Type I IFN in Glomerular Disease: Scarring beyond the STING
Abstract
:1. Introduction
2. IFN-I Induction in Sterile Inflammation
3. cGAS/STING Activation in the Kidney
4. RLR Activation in the Kidney
5. TLR Activation in the Kidney
6. Effect of IFN-I in Glomerular Cells
7. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chung, K.W.; Dhillon, P.; Huang, S.; Sheng, X.; Shrestha, R.; Qiu, C.; Kaufman, B.A.; Park, J.; Pei, L.; Baur, J.; et al. Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis. Cell Metab. 2019, 30, 784–799.e5. [Google Scholar] [CrossRef]
- Mitrofanova, A.; Fontanella, A.; Tolerico, M.; Mallela, S.; David, J.M.; Zuo, Y.; Boulina, M.; Kim, J.-J.; Santos, J.; Ge, M.; et al. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. J. Am. Soc. Nephrol. 2022, 33, 2153–2173. [Google Scholar] [CrossRef]
- Zang, N.; Cui, C.; Guo, X.; Song, J.; Hu, H.; Yang, M.; Xu, M.; Wang, L.; Hou, X.; He, Q.; et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 2022, 25, 105145. [Google Scholar] [CrossRef]
- Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? Annu. Rev. Virol. 2019, 6, 567–584. [Google Scholar] [CrossRef]
- Crow, Y.J.; Lebon, P.; Casanova, J.-L.; Gresser, I. A Brief Historical Perspective on the Pathological Consequences of Excessive Type I Interferon Exposure In vivo. J. Clin. Immunol. 2018, 38, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Crow, Y.J.; Stetson, D.B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 2022, 22, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Tinawi, M. Update on the etiology, classification, and management of glomerular diseases. Avicenna J. Med. 2020, 10, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.-J.; Kitching, A.R.; Leung, N.; Romagnani, P. Glomerulonephritis: Immunopathogenesis and immunotherapy. Nat. Rev. Immunol. 2023, 23, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.H.; Kang, M.; Park, S.; Cho, J.M.; Cho, S.; Kim, Y.; Lee, S.; Lee, H.; Joo, K.-W.; Kim, Y.S.; et al. Spatially resolved transcriptomic profiling for glomerular and tubulointerstitial gene expression in C3 glomerulopathy. medRxiv 2023, 23292064. [Google Scholar]
- Yu, B.C.; Moon, A.; Lee, K.H.; Oh, Y.S.; Park, M.Y.; Choi, S.J.; Kim, J.K. Minimal Change Disease Is Associated with Mitochondrial Injury and STING Pathway Activation. J. Clin. Med. 2022, 11, 557. [Google Scholar] [CrossRef]
- Hodgin, J.B.; Mariani, L.H.; Zee, J.; Liu, Q.; Smith, A.R.; Eddy, S.; Hartman, J.; Hamidi, H.; Gaut, J.P.; Palmer, M.B.; et al. Quanti-fication of Glomerular Structural Lesions: Associations with Clinical Outcomes and Transcriptomic Profiles in Nephrotic Syndrome. Am. J. Kidney Dis. 2022, 79, 807–819.e1. [Google Scholar] [CrossRef]
- Menon, R.; Otto, E.A.; Hoover, P.; Eddy, S.; Mariani, L.; Godfrey, B.; Berthier, C.C.; Eichinger, F.; Subramanian, L.; Harder, J.; et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. J. Clin. Investig. 2020, 5, 133267. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, C.; Lin, W.; Meng, T.; Ooi, J.D.; Eggenhuizen, P.J.; Tang, R.; Xiao, G.; Jin, P.; Ding, X.; et al. Single-Cell Profiling Reveals Transcriptional Signatures and Cell-Cell Crosstalk in An-ti-PLA2R Positive Idiopathic Membranous Nephropathy Patients. Front. Immunol. 2021, 12, 683330. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zheng, Y.; Li, D.; Hong, Q.; Zhang, M.; Li, Q.; Fu, B.; Wu, L.; Wang, X.; Shen, W.; et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses. EBioMedicine 2021, 70, 103477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liao, Y.; Hang, Q.; Sun, D.; Liu, Y. GBP2 acts as a member of the interferon signalling pathway in lupus nephritis. BMC Immunol. 2022, 23, 44. [Google Scholar] [CrossRef]
- Irifuku, T.; Okimoto, K.; Masuzawa, N.; Masaki, T. Nephrotic-range proteinuria and membranoproliferative glomerulone-phritis-like pattern caused by interferon-β1b in a patient with multiple sclerosis. CEN Case Rep. 2023, 12, 275–280. [Google Scholar] [CrossRef]
- Gianassi, I.; Allinovi, M.; Caroti, L.; Cirami, L.C. Broad spectrum of interferon-related nephropathies-glomerulonephritis, systemic lupus erythematosus-like syndrome and thrombotic microangiopathy: A case report and review of literature. World J. Nephrol. 2019, 8, 109–117. [Google Scholar]
- Markowitz, G.S.; Nasr, S.H.; Stokes, M.B.; D’Agati, V.D. Treatment with IFN-α, -β, or -γ is associated with collapsing focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 607–615. [Google Scholar] [CrossRef]
- Kayar, Y.; Kayar, N.B.; Alpay, N.; Hamdard, J.; Ekinci, I.; Emegil, S.; Soydas, R.B.; Baysal, B. Interferon Induced Focal Segmental Glomerulosclerosis. Case Rep. Nephrol. 2016, 2016, 6967378. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Xia, Y.; Yang, J. Systemic inflammation and chronic kidney disease in a patient due to the RNASEH2B defect. Pediatr. Rheumatol. 2021, 19, 9. [Google Scholar] [CrossRef]
- Abid, Q.; Rocha, A.B.; Larsen, C.P.; Schulert, G.; Marsh, R.; Yasin, S.; Patty-Resk, C.; Valentini, R.P.; Adams, M.; Baracco, R. APOL1-Associated Collapsing Focal Segmental Glomerulosclerosis in a Patient with Stimulator of Interferon Genes (STING)-Associated Vasculopathy with Onset in Infancy (SAVI). Am. J. Kidney Dis. 2020, 75, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Staels, F.; Betrains, A.; Doubel, P.; Willemsen, M.; Cleemput, V.; Vanderschueren, S.; Corveleyn, A.; Meyts, I.; Sprangers, B.; Crow, Y.J.; et al. Adult-Onset ANCA-Associated Vasculitis in SAVI: Extension of the Phenotypic Spectrum, Case Report and Review of the Literature. Front. Immunol. 2020, 11, 575219. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Zhou, T.; Xu, N.; Yin, Z.; Zhu, X.; Zhang, Y.; Cui, Y.; Ma, J.; Tang, Y.; Cheng, Z.; et al. Integrative Functional Genomics Identifies Systemic Lupus Erythematosus Causal Genetic Variant in the IRF5 Risk Locus. Arthritis Rheumatol. 2023, 75, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Fairhurst, A.-M.; Xie, C.; Fu, Y.; Wang, A.; Boudreaux, C.; Zhou, X.J.; Cibotti, R.; Coyle, A.; Connolly, J.E.; Wakeland, E.K.; et al. Type I Interferons Produced by Resident Renal Cells May Promote End-Organ Disease in Autoantibody-Mediated Glomerulonephritis. J. Immunol. 2009, 183, 6831–6838. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, A.; Angelotti, M.L.; Mulay, S.R.; Kulkarni, O.O.; Demleitner, J.; Dietrich, A.; Sagrinati, C.; Ballerini, L.; Peired, A.; Shankland, S.J.; et al. The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: Implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am. J. Pathol. 2013, 183, 431–440. [Google Scholar] [CrossRef]
- Nacionales, D.C.; Kelly-Scumpia, K.M.; Lee, P.Y.; Weinstein, J.S.; Lyons, R.; Sobel, E.; Satoh, M.; Reeves, W.H. Deficiency of the type I interferon receptor protects mice from experimental lupus. Arthritis Rheum. 2007, 56, 3770–3783. [Google Scholar] [CrossRef] [PubMed]
- Okude, H.; Ori, D.; Kawai, T. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front. Immunol. 2021, 11, 625833. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.; Yu, C.-H.; Steiner, A.; Ebstein, F.; Baker, P.J.; Jarur-Chamy, V.; Schaale, K.H.; Laohamonthonkul, P.; Kong, K.; Calleja, D.J.; et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci. Immunol. 2022, 7, eabi6763. [Google Scholar] [CrossRef]
- Hwang, I.; Uchida, H.; Dai, Z.; Li, F.; Sanchez, T.; Locasale, J.W.; Cantley, L.C.; Zheng, H.; Paik, J. Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nat. Commun. 2021, 12, 640. [Google Scholar] [CrossRef]
- Miller, K.N.; Victorelli, S.G.; Salmonowicz, H.; Dasgupta, N.; Liu, T.; Passos, J.F.; Adams, P.D. Cytoplasmic DNA: Sources, sensing, and role in aging and disease. Cell 2021, 184, 5506–5526. [Google Scholar] [CrossRef]
- Chen, Y.G.; Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 2022, 23, 286–301. [Google Scholar] [CrossRef]
- Yoshimoto, N.; Hayashi, K.; Hishikawa, A.; Hashiguchi, A.; Nakamichi, R.; Sugita-Nishimura, E.; Yoshida-Hama, E.; Azegami, T.; Nakayama, T.; Itoh, H. Significance of podocyte DNA damage and glomerular DNA methylation in CKD patients with proteinuria. Hypertens. Res. 2023, 46, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Ott, U.; Aschoff, A.; Pocock, J.; Funfstuck, R.; Jirikowski, G.; Stein, G.; Wolf, G. DNA fragmentation in chronic glomerulone-phritis: An immunohistological analysis. Nephron Clin. Pract. 2007, 105, c18–c28. [Google Scholar] [CrossRef]
- Nakamichi, R.; Hishikawa, A.; Chikuma, S.; Yoshimura, A.; Sasaki, T.; Hashiguchi, A.; Abe, T.; Tokuhara, T.; Yoshimoto, N.; Nishimura, E.S.; et al. DNA-damaged podocyte-CD8 T cell crosstalk exacerbates kidney injury by altering DNA methylation. Cell Rep. 2023, 42, 112302. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, P.; Mulholland, K.A.; Hu, H.; Park, J.; Sheng, X.; Abedini, A.; Liu, H.; Vassalotti, A.; Wu, J.; Susztak, K. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nat. Commun. 2023, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019, 566, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.R.; Jiang, L.; Li, Y.; Xiang, C.G.; Liu, Z.Y.; Li, M.S.; Zhang, H.; Zhou, X.J. Kidney-Predominant Thrombotic Microangiopathy Associated with TREX1 Frameshift Mutation. Kidney Int. Rep. 2023, 8, 2172–2176. [Google Scholar] [CrossRef]
- Li, Y.; Slavik, K.M.; Toyoda, H.C.; Morehouse, B.R.; Mann, C.C.d.O.; Elek, A.; Levy, S.; Wang, Z.; Mears, K.S.; Liu, J.; et al. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 2023, 186, 3261–3276.e20. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Ralph, E.C.; Shanker, S.; Wang, H.; Byrnes, L.J.; Horst, R.; Wong, J.; Brault, A.; Dumlao, D.; Smith, J.F.; et al. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition. Protein Sci. 2017, 26, 2367–2380. [Google Scholar] [CrossRef]
- Shang, G.; Zhang, C.; Chen, Z.J.; Bai, X.C.; Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019, 567, 389–393. [Google Scholar] [CrossRef]
- Motani, K.; Saito-Tarashima, N.; Nishino, K.; Yamauchi, S.; Minakawa, N.; Kosako, H. The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER. Cell Rep. 2022, 41, 111868. [Google Scholar] [CrossRef]
- Wu, J.; Raman, A.; Coffey, N.J.; Sheng, X.; Wahba, J.; Seasock, M.J.; Ma, Z.; Beckerman, P.; Laczkó, D.; Palmer, M.B.; et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Investig. 2021, 131, jci136329. [Google Scholar] [CrossRef]
- Davis, S.E.; Khatua, A.K.; Popik, W. Nucleosomal dsDNA Stimulates APOL1 Expression in Human Cultured Podocytes by Activating the cGAS/IFI16-STING Signaling Pathway. Sci. Rep. 2019, 9, 15485. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tao, S.; Xu, Z.; Ren, Y.; Xiang, W.; He, X. SMURF1 activates the cGAS/STING/IFN-1 signal axis by mediating YY1 ubiquitination to accelerate the progression of lupus nephritis. Autoimmunity 2023, 56, 2281235. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Casalena, G.; Shi, S.; Yu, L.; Ebefors, K.; Sun, Y.; Zhang, W.; D’Agati, V.; Schlondorff, D.; Haraldsson, B.; et al. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility. Diabetes 2017, 66, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Casalena, G.A.; Yu, L.; Gil, R.; Rodriguez, S.; Sosa, S.; Janssen, W.; Azeloglu, E.U.; Leventhal, J.S.; Daehn, I.S. The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. Cell Commun. Signal. 2020, 18, 105. [Google Scholar] [CrossRef] [PubMed]
- Daehn, I.; Casalena, G.; Zhang, T.; Shi, S.; Fenninger, F.; Barasch, N.; Yu, L.; D’Agati, V.; Schlondorff, D.; Kriz, W.; et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Investig. 2014, 124, 1608–1621. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, Z.; Raman, A.; Beckerman, P.; Dhillon, P.; Mukhi, D.; Palmer, M.; Chen, H.C.; Cohen, C.R.; Dunn, T.; et al. APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity 2021, 54, 2632–2649.e6. [Google Scholar] [CrossRef] [PubMed]
- Hägele, H.; Allam, R.; Pawar, R.D.; Reichel, C.A.; Krombach, F.; Anders, H.-J. Double-Stranded DNA Activates Glomerular Endothelial Cells and Enhances Albumin Permeability via a Toll-Like Receptor-Independent Cytosolic DNA Recognition Pathway. Am. J. Pathol. 2009, 175, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science 2013, 339, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shao, X.; Shen, J.; Lin, Q.; Zhu, X.; Li, S.; Li, J.; Zhou, W.; Qi, C.; Ni, Z. Downregulation of PPARα mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells. Int. J. Biol. Sci. 2022, 18, 5438–5458. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Lin, Y.; Chen, Y.; Ma, S.; Cai, Q.; Wang, W.; Li, B.; Liu, T.; Zhou, P.; He, R.; et al. Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-α. Cell. Mol. Immunol. 2021, 18, 219–229. [Google Scholar] [CrossRef]
- Nehar-Belaid, D.; Hong, S.; Marches, R.; Chen, G.; Bolisetty, M.; Baisch, J.; Walters, L.; Punaro, M.; Rossi, R.J.; Chung, C.H.; et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 2020, 21, 1094–1106. [Google Scholar] [CrossRef]
- Iwamoto, T.; Dorschner, J.M.; Selvaraj, S.; Mezzano, V.; Jensen, M.A.; Vsetecka, D.; Amin, S.; Makol, A.; Osborn, T.; Moder, K.; et al. High Systemic Type I Interferon Activity Is Associated with Active Class III/IV Lupus Nephritis. J. Rheumatol. 2022, 49, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Thim-Uam, A.; Prabakaran, T.; Tansakul, M.; Makjaroen, J.; Wongkongkathep, P.; Chantaravisoot, N.; Saethang, T.; Lee-lahavanichkul, A.; Benjachat, T.; Paludan, S.; et al. STING Mediates Lupus via the Activation of Conventional Dendritic Cell Maturation and Plasmacytoid Dendritic Cell Differentiation. iScience 2020, 23, 101530. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, P.; Marhon, S.A.; Ettayebi, I.; Chakravarthy, A.; Hosseini, A.; Wang, Y.; de Castro, F.A.; Loo Yau, H.; Ishak, C.; Abelson, S.; et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 2020, 588, 169–173. [Google Scholar] [CrossRef]
- Tunbak, H.; Enriquez-Gasca, R.; Tie, C.H.C.; Gould, P.A.; Mlcochova, P.; Gupta, R.K.; Fernandes, L.; Holt, J.; van der Veen, A.G.; Giampazolias, E.; et al. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 2020, 11, 5387. [Google Scholar] [CrossRef]
- Silva, S.; Camino, L.P.; Aguilera, A. Human mitochondrial degradosome prevents harmful mitochondrial R loops and mito-chondrial genome instability. Proc. Natl. Acad. Sci. USA 2018, 115, 11024–11029. [Google Scholar] [CrossRef]
- Dhir, A.; Dhir, S.; Borowski, L.S.; Jimenez, L.; Teitell, M.; Rotig, A.; Crow, Y.J.; Rice, G.I.; Duffy, D.; Tamby, C.; et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 2018, 560, 238–242. [Google Scholar] [CrossRef]
- Tigano, M.; Vargas, D.C.; Tremblay-Belzile, S.; Fu, Y.; Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 2021, 591, 477–481. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, C.; Dieterich, C.; Maroli, G.; Wiesnet, M.; Wietelmann, A.; Li, X.; Yuan, X.; Graumann, J.; Stellos, K.; Kubin, T.; et al. ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7. Circ. Res. 2022, 131, 580–597. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.; Choi, Y.S.; Ku, J.; Kim, H.; Kharbash, R.; Yoon, J.; Lee, Y.S.; Kim, J.-H.; Lee, Y.J.; et al. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep. 2022, 40, 111178. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, M.; Ali, A.A.; Oh, Y.R.; Choi, Y.S.; Kim, S.; Lee, N.; Jang, S.G.; Park, S.; Chung, J.-H.; et al. Mitochondrial double-stranded RNAs as a pivotal mediator in the pathogenesis of Sjӧgren’s syndrome. Mol. Ther. Nucleic Acids 2022, 30, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, M.; Wang, W.; Qu, S.; Liu, M.; Rong, W.; Yang, W.; Liang, H.; Zeng, C.; Zhu, X.; et al. Polynucleotide phosphorylase protects against renal tubular injury via blocking mt-dsRNA-PKR-eIF2α axis. Nat. Commun. 2023, 14, 1223. [Google Scholar] [CrossRef] [PubMed]
- Doke, T.; Mukherjee, S.; Mukhi, D.; Dhillon, P.; Abedini, A.; Davis, J.G.; Chellappa, K.; Chen, B.; Baur, J.A.; Susztak, K. NAD(+) precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury. Nat. Metab. 2023, 5, 414–430. [Google Scholar] [CrossRef]
- Wang, P.T.; Li, N.; Wang, X.Y.; Chen, J.L.; Geng, C.H.; Liu, Z.Q.; Fan, H.J.; Lv, Q.; Hou, S.K.; Gong, Y.H. RIG-I, a novel DAMPs sensor for myoglobin activates NF-kappaB/caspase-3 signaling in CS-AKI model. Mil. Med. Res. 2021, 8, 37. [Google Scholar]
- Peng, J.; Wang, Y.; Han, X.; Zhang, C.; Chen, X.; Jin, Y.; Yang, Z.; An, Y.; Zhang, J.; Liu, Z.; et al. Clinical Implications of a New DDX58 Pathogenic Variant That Causes Lupus Nephritis due to RIG-I Hyperactivation. J. Am. Soc. Nephrol. 2023, 34, 258–272. [Google Scholar] [CrossRef]
- Yamashita, M.; Millward, C.A.; Inoshita, H.; Saikia, P.; Chattopadhyay, S.; Sen, G.C.; Emancipator, S.N. Antiviral innate immunity disturbs podocyte cell function. J. Innate Immun. 2013, 5, 231–241. [Google Scholar] [CrossRef]
- Schell, C.; Huber, T.B. The Evolving Complexity of the Podocyte Cytoskeleton. J. Am. Soc. Nephrol. 2017, 28, 3166–3174. [Google Scholar] [CrossRef]
- Fang, J.; Yao, X.; Hou, M.; Duan, M.; Xing, L.; Huang, J.; Wang, Y.; Zhu, B.; Chen, Q.; Wang, H. ApoL1 induces kidney in-flammation through RIG-I/NF-κB activation. Biochem. Biophys. Res. Commun. 2020, 527, 466–473. [Google Scholar] [CrossRef]
- Okamoto, K.; Rausch, J.W.; Wakashin, H.; Fu, Y.; Chung, J.-Y.; Dummer, P.D.; Shin, M.K.; Chandra, P.; Suzuki, K.; Shrivastav, S.; et al. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun. Biol. 2018, 1, 188. [Google Scholar] [CrossRef]
- Riella, C.V.; McNulty, M.; Ribas, G.T.; Tattersfield, C.F.; Perez-Gill, C.; Eichinger, F.; Kelly, J.; Chun, J.; Subramanian, B.; Guizelini, D.; et al. ADAR regulates APOL1 via A-to-I RNA editing by inhibition of MDA5 activation in a paradoxical biological circuit. Proc. Natl. Acad. Sci. USA 2022, 119, e2210150119. [Google Scholar] [CrossRef]
- Hägele, H.; Allam, R.; Pawar, R.D.; Anders, H.-J. Double-stranded RNA activates type I interferon secretion in glomerular endothelial cells via retinoic acid-inducible gene (RIG)-1. Nephrol. Dial. Transplant. 2009, 24, 3312–3318. [Google Scholar] [CrossRef]
- Imaizumi, T.; Tanaka, H.; Matsumiya, T.; Yoshida, H.; Tanji, K.; Tsuruga, K.; Oki, E.; Aizawa-Yashiro, T.; Ito, E.; Satoh, K. Retinoic acid-inducible gene-I is induced by double-stranded RNA and regulates the expression of CC chemokine ligand (CCL) 5 in human mesangial cells. Nephrol. Dial. Transplant. 2010, 25, 3534–3539. [Google Scholar] [CrossRef]
- Imaizumi, T.; Aizawa-Yashiro, T.; Tsuruga, K.; Tanaka, H.; Matsumiya, T.; Yoshida, H.; Tatsuta, T.; Xing, F.; Hayakari, R.; Satoh, K. Melanoma Differentiation-Associated Gene 5 Regulates the Expression of a Chemokine CXCL10 in Human Mesangial Cells: Implications for Chronic Inflammatory Renal Diseases. Tohoku J. Exp. Med. 2012, 228, 17–26. [Google Scholar] [CrossRef]
- Patra, M.C.; Achek, A.; Kim, G.-Y.; Panneerselvam, S.; Shin, H.-J.; Baek, W.-Y.; Lee, W.H.; Sung, J.; Jeong, U.; Cho, E.-Y.; et al. A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models. Cells 2020, 9, 1648. [Google Scholar] [CrossRef]
- Lind, N.A.; Rael, V.E.; Pestal, K.; Liu, B.; Barton, G.M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 2022, 22, 224–235. [Google Scholar] [CrossRef]
- Gollmann-Tepeköylü, C.; Graber, M.; Pölzl, L.; Nägele, F.; Moling, R.; Esser, H.; Summerer, B.; Mellitzer, V.; Ebner, S.; Hirsch, J.; et al. Toll-like receptor 3 mediates ischaemia/reperfusion injury after cardiac transplantation. Eur. J. Cardio-Thoracic Surg. 2020, 57, 826–835. [Google Scholar] [CrossRef]
- Stolberg-Stolberg, J.; Boettcher, A.; Sambale, M.; Stuecker, S.; Sherwood, J.; Raschke, M.; Pap, T.; Bertrand, J. Toll-like receptor 3 activation promotes joint degeneration in osteoarthritis. Cell Death Dis. 2022, 13, 224. [Google Scholar] [CrossRef]
- Bertheloot, D.; Naumovski, A.L.; Langhoff, P.; Horvath, G.L.; Jin, T.; Xiao, T.S.; Garbi, N.; Agrawal, S.; Kolbeck, R.; Latz, E. RAGE Enhances TLR Responses through Binding and Internalization of RNA. J. Immunol. 2016, 197, 4118–4126. [Google Scholar] [CrossRef]
- Oka, T.; Hikoso, S.; Yamaguchi, O.; Taneike, M.; Takeda, T.; Tamai, T.; Oyabu, J.; Murakawa, T.; Nakayama, H.; Nishida, K.; et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485, 251–255. [Google Scholar] [CrossRef]
- Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 2011, 3, 73ra19. [Google Scholar] [CrossRef]
- Bruschi, M.; Bonanni, A.; Petretto, A.; Vaglio, A.; Pratesi, F.; Santucci, L.; Migliorini, P.; Bertelli, R.; Galetti, M.; Belletti, S.; et al. Neutrophil Extracellular Traps Profiles in Patients with Incident Systemic Lupus Erythematosus and Lupus Nephritis. J. Rheumatol. 2020, 47, 377–386. [Google Scholar] [CrossRef]
- Jorgensen, M.H.; Rekvig, O.P.; Jacobsen, R.S.; Jacobsen, S.; Fenton, K.A. Circulating levels of chromatin fragments are in-versely correlated with anti-dsDNA antibody levels in human and murine systemic lupus erythematosus. Immunol. Lett. 2011, 138, 179–186. [Google Scholar] [CrossRef]
- Rasmussen, N.S.; Nielsen, C.H.; Jacobsen, S. Microvesicles in active lupus nephritis show Toll-like receptor 9-dependent co-expression of galectin-3 binding protein and double-stranded DNA. Clin. Exp. Immunol. 2021, 204, 64–77. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Ma, C.; Ji, D.; Zheng, X.; Wang, P.; Zheng, S.; Wang, L.; Wang, Z.; Xu, D. IQGAP1 mediates podocyte injury in diabetic kidney disease by regulating nephrin endocytosis. Cell. Signal. 2019, 59, 13–23. [Google Scholar] [CrossRef]
- Bryniarski, M.A.; Yee, B.M.; Chaves, L.D.; Stahura, C.M.; Yacoub, R.; Morris, M.E. Megalin-mediated albumin endocytosis in cultured murine mesangial cells. Biochem. Biophys. Res. Commun. 2020, 529, 740–746. [Google Scholar] [CrossRef]
- Moriyama, T.; Karasawa, K.; Hasegawa, F.; Uchida, K.; Nitta, K. Sertraline Reduces Albuminuria by Interfering with Caveolae-Mediated Endocytosis through Glomerular Endothelial and Epithelial Cells. Am. J. Nephrol. 2019, 50, 444–453. [Google Scholar] [CrossRef]
- Lim, J.-H.; Kim, M.-S.; Kim, Y.-J.; Han, M.-H.; Jung, H.-Y.; Choi, J.-Y.; Cho, J.-H.; Kim, C.-D.; Kim, Y.-L.; Park, S.-H. New-Onset Kidney Diseases after COVID-19 Vaccination: A Case Series. Vaccines 2022, 10, 302. [Google Scholar] [CrossRef]
- Cho, I.; Kim, J.-K.; Kim, S.G. IgA vasculitis presenting as nephrotic syndrome following COVID-19 vaccination: A case report. BMC Nephrol. 2022, 23, 403. [Google Scholar] [CrossRef]
- Lazareth, H.; Poli, A.; Bignon, Y.; Mirmiran, A.; Rabant, M.; Cohen, R.; Schmitt, C.; Puy, H.; Karras, A.; Gouya, L.; et al. Renal Function Decline with Small Interfering RNA Silencing Aminolevulinic Acid Synthase 1 (ALAS1). Kidney Int. Rep. 2021, 6, 1904–1911. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Wang, J.; Li, L.; Sun, X.; Zhang, Z.; Zhang, L. Co-delivery of p38α MAPK and p65 siRNA by novel liposomal glomerulus-targeting nano carriers for effective immunoglobulin a nephropathy treatment. J. Control. Release 2020, 320, 457–468. [Google Scholar] [CrossRef]
- Kölling, M.; Kaucsar, T.; Schauerte, C.; Hübner, A.; Dettling, A.; Park, J.-K.; Busch, M.; Wulff, X.; Meier, M.; Scherf, K.; et al. Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol. Ther. 2017, 25, 165–180. [Google Scholar] [CrossRef]
- Liu, F.; Chen, H.; Cao, C.; Liang, Y.; Zhou, Y. The role of toll-like receptors (TLRs) and their therapeutic applications in glo-merulonephritis. Int. Urol. Nephrol. 2023, 55, 2845–2856. [Google Scholar] [CrossRef]
- Liu, M.; Zen, K. Toll-Like Receptors Regulate the Development and Progression of Renal Diseases. Kidney Dis. 2021, 7, 14–23. [Google Scholar] [CrossRef]
- Umetsu, H.; Watanabe, S.; Imaizumi, T.; Aizawa, T.; Tsugawa, K.; Kawaguchi, S.; Seya, K.; Matsumiya, T.; Tanaka, H. Inter-leukin-6 via Toll-Like Receptor 3 Signaling Attenuates the Expression of Proinflammatory Chemokines in Human Podocytes. Kidney Blood Press. Res. 2021, 46, 207–218. [Google Scholar] [CrossRef]
- Shimada, M.; Ishimoto, T.; Lee, P.Y.; Lanaspa, M.A.; Rivard, C.J.; Roncal-Jimenez, C.A.; Wymer, D.T.; Yamabe, H.; Mathieson, P.W.; Saleem, M.A.; et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol. Dial. Transplant. 2012, 27, 81–89. [Google Scholar] [CrossRef]
- Nichols, B.; Jog, P.; Lee, J.H.; Blackler, D.; Wilmot, M.; D’Agati, V.; Markowitz, G.; Kopp, J.B.; Alper, S.L.; Pollak, M.R.; et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015, 87, 332–342. [Google Scholar] [CrossRef]
- Carlucci, F.; Ishaque, A.; Ling, G.S.; Szajna, M.; Sandison, A.; Donatien, P.; Cook, H.T.; Botto, M. C1q Modulates the Response to TLR7 Stimulation by Pristane-Primed Macrophages: Implications for Pristane-Induced Lupus. J. Immunol. 2016, 196, 1488–1494. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Ren, J.; Ding, L.; Shi, G.; Li, D.; Dou, H.; Hou, Y. Myeloid-Derived Suppressor Cells Induce Podocyte Injury Through Increasing Reactive Oxygen Species in Lupus Nephritis. Front. Immunol. 2018, 9, 1443. [Google Scholar] [CrossRef]
- Masum, A.; Ichii, O.; Elewa, Y.H.A.; Kon, Y. Podocyte Injury Through Interaction Between Tlr8 and Its Endogenous Ligand miR-21 in Obstructed and Its Collateral Kidney. Front. Immunol. 2021, 11, 606488. [Google Scholar] [CrossRef]
- Kimura, J.; Ichii, O.; Miyazono, K.; Nakamura, T.; Horino, T.; Otsuka-Kanazawa, S.; Kon, Y. Overexpression of Toll-like receptor 8 correlates with the progression of podocyte injury in murine autoimmune glomerulonephritis. Sci. Rep. 2014, 4, 7290. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Guo, J.-S.; Li, S.-S.; Wu, X.-B.; Cao, D.-L.; Jiang, B.-C.; Jing, P.-B.; Bai, X.-Q.; Li, C.-H.; Wu, Z.-H.; et al. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J. Exp. Med. 2018, 215, 3019–3037. [Google Scholar] [CrossRef]
- Lange, T.; Artelt, N.; Kindt, F.; Stracke, S.; Rettig, R.; Lendeckel, U.; Chadjichristos, C.E.; Kavvadas, P.; Chatziantoniou, C.; Endlich, K.; et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury. J. Cell. Mol. Med. 2019, 23, 4839–4843. [Google Scholar] [CrossRef]
- Zang, J.; Maxwell, A.P.; Simpson, D.A.; McKay, G.J. Differential Expression of Urinary Exosomal MicroRNAs miR-21-5p and miR-30b-5p in Individuals with Diabetic Kidney Disease. Sci. Rep. 2019, 9, 10900. [Google Scholar] [CrossRef]
- Szeto, C.-C.; Ng, J.K.-C.; Fung, W.W.-S.; Luk, C.C.-W.; Wang, G.; Chow, K.-M.; Lai, K.-B.; Li, P.K.-T.; Lai, F.M.-M. Kidney microRNA-21 Expression and Kidney Function in IgA Nephropathy. Radiology 2021, 3, 76–82. [Google Scholar] [CrossRef]
- Bao, W.; Xia, H.; Liang, Y.; Ye, Y.; Lu, Y.; Xu, X.; Duan, A.; He, J.; Chen, Z.; Wu, Y.; et al. Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis. Sci. Rep. 2016, 6, 22579. [Google Scholar] [CrossRef]
- Masum, A.; Ichii, O.; Elewa, Y.H.A.; Nakamura, T.; Otani, Y.; Hosotani, M.; Kon, Y. Overexpression of toll-like receptor 9 correlates with podocyte injury in a murine model of autoimmune membranoproliferative glomerulonephritis. Autoimmunity 2018, 51, 386–398. [Google Scholar] [CrossRef]
- Bossaller, L.; Christ, A.; Pelka, K.; Nündel, K.; Chiang, P.-I.; Pang, C.; Mishra, N.; Busto, P.; Bonegio, R.G.; Schmidt, R.E.; et al. TLR9 Deficiency Leads to Accelerated Renal Disease and Myeloid Lineage Abnormalities in Pristane-Induced Murine Lupus. J. Immunol. 2016, 197, 1044–1053. [Google Scholar] [CrossRef]
- Karasawa, T.; Sato, R.; Imaizumi, T.; Fujita, M.; Aizawa, T.; Tsugawa, K.; Mattinzoli, D.; Kawaguchi, S.; Seya, K.; Terui, K.; et al. Expression of interferon-stimulated gene 20 (ISG20), an antiviral effector protein, in glomerular endothelial cells: Possible involvement of ISG20 in lupus nephritis. Ren. Fail. 2023, 45, 2224890. [Google Scholar] [CrossRef]
- Liu, Q.; Imaizumi, T.; Aizawa, T.; Hirono, K.; Kawaguchi, S.; Watanabe, S.; Tsugawa, K.; Matsumiya, T.; Seya, K.; Yoshida, H.; et al. Cytosolic Sensors of Viral RNA Are Involved in the Production of Interleukin-6 via Toll-Like Receptor 3 Signaling in Human Glomerular Endothelial Cells. Kidney Blood Press. Res. 2019, 44, 62–71. [Google Scholar] [CrossRef]
- Hirono, K.; Imaizumi, T.; Aizawa, T.; Watanabe, S.; Tsugawa, K.; Shiratori, T.; Kawaguchi, S.; Seya, K.; Matsumiya, T.; Ito, E.; et al. Endothelial expression of fractalkine (CX3CL1) is induced by Toll-like receptor 3 signaling in cultured human glomerular endothelial cells. Mod. Rheumatol. 2020, 30, 1074–1081. [Google Scholar] [CrossRef]
- Sato, R.; Imaizumi, T.; Aizawa, T.; Watanabe, S.; Tsugawa, K.; Kawaguchi, S.; Seya, K.; Matsumiya, T.; Tanaka, H. Inhibitory effect of anti-malarial agents on the expression of proinflammatory chemokines via Toll-like receptor 3 signaling in human glomerular endothelial cells. Ren. Fail. 2021, 43, 643–650. [Google Scholar] [CrossRef]
- Aizawa, T.; Imaizumi, T.; Hirono, K.; Watanabe, S.; Tsugawa, K.; Tanaka, H. Chloroquine attenuates TLR3-mediated plasminogen activator inhibitor-1 expression in cultured human glomerular endothelial cells. Clin. Exp. Nephrol. 2019, 23, 448–454. [Google Scholar] [CrossRef]
- Imaizumi, T.; Hashimoto, S.; Sato, R.; Umetsu, H.; Aizawa, T.; Watanabe, S.; Kawaguchi, S.; Matsumiya, T.; Seya, K.; Ding, J.; et al. IFIT Proteins Are Involved in CXCL10 Expression in Human Glomerular Endothelial Cells Treated with a Toll-Like Receptor 3 Agonist. Kidney Blood Press. Res. 2021, 46, 74–83. [Google Scholar] [CrossRef]
- Merkle, M.; Ribeiro, A.; Köppel, S.; Pircher, J.; Mannell, H.; Roeder, M.; Wörnle, M. TLR3-dependent immune regulatory functions of human mesangial cells. Cell. Mol. Immunol. 2012, 9, 334–340. [Google Scholar] [CrossRef]
- Imaizumi, T.; Aizawa, T.; Segawa, C.; Shimada, M.; Tsuruga, K.; Kawaguchi, S.; Matsumiya, T.; Yoshida, H.; Joh, K.; Tanaka, H. Toll-like receptor 3 signaling contributes to the expression of a neutrophil chemoattractant, CXCL1 in human mesangial cells. Clin. Exp. Nephrol. 2015, 19, 761–770. [Google Scholar] [CrossRef]
- Imaizumi, T.; Hayakari, R.; Watanabe, S.; Aizawa, T.; Matsumiya, T.; Yoshida, H.; Tsuruga, K.; Kawaguchi, S.; Tanaka, H. Cylindromatosis (CYLD), a Deubiquitinase, Attenuates Inflammatory Signaling Pathways by Activating Toll-Like Receptor 3 in Human Mesangial Cells. Kidney Blood Press. Res. 2017, 42, 942–950. [Google Scholar] [CrossRef]
- Merkle, M.; Ribeiro, A.; Koppel, S.; Wornle, M. TNFα enhances TLR3-dependent effects on MMP-9 expression in human mesangial cells. Cell Biol. Int. 2012, 36, 1155–1160. [Google Scholar] [CrossRef]
- Phillips, T.M.; Fadia, M.; Lea-Henry, T.N.; Smiles, J.; Walters, G.D.; Jiang, S.H. MMP2 and MMP9 associate with crescentic glomerulonephritis. Clin. Kidney J. 2017, 10, 215–220. [Google Scholar] [CrossRef]
- Gilbert, A.; Changjuan, A.; Guixue, C.; Jianhua, L.; Xiaosong, Q. Urinary Matrix Metalloproteinase-9 and Nephrin in Idiopathic Membranous Nephropathy: A Cross-Sectional Study. Dis. Mark. 2021, 2021, 1620545. [Google Scholar] [CrossRef]
- Shen, J.; Dai, Z.; Li, Y.; Zhu, H.; Zhao, L. TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy. Diabetol. Metab. Syndr. 2022, 14, 26. [Google Scholar] [CrossRef]
- Bourdon, M.; Manet, C.; Montagutelli, X. Host genetic susceptibility to viral infections: The role of type I interferon induction. Genes Immun. 2020, 21, 365–379. [Google Scholar] [CrossRef]
- Aricò, E.; Castiello, L.; Capone, I.; Gabriele, L.; Belardelli, F. Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers 2019, 11, 1943. [Google Scholar] [CrossRef]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef]
- Peters, S.O.; Hussain, T.; Adenaike, A.S.; Hazzard, J.; Morenikeji, O.B.; De Donato, M.; Paul, S.; Babar, M.; Yakubu, A.; Imumorin, I.G. Evolutionary Pattern of Interferon Alpha Genes in Bovidae and Genetic Diversity of IFNAA in the Bovine Genome. Front. Immunol. 2020, 11, 580412. [Google Scholar] [CrossRef]
- Shemesh, M.; Lochte, S.; Piehler, J.; Schreiber, G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci. Signal. 2021, 14, eabe4627. [Google Scholar] [CrossRef]
- Boccuni, L.; Podgorschek, E.; Schmiedeberg, M.; Platanitis, E.; Traxler, P.; Fischer, P.; Schirripa, A.; Novoszel, P.; Nebreda, A.R.; Arthur, J.S.C.; et al. Stress signaling boosts interferon-induced gene transcription in macrophages. Sci. Signal. 2022, 15, eabq5389. [Google Scholar] [CrossRef]
- Hubel, P.; Urban, C.; Bergant, V.; Schneider, W.M.; Knauer, B.; Stukalov, A.; Scaturro, P.; Mann, A.; Brunotte, L.; Hoffmann, H.H.; et al. A protein-interaction network of interfer-on-stimulated genes extends the innate immune system landscape. Nat. Immunol. 2019, 20, 493–502. [Google Scholar] [CrossRef]
- Hardy, M.P.; Sanij, E.P.; Hertzog, P.J.; Owczarek, C.M. Characterization and transcriptional analysis of the mouse Chromosome 16 cytokine receptor gene cluster. Mamm. Genome 2003, 14, 105–118. [Google Scholar] [CrossRef]
- Hardy, M.P.; Owczarek, C.M.; Trajanovska, S.; Liu, X.; Kola, I.; Hertzog, P.J. The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties. Blood 2001, 97, 473–482. [Google Scholar] [CrossRef]
- Pulverer, J.E.; Rand, U.; Lienenklaus, S.; Kugel, D.; Zietara, N.; Kochs, G.; Naumann, R.; Weiss, S.; Staeheli, P.; Hauser, H.; et al. Temporal and spatial resolution of type I and III interferon responses in vivo. J. Virol. 2010, 84, 8626–8638. [Google Scholar] [CrossRef]
- Chang, K.; Xu, F.; Zhang, X.; Zeng, B.; Zhang, W.; Shi, G.; Ye, D. Construction of an Immune Escape-Related Signature in Clear Cell Renal Cell Carcinoma and Identification of the Relationship between IFNAR1 and Immune Infiltration by Multiple Immunohistochemistry. Cancers 2022, 15, 169. [Google Scholar] [CrossRef]
- Manoharan, J.; Rana, R.; Kuenze, G.; Gupta, D.; Elwakiel, A.; Ambreen, S.; Wang, H.; Banerjee, K.; Zimmermann, S.; Singh, K.; et al. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024, 57, 68–85.e11. [Google Scholar] [CrossRef]
- Qi, Y.-Y.; Zhou, X.-J.; Cheng, F.-J.; Hou, P.; Ren, Y.-L.; Wang, S.-X.; Zhao, M.-H.; Yang, L.; Martinez, J.; Zhang, H. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis. Ann. Rheum. Dis. 2018, 77, 1799–1809. [Google Scholar] [CrossRef]
- Godel, M.; Hartleben, B.; Herbach, N.; Liu, S.; Zschiedrich, S.; Lu, S.; Debreczeni-Mor, A.; Lindenmeyer, M.T.; Rastaldi, M.P.; Hartleben, G.; et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Investig. 2011, 121, 2197–2209. [Google Scholar] [CrossRef]
- Li, Z.; Yin, H.; Hao, S.; Wang, L.; Gao, J.; Tan, X.; Yang, Z. miR-200 family promotes podocyte differentiation through repression of RSAD2. Sci. Rep. 2016, 6, 27105. [Google Scholar] [CrossRef] [PubMed]
- Cordoba-David, G.; Garcia-Gimenez, J.; Cardoso Castelo-Branco, R.; Carrasco, S.; Cannata, P.; Ortiz, A.; Ramos, A.M. Crosstalk between TBK1/IKKε and the type I interferon pathway contributes to tubulointerstitial inflammation and kidney tubular injury. Front. Pharmacol. 2022, 13, 987979. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, Y.; Jang, S.G.; Hong, S.M.; Song, Y.S.; Kim, M.J.; Baek, S.; Park, S.H.; Kwok, S.K. Baricitinib Attenuates Autoimmune Phenotype and Podocyte Injury in a Murine Model of Systemic Lupus Erythematosus. Front. Immunol. 2021, 12, 704526. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, T.; Sato, R.; Imaizumi, T.; Hashimoto, S.; Fujita, M.; Aizawa, T.; Tsugawa, K.; Kawaguchi, S.; Seya, K.; Terui, K.; et al. Glomerular endothelial expression of type I IFN-stimulated gene, DExD/H-Box helicase 60 via toll-like receptor 3 signaling: Possible involvement in the pathogenesis of lupus nephritis. Ren. Fail. 2022, 44, 137–145. [Google Scholar] [CrossRef]
- Hashimoto, S.; Imaizumi, T.; Watanabe, S.; Aizawa, T.; Tsugawa, K.; Kawaguchi, S.; Seya, K.; Matsumiya, T.; Tanaka, H. Expression of IFN-induced transmembrane protein 1 in glomerular endothelial cells. Pediatr. Int. 2021, 63, 1075–1081. [Google Scholar] [CrossRef]
- Jana, A.; Wang, X.; Leasure, J.W.; Magana, L.; Wang, L.; Kim, Y.-M.; Dodiya, H.; Toth, P.T.; Sisodia, S.S.; Rehman, J. Increased Type I interferon signaling and brain endothelial barrier dysfunction in an experimental model of Alzheimer’s disease. Sci. Rep. 2022, 12, 16488. [Google Scholar] [CrossRef]
- Jia, H.; Thelwell, C.; Dilger, P.; Bird, C.; Daniels, S.; Wadhwa, M. Endothelial cell functions impaired by interferon in vitro: Insights into the molecular mechanism of thrombotic microangiopathy associated with interferon therapy. Thromb. Res. 2018, 163, 105–116. [Google Scholar] [CrossRef]
- Gairhe, S.; Awad, K.S.; Dougherty, E.J.; Ferreyra, G.A.; Wang, S.; Yu, Z.X.; Takeda, K.; Demirkale, C.Y.; Torabi-Parizi, P.; Austin, E.D.; et al. Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension. Proc. Natl. Acad. Sci. USA 2021, 118, e2010206118. [Google Scholar] [CrossRef]
- Gonzalez-Amor, M.; Garcia-Redondo, A.B.; Jorge, I.; Zalba, G.; Becares, M.; Ruiz-Rodriguez, M.J.; Rodriguez, C.; Bermeo, H.; Rodrigues-Diez, R.; Rios, F.J.; et al. Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress. Cardiovasc. Res. 2022, 118, 3250–3268. [Google Scholar] [CrossRef]
- Flür, K.; Allam, R.; Zecher, D.; Kulkarni, O.P.; Lichtnekert, J.; Schwarz, M.; Beutler, B.; Vielhauer, V.; Anders, H.-J. Viral RNA Induces Type I Interferon-Dependent Cytokine Release and Cell Death in Mesangial Cells via Melanoma-Differentiation-Associated Gene-5: Implications for Viral Infection-Associated Glomerulonephritis. Am. J. Pathol. 2009, 175, 2014–2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, X.; Tang, Y.; Wu, Y.; Qu, B.; Shen, N. miR-744 enhances type I interferon signaling pathway by targeting PTP1B in primary human renal mesangial cells. Sci. Rep. 2015, 5, 12987. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wu, L.; Wang, Y.; Cui, S.; Duan, S.; Dong, Z.; Feng, Z.; Chen, X. Knockdown of Cxcl10 Inhibits Mesangial Cell Pro-liferation in Murine Habu Nephritis Via ERK Signaling. Cell. Physiol. Biochem. 2017, 42, 2118–2129. [Google Scholar] [CrossRef]
- Ye, L.; Ohnemus, A.; Ong, L.C.; Gad, H.H.; Hartmann, R.; Lycke, N.; Staeheli, P. Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. J. Virol. 2019, 93, 23. [Google Scholar] [CrossRef]
- Le Bon, A.; Schiavoni, G.; D’Agostino, G.; Gresser, I.; Belardelli, F.; Tough, D.F. Type I Interferons Potently Enhance Humoral Immunity and Can Promote Isotype Switching by Stimulating Dendritic Cells In Vivo. Immunity 2001, 14, 461–470. [Google Scholar] [CrossRef]
- Dorner, T.; van Vollenhoven, R.F.; Doria, A.; Jia, B.; Ross Terres, J.A.; Silk, M.E.; de Bono, S.; Fischer, P.; Wallace, D.J. Baricitinib decreases anti-dsDNA in patients with systemic lupus erythematosus: Results from a phase II double-blind, randomized, placebo-controlled trial. Arthritis Res. Ther. 2022, 24, 112. [Google Scholar] [CrossRef]
- Kong, X.; Zuo, H.; Huang, H.D.; Zhang, Q.; Chen, J.; He, C.; Hu, Y. STING as an emerging therapeutic target for drug discovery: Perspectives from the global patent landscape. J. Adv. Res. 2023, 44, 119–133. [Google Scholar] [CrossRef]
- Olson, G.S.; Murray, T.A.; Jahn, A.N.; Mai, D.; Diercks, A.H.; Gold, E.S.; Aderem, A. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep. 2021, 35, 109195. [Google Scholar] [CrossRef]
- Buang, N.; Tapeng, L.; Gray, V.; Sardini, A.; Whilding, C.; Lightstone, L.; Cairns, T.D.; Pickering, M.C.; Behmoaras, J.; Ling, G.S.; et al. Type I interferons affect the metabolic fitness of CD8+T cells from patients with systemic lupus erythematosus. Nat. Commun. 2021, 12, 1980. [Google Scholar] [CrossRef] [PubMed]
- York, A.G.; Williams, K.J.; Argus, J.P.; Zhou, Q.D.; Brar, G.; Vergnes, L.; Gray, E.E.; Zhen, A.; Wu, N.C.; Yamada, D.H.; et al. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 2015, 163, 1716–1729. [Google Scholar] [CrossRef] [PubMed]
- Chipurupalli, S.; Samavedam, U.; Robinson, N. Crosstalk Between ER Stress, Autophagy and Inflammation. Front. Med. 2021, 8, 758311. [Google Scholar] [CrossRef]
- Ahodantin, J.; Nio, K.; Funaki, M.; Zhai, X.; Wilson, E.; Kottilil, S.; Cheng, L.; Li, G.; Su, L. Type I interferons and TGF-β cooperate to induce liver fibrosis during HIV-1 infection under antiretroviral therapy. JCI Insight 2022, 7, e152738. [Google Scholar] [CrossRef]
- Yu, Q.; Katlinskaya, Y.V.; Carbone, C.J.; Zhao, B.; Katlinski, K.V.; Zheng, H.; Guha, M.; Li, N.; Chen, Q.; Yang, T.; et al. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function. Cell Rep. 2015, 11, 785–797. [Google Scholar] [CrossRef]
- Rasa, S.M.M.; Annunziata, F.; Krepelova, A.; Nunna, S.; Omrani, O.; Gebert, N.; Adam, L.; Käppel, S.; Höhn, S.; Donati, G.; et al. Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction. Cell Rep. 2022, 39, 111017. [Google Scholar] [CrossRef]
Glomerular Disease | Observation | Ref. |
---|---|---|
MPGN C3 glomerulopathy | Interferon-stimulated genes (ISG) IFI44L, IFIT1, MX1, and OAS2 enriched | [9] |
MCD | Immunohistochemical detection of STING in the glomerulus ISG and PRR genes enriched (IFIH1, IRF7, OAS1, TLR7, TLR8) | [10] [11] |
FSGS | ISG and PRR genes enriched (IFIH1, IRF7, OAS1, TLR7, TLR8) IFN-I signaling pathway enrichment in glomerular endothelial cells | [11] [12] |
MN anti-PLA2R | IFN-I signaling pathway in glomerular mesangial cells (IFI16 gene enrichment) | [13] |
IgAN | Immunohistochemical detection of STING in glomerulus, tubules, and interstitium, associated with urinary mitochondrial DNA | [10] |
LN | IFN-I signaling pathway enrichment ISG genes enriched (IRF5, OAS1, MX2, DHX58, IFITM1, ADAR, GBP2) | [14] [15] |
Family | Name | Ligands | Cell Distribution | Source of Endogenous Activators |
---|---|---|---|---|
cGLRs | cGAS | dsDNA | Cytoplasm |
|
RLRs | RIG-I | dsRNA | Cytoplasm |
|
MDA5 | dsRNA | Cytoplasm | ||
TLRs | TLR3 | dsRNA | Endosomes |
|
TLR7 | ssRNA | |||
TLR8 | ssRNA | |||
TLR9 | dsDNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Uribe, A.P.; Mangos, S.; Hahm, E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int. J. Mol. Sci. 2024, 25, 2497. https://doi.org/10.3390/ijms25052497
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. International Journal of Molecular Sciences. 2024; 25(5):2497. https://doi.org/10.3390/ijms25052497
Chicago/Turabian StyleJimenez-Uribe, Alexis Paulina, Steve Mangos, and Eunsil Hahm. 2024. "Type I IFN in Glomerular Disease: Scarring beyond the STING" International Journal of Molecular Sciences 25, no. 5: 2497. https://doi.org/10.3390/ijms25052497
APA StyleJimenez-Uribe, A. P., Mangos, S., & Hahm, E. (2024). Type I IFN in Glomerular Disease: Scarring beyond the STING. International Journal of Molecular Sciences, 25(5), 2497. https://doi.org/10.3390/ijms25052497