Spendlove, D.; Bolliger, S.; Christe, A.; Oesterhelweg, L.; Grabherr, S.; Thali, M.J.; Gygax, E. Postmortem whole-body CT angiography: Evaluation of two contrast media solutions. AJR Am. J. Roentgenol. 2008, 190, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Takei, H.; Sano, R.; Takahashi, Y.; Takahashi, K.; Kominato, Y.; Tokue, H.; Shimada, T.; Awata, S.; Hirasawa, S.; Ohta, N. Usefulness of coronary postmortem computed tomography angiography to detect lesions in the coronary artery and myocardium in cases of sudden death. Leg. Med. 2018, 30, 46–51. [Google Scholar] [CrossRef]
- Roberts, I.S.; Benamore, R.E.; Peebles, C.; Roobottom, C.; Traill, Z.C. Technical report: Diagnosis of coronary artery disease using minimally invasive autopsy: Evaluation of a novel method of post-mortem coronary CT angiography. Clin. Radiol. 2011, 66, 645–650. [Google Scholar] [CrossRef]
- Roberts, I.S.; Benamore, R.E.; Benbow, E.W.; Lee, S.H.; Harris, J.N.; Jackson, A.; Mallett, S.; Patankar, T.; Peebles, C.; Roobottom, C.; et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: A validation study. Lancet 2012, 379, 136–142. [Google Scholar] [CrossRef]
- Thali, M.J.; Yen, K.; Schweitzer, W.; Vock, P.; Boesch, C.; Ozdoba, C.; Schroth, G.; Ith, M.; Sonnenschein, M.; Doernhoefer, T.; et al. Virtopsy, a new imaging horizon in forensic pathology: Virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)--a feasibility study. J. Forensic Sci. 2003, 48, 386–403. [Google Scholar] [CrossRef]
- Stassi, C.; Mondello, C.; Baldino, G.; Cardia, L.; Gualniera, P.; Calapai, F.; Sapienza, D.; Asmundo, A.; Ventura Spagnolo, E. State of the Art on the Role of Postmortem Computed Tomography Angiography and Magnetic Resonance Imaging in the Diagnosis of Cardiac Causes of Death: A Narrative Review. Tomography 2022, 8, 961–973. [Google Scholar] [CrossRef]
- Protonotarios, N.; Tsatsopoulou, A. Naxos disease and Carvajal syndrome: Cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc. Pathol. 2004, 13, 185–194. [Google Scholar] [CrossRef]
- McKoy, G.; Protonotarios, N.; Crosby, A.; Tsatsopoulou, A.; Anastasakis, A.; Coonar, A.; Norman, M.; Baboonian, C.; Jeffery, S.; McKenna, W.J. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000, 355, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Medeiros-Domingo, A.; Gasperetti, A.; Akdis, D.; Berger, W.; James, C.A.; Ruschitzka, F.; Brunckhorst, C.B.; Duru, F.; Saguner, A.M. Impact of Genetic Variant Reassessment on the Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy Based on the 2010 Task Force Criteria. Circ. Genom. Precis. Med. 2021, 14, e003047. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Marey, I.; Fressart, V.; Rambaud, C.; Fornes, P.; Martin, L.; Grotto, S.; Alembik, Y.; Gorka, H.; Millat, G.; Gandjbakhch, E.; et al. Clinical impact of post-mortem genetic testing in cardiac death and cardiomyopathy. Open Med. 2020, 15, 435–446. [Google Scholar] [CrossRef]
- Forzese, E.; Pitrone, C.; Cianci, V.; Sapienza, D.; Ieni, A.; Tornese, L.; Cianci, A.; Gualniera, P.; Asmundo, A.; Mondello, C. An Insight into Kounis Syndrome: Bridging Clinical Knowledge with Forensic Perspectives. Life 2024, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Yu, C.H.; Hsueh, C.H.; Yang, C.T.; Juang, J.M.; Hwang, J.J.; Lin, J.L.; Lai, L.P. Arrhythmogenic right ventricular dysplasia: Clinical characteristics and identification of novel desmosome gene mutations. J. Formos. Med. Assoc. 2008, 107, 548–558. [Google Scholar] [CrossRef]
- Cann, F.; Corbett, M.; O’Sullivan, D.; Tennant, S.; Hailey, H.; Grieve, J.H.; Broadhurst, P.; Rankin, R.; Dean, J.C. Phenotype-driven molecular autopsy for sudden cardiac death. Clin. Genet. 2017, 91, 22–29. [Google Scholar] [CrossRef]
- Hermida, A.; Fressart, V.; Hidden-Lucet, F.; Donal, E.; Probst, V.; Deharo, J.C.; Chevalier, P.; Klug, D.; Mansencal, N.; Delacretaz, E.; et al. High risk of heart failure associated with desmoglein-2 mutations compared to plakophilin-2 mutations in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur. J. Heart Fail. 2019, 21, 792–800. [Google Scholar] [CrossRef]
- Smith, E.D.; Lakdawala, N.K.; Papoutsidakis, N.; Aubert, G.; Mazzanti, A.; McCanta, A.C.; Agarwal, P.P.; Arscott, P.; Dellefave-Castillo, L.M.; Vorovich, E.E.; et al. Desmoplakin Cardiomyopathy, a Fibrotic and Inflammatory Form of Cardiomyopathy Distinct From Typical Dilated or Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation 2020, 141, 1872–1884. [Google Scholar] [CrossRef]
- Larsen, M.K.; Nissen, P.H.; Berge, K.E.; Leren, T.P.; Kristensen, I.B.; Jensen, H.K.; Banner, J. Molecular autopsy in young sudden cardiac death victims with suspected cardiomyopathy. Forensic Sci. Int. 2012, 219, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sato, P.Y.; Musa, H.; Coombs, W.; Guerrero-Serna, G.; Patiño, G.A.; Taffet, S.M.; Isom, L.L.; Delmar, M. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 2009, 105, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Cerrone, M.; Lin, X.; Zhang, M.; Agullo-Pascual, E.; Pfenniger, A.; Chkourko Gusky, H.; Novelli, V.; Kim, C.; Tirasawadichai, T.; Judge, D.P.; et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 2014, 129, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Cerrone, M.; Delmar, M. Desmosomes and the sodium channel complex: Implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc. Med. 2014, 24, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Cianci, V.; Forzese, E.; Sapienza, D.; Cardia, L.; Cianci, A.; Germanà, A.; Tornese, L.; Ieni, A.; Gualniera, P.; Asmundo, A.; et al. Morphological and Genetic Aspects for Post-Mortem Diagnosis of Hypertrophic Cardiomyopathy: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 1275. [Google Scholar] [CrossRef] [PubMed]
- Thiene, G.; Corrado, D.; Basso, C. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Orphanet J. Rare Dis. 2007, 2, 45. [Google Scholar] [CrossRef] [PubMed]
- Paldino, A.; Dal Ferro, M.; Stolfo, D.; Gandin, I.; Medo, K.; Graw, S.; Gigli, M.; Gagno, G.; Zaffalon, D.; Castrichini, M.; et al. Prognostic Prediction of Genotype vs Phenotype in Genetic Cardiomyopathies. J. Am. Coll. Cardiol. 2022, 80, 1981–1994. [Google Scholar] [CrossRef]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.H.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef]
- Paludan-Müller, C.; Ahlberg, G.; Ghouse, J.; Svendsen, J.H.; Haunsø, S.; Olesen, M.S. Analysis of 60 706 Exomes Questions the Role of De Novo Variants Previously Implicated in Cardiac Disease. Circ. Cardiovasc. Genet. 2017, 10, e001878. [Google Scholar] [CrossRef] [PubMed]
- Atteya, G.; Lampert, R. Sudden Cardiac Death in Genetic Cardiomyopathies. Card Electrophysiol. Clin. 2017, 9, 581–603. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, J.A.; Bhonsale, A.; James, C.A.; te Riele, A.S.; Dooijes, D.; Tichnell, C.; Murray, B.; Wiesfeld, A.C.; Sawant, A.C.; Kassamali, B.; et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ. Cardiovasc. Genet. 2015, 8, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Svensson, A.; Platonov, P.G.; Haugaa, K.H.; Zareba, W.; Jensen, H.K.; Bundgaard, H.; Gilljam, T.; Madsen, T.; Hansen, J.; Dejgaard, L.A.; et al. Genetic Variant Score and Arrhythmogenic Right Ventricular Cardiomyopathy Phenotype in Plakophilin-2 Mutation Carriers. Cardiology 2021, 146, 763–771. [Google Scholar] [CrossRef]
Authors | Year | Sample (n) | Gross/Microscopic Data | Type of Sample | Gene/Nucleotide or Amino Acid Change | Type of Mutation |
---|---|---|---|---|---|---|
Sato T. et al. [29] | 2015 | 15 SCD (23.4 ± 8.8 years) | -/- | Blood | Case 1: DSP/R2639Q (c.7916G>A) | B |
-/- | Case 2: DSP/V1639M (c.4915G>A) | Novel—B | ||||
-/- | Case 3: DSP/A206T (c.616G>A) | Novel—B | ||||
Cittadini F. et al. [30] | 2014 | 1 (41 year) | +/+ | Blood | DSG2/p.Val920Gly (c.2759T>G) | P |
Zhang M. et al. [31] | 2016 | 25 ARVC and 25 SCD | +/+ and -/- | Heart | Case 1 (ARVC): PKP2 187_188insC | Novel—D |
Case 2 (ARVC): PKP2/76G>A | B | |||||
Case 3 (ARVC): PKP2/1951C>T; 76G>A | D; B | |||||
Case 4 (ARVC): PKP2/2062T>C | D | |||||
Case 5 (ARVC): PKP2/805G>A | Novel—B | |||||
Case 6 (ARVC): PKP2/1925–1927 ACA del | Novel—D | |||||
Case 1 (SCD): PKP2/1993C>T | Novel—B | |||||
Case 2 (SCD): PKP2/1592T>G | B | |||||
Case 3 (SCD): PKP2/1016 T>C | B | |||||
Case 4 (SCD): PKP2/648_651delATAC | D | |||||
Case 1 (SCD): PKP2/1618 G>A | D | |||||
Case 1 (SCD): PKP2/1843T>A | D | |||||
Huang L. et al. [32] | 2016 | 119 SUNDS (18 to 52 years) | -/- | Blood | Case 1: PKP2/p.Ala159Thr (c.475G>A); p.Gly265Glu (c.794G>A); p.Thr723Thr (c.2169A>G) | NR |
Mak C.M. et al. [33] | 2019 | 10 SCD | +/+ | Blood | Case 1: DSC2/p.Gly790Arg (c.2368G>A) | Novel—P |
Case 2: No Molecular Autopsy findings | ||||||
Case 3: No Molecular Autopsy findings | ||||||
Choung et al. [34] | 2017 | 1 SCD | +/+ | NR | MYBPC3 p. Glu1179Lys | VUS |
Lahtinen et al. [35] | 2013 | 112 subjects | NR | Blood | PKP2/p.Q59L (n. 85 cases) | NR |
PKP2/p.Q62K (n. 12 cases) | ||||||
DSG2/p.3059_3062delAGAG (n. 5 cases) | ||||||
DSP p.T1373A (n. 10 cases) | ||||||
Hata Y. [36] | 2015 | 25 SUDS | -/+ | Blood | Case 1: DSG2 p.R824C | P |
-/+ | Case 2: PKP2 p.P717L | hpP | ||||
-/+ | Case 3: JUP p.A143T | hpP | ||||
-/- | Case 4: DSG2 p.P927L | hpP | ||||
Junttila M.J. [37] | 2018 | 96 SCD | NR | Heart | Case 1: PKP2_1114G>C | LP |
Case 2: DSP_2422C>T | LP | |||||
Case 3: DSP_6295-6296CC>AT | VUS | |||||
Case 4: DSP_6307A>G | VUS | |||||
Case 5: DSG2_2906C>T | VUS | |||||
Hertz C.I. [38] | 2015 | 72 SCD (n. 14 ARVC) | +/+ | Blood | Case 1: SCN5A/p.V1597M (c.4789G>A) | NR |
Case 2: LMNA/p. T621M (c.1862C>T) | ||||||
Case 3: LDB3/p. Q157P (c.1550A>C) | ||||||
Case 4: DSP/p. N1306S (c.3917A>G) | ||||||
Case 5: DSP/p. R925Q (c.2774G>A) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianci, V.; Forzese, E.; Sapienza, D.; Cianci, A.; Ieni, A.; Germanà, A.; Guerrera, M.C.; Omero, F.; Speranza, D.; Cracò, A.; et al. Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 2467. https://doi.org/10.3390/ijms25052467
Cianci V, Forzese E, Sapienza D, Cianci A, Ieni A, Germanà A, Guerrera MC, Omero F, Speranza D, Cracò A, et al. Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(5):2467. https://doi.org/10.3390/ijms25052467
Chicago/Turabian StyleCianci, Vincenzo, Elena Forzese, Daniela Sapienza, Alessio Cianci, Antonio Ieni, Antonino Germanà, Maria Cristina Guerrera, Fausto Omero, Desirèe Speranza, Annalisa Cracò, and et al. 2024. "Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review" International Journal of Molecular Sciences 25, no. 5: 2467. https://doi.org/10.3390/ijms25052467
APA StyleCianci, V., Forzese, E., Sapienza, D., Cianci, A., Ieni, A., Germanà, A., Guerrera, M. C., Omero, F., Speranza, D., Cracò, A., Asmundo, A., Gualniera, P., & Mondello, C. (2024). Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review. International Journal of Molecular Sciences, 25(5), 2467. https://doi.org/10.3390/ijms25052467