Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells
Abstract
:1. Introduction
2. Results
2.1. ZEA Decreases the Viability of Sheep Follicular Granulosa Cells
2.2. ZEA Induces Oxidative Stress in Sheep Follicular Granulosa Cells
2.3. ZEA Induces Apoptosis in Sheep Follicular Granulosa Cells
2.4. Initial Validation of Transcriptome Data
2.5. Enrichment Analysis of GO Terms and KEGG Pathway
2.6. Screening of HMOX1 as an Important DEG Based on Transcriptome Data
2.7. HMOX1 Involves in ZEA-Induced Oxidative Stress and Apoptosis in Follicular Granulosa Cells
3. Discussion
4. Materials and Methods
4.1. Isolation and Culture of Sheep Granulosa Cells
4.2. Immunofluorescence
4.3. Cell Viability Assay
4.4. ROS, MDA, and GSH
4.5. Hoechst 33258 Staining
4.6. RNA Extraction, Reverse Transcription, and Transcriptome Analysis
4.7. qRT-PCR
4.8. Western Blot
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, X.; Huangfu, B.; Xu, T.; Xu, W.; Asakiya, C.; Huang, K.; He, X. Research Progress of Safety of Zearalenone: A Review. Toxins 2022, 14, 386. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the Toxicity, Occurrence, Metabolism, Detoxification, Regulations and Intake of Zearalenone: An Oestrogenic Mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for Animal Health Related to the Presence of Zearalenone and Its Modified Forms in Feed. EFS2 2017, 15, e04851. [Google Scholar] [CrossRef]
- Yang, D.; Jiang, X.; Sun, J.; Li, X.; Li, X.; Jiao, R.; Peng, Z.; Li, Y.; Bai, W. Toxic Effects of Zearalenone on Gametogenesis and Embryonic Development: A Molecular Point of Review. Food Chem. Toxicol. 2018, 119, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, Fumonisin, Ochratoxin, Zearalenone and Deoxynivalenol Biomarkers in Human Biological Fluids: A Systematic Literature Review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Dell’Aquila, M.E. Zearalenone and Reproductive Function in Farm Animals. Int. J. Mol. Sci. 2008, 9, 2570–2584. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Schoevers, E.J.; Daemen, I.J.J.M.; Zijlstra, C.; Colenbrander, B.; Fink-Gremmels, J.; Roelen, B.A.J. Exposure of Oocytes to the Fusarium Toxins Zearalenone and Deoxynivalenol Causes Aneuploidy and Abnormal Embryo Development in Pigs1. Biol. Reprod. 2007, 77, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Koraïchi, F.; Inoubli, L.; Lakhdari, N.; Meunier, L.; Vega, A.; Mauduit, C.; Benahmed, M.; Prouillac, C.; Lecoeur, S. Neonatal Exposure to Zearalenone Induces Long Term Modulation of ABC Transporter Expression in Testis. Toxicology 2013, 310, 29–38. [Google Scholar] [CrossRef]
- Long, M.; Yang, S.; Dong, S.; Chen, X.; Zhang, Y.; He, J. Characterization of Semen Quality, Testicular Marker Enzyme Activities and Gene Expression Changes in the Blood Testis Barrier of Kunming Mice Following Acute Exposure to Zearalenone. Environ. Sci. Pollut. Res. 2017, 24, 27235–27243. [Google Scholar] [CrossRef]
- Lai, F.-N.; Liu, X.-L.; Li, N.; Zhang, R.-Q.; Zhao, Y.; Feng, Y.-Z.; Nyachoti, C.M.; Shen, W.; Li, L. Phosphatidylcholine Could Protect the Defect of Zearalenone Exposure on Follicular Development and Oocyte Maturation. Aging 2018, 10, 3486–3506. [Google Scholar] [CrossRef]
- Hu, P.; Sun, N.; Khan, A.; Zhang, X.; Sun, P.; Sun, Y.; Guo, J.; Zheng, X.; Yin, W.; Fan, K.; et al. Network Pharmacology-Based Study on the Mechanism of Scutellarin against Zearalenone-Induced Ovarian Granulosa Cell Injury. Ecotoxicol. Environ. Saf. 2021, 227, 112865. [Google Scholar] [CrossRef]
- Feng, Y.-Q.; Wang, J.-J.; Li, M.-H.; Tian, Y.; Zhao, A.-H.; Li, L.; De Felici, M.; Shen, W. Impaired Primordial Follicle Assembly in Offspring Ovaries from Zearalenone-Exposed Mothers Involves Reduced Mitochondrial Activity and Altered Epigenetics in Oocytes. Cell. Mol. Life Sci. 2022, 79, 258. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, C.-H.; Chen, S.; Sun, S.-C. Zearalenone Exposure Impairs Organelle Function during Porcine Oocyte Meiotic Maturation. Theriogenology 2022, 177, 22–28. [Google Scholar] [CrossRef]
- Eppig, J.J. Intercommunication between Mammalian Oocytes and Companion Somatic Cells. BioEssays 1991, 13, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.S.; Sui, H.S.; Han, Z.B.; Li, W.; Luo, M.J.; Tan, J.H. Apoptosis in Granulosa Cells during Follicular Atresia: Relationship with Steroids and Insulin-like Growth Factors. Cell Res. 2004, 14, 341–346. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, S.; Wang, S.; Zhang, H.; Fang, J.; Kang, N.; Zhen, X.; Zhang, Y.; Zhou, J.; Yan, G.; et al. Decreased HAT1 Expression in Granulosa Cells Disturbs Oocyte Meiosis during Mouse Ovarian Aging. Reprod. Biol. Endocrinol. 2023, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, H.; Wang, J.; Han, S.; Zhang, Y.; Ma, M.; Zhu, Q.; Zhang, K.; Yin, H. Zearalenone Induces Apoptosis and Cytoprotective Autophagy in Chicken Granulosa Cells by PI3K-AKT-mTOR and MAPK Signaling Pathways. Toxins 2021, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Zhang, Z.; Duan, J.; Hua, R.; Li, X.; Yang, L.; Cheng, J.; Li, Q. Isorhamnetin Protects Zearalenone-Induced Damage via the PI3K/Akt Signaling Pathway in Porcine Ovarian Granulosa Cells. Anim. Nutr. 2022, 11, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-L.; Feng, Y.-L.; Song, J.-L.; Zhou, X.-S. Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals’ Granulosa Cells. Front. Genet. 2018, 9, 667. [Google Scholar] [CrossRef]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef]
- Smith, J.F.; Di Menna, M.E.; McGowan, L.T. Reproductive Performance of Coopworth Ewes Following Oral Doses of Zearalenone before and after Mating. Reproduction 1990, 89, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Dicostanzo, A.; Johnston, L.; Win Dels, H.; Murphy, M. A Review of the Effects of Molds and Mycotoxins in Ruminants. Prof. Anim. Sci. 1996, 12, 138–150. [Google Scholar] [CrossRef]
- Morris, C.A.; Amyes, N.C.; Smith, J.F.; Sprosen, J.M.; Towers, N.R. Zearalenone Challenge in Sheep: Variation in Ovulation Rate. Proc. N. Z. Soc. Anim. Prod. 2005, 65, 320–323. [Google Scholar]
- Silva, I.P.; Brito, D.C.C.; Silva, T.E.S.; Silva, R.F.; Guedes, M.I.F.; Silva, J.Y.G.; Rodrigues, A.P.R.; Santos, R.R.; Figueiredo, J.R. In Vitro Exposure of Sheep Ovarian Tissue to the Xenoestrogens Zearalenone and Enterolactone: Effects on Preantral Follicles. Theriogenology 2021, 174, 124–130. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, K.-H.; Sun, M.-H.; Lan, M.; Wan, X.; Zhang, Y.; Sun, S.-C. Protective Effects of Melatonin Against Zearalenone Toxicity on Porcine Embryos In Vitro. Front. Pharmacol. 2019, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Feng, N.; Zheng, W.; Zheng, H.; Cai, P.; Zou, H.; Yuan, Y.; Gu, J.; Liu, Z.; Bian, J. Zearalenone Exposure Disrupts Blood–Testis Barrier Integrity through Excessive Ca2+-Mediated Autophagy. Toxins 2021, 13, 875. [Google Scholar] [CrossRef]
- Xu, J.; Sun, L.; He, M.; Zhang, S.; Gao, J.; Wu, C.; Zhang, D.; Dai, J. Resveratrol Protects against Zearalenone-Induced Mitochondrial Defects during Porcine Oocyte Maturation via PINK1/Parkin-Mediated Mitophagy. Toxins 2022, 14, 641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, S.; Gong, Y.Y.; Zhao, Y.; Wu, Y. Human Dietary and Internal Exposure to Zearalenone Based on a 24-Hour Duplicate Diet and Following Morning Urine Study. Environ. Int. 2020, 142, 105852. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, F.; Fink-Gremmels, J.; Malekinejad, H. Zearalenone and Its Metabolite Exposure Directs Oestrogen Metabolism towards Potentially Carcinogenic Metabolites in Human Breast Cancer MCF-7 Cells. Mycotoxin Res. 2023, 39, 45–56. [Google Scholar] [CrossRef]
- Yi, Y.; Wan, S.; Wang, S.; Khan, A.; Guo, J.; Zheng, X.; Li, H.; Sun, N. Scutellarin Protects Mouse Ovarian Granulosa Cells from Injury Induced by the Toxin Zearalenone. Food Funct. 2021, 12, 1252–1261. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Liu, N.; Jia, H.; Si, X.; Zhou, Y.; Zhai, Z.; Yang, Y.; Ren, F.; Wu, Z. Zearalenone Induces Apoptosis and Autophagy by Regulating Endoplasmic Reticulum Stress Signalling in Porcine Trophectoderm Cells. Anim. Nutr. 2023, 12, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Fink-Gremmels, J. The Role of Mycotoxins in the Health and Performance of Dairy Cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Tsang, B.K. Regulation of Cell Death and Cell Survival Gene Expression during Ovarian Follicular Development and Atresia. Front. Biosci. 2003, 8, d222–d237. [Google Scholar] [CrossRef] [PubMed]
- Oyewole, A.O.; Birch-Machin, M.A. Mitochondria-targeted Antioxidants. FASEB J. 2015, 29, 4766–4771. [Google Scholar] [CrossRef] [PubMed]
- Adibnia, E.; Razi, M.; Malekinejad, H. Zearalenone and 17 β-Estradiol Induced Damages in Male Rats Reproduction Potential; Evidence for ERα and ERβ Receptors Expression and Steroidogenesis. Toxicon 2016, 120, 133–146. [Google Scholar] [CrossRef]
- Venkataramana, M.; Chandra Nayaka, S.; Anand, T.; Rajesh, R.; Aiyaz, M.; Divakara, S.T.; Murali, H.S.; Prakash, H.S.; Lakshmana Rao, P.V. Zearalenone Induced Toxicity in SHSY-5Y Cells: The Role of Oxidative Stress Evidenced by N-Acetyl Cysteine. Food Chem. Toxicol. 2014, 65, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ben Salem, I.; Boussabbeh, M.; Prola, A.; Guilbert, A.; Bacha, H.; Lemaire, C.; Abid-Essefi, S. Crocin Protects Human Embryonic Kidney Cells (HEK293) from α- and β-Zearalenol-Induced ER Stress and Apoptosis. Environ. Sci. Pollut. Res. 2016, 23, 15504–15514. [Google Scholar] [CrossRef]
- Alonso-Garrido, M.; Frangiamone, M.; Font, G.; Cimbalo, A.; Manyes, L. In Vitro Blood Brain Barrier Exposure to Mycotoxins and Carotenoids Pumpkin Extract Alters Mitochondrial Gene Expression and Oxidative Stress. Food Chem. Toxicol. 2021, 153, 112261. [Google Scholar] [CrossRef]
- Feng, Y.-Q.; Zhao, A.-H.; Wang, J.-J.; Tian, Y.; Yan, Z.-H.; Dri, M.; Shen, W.; De Felici, M.; Li, L. Oxidative Stress as a Plausible Mechanism for Zearalenone to Induce Genome Toxicity. Gene 2022, 829, 146511. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-Induced Lipid Peroxidation Modulates Cell Death Outcome: Mechanisms behind Apoptosis, Autophagy, and Ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. [Google Scholar] [CrossRef]
- Liu, X.; Xi, H.; Han, S.; Zhang, H.; Hu, J. Zearalenone Induces Oxidative Stress and Autophagy in Goat Sertoli Cells. Ecotoxicol. Environ. Saf. 2023, 252, 114571. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Elkin, E.R.; Harris, S.M.; Loch-Caruso, R. Trichloroethylene Metabolite S-(1,2-Dichlorovinyl)-l-Cysteine Induces Lipid Peroxidation-Associated Apoptosis via the Intrinsic and Extrinsic Apoptosis Pathways in a First-Trimester Placental Cell Line. Toxicol. Appl. Pharmacol. 2018, 338, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Yang, S.-H.; Shi, W.; Li, P.; Guo, Y.; Guo, J.; He, J.-B.; Zhang, Y. Protective Effect of Proanthocyanidin on Mice Sertoli Cell Apoptosis Induced by Zearalenone via the Nrf2/ARE Signalling Pathway. Environ. Sci. Pollut. Res. 2017, 24, 26724–26733. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhao, J.; Ma, L.; Chen, J.; Xu, J.; Rahman, S.U.; Feng, S.; Li, Y.; Wu, J.; Wang, X. Lycopene Attenuates Zearalenone-Induced Oxidative Damage of Piglet Sertoli Cells through the Nuclear Factor Erythroid-2 Related Factor 2 Signaling Pathway. Ecotoxicol. Environ. Saf. 2021, 225, 112737. [Google Scholar] [CrossRef]
- Hou, W.-H.; Rossi, L.; Shan, Y.; Zheng, J.-Y.; Lambrecht, R.W.; Bonkovsky, H.L. Iron Increases HMOX1 and Decreases Hepatitis C Viral Expression in HCV-Expressing Cells. WJG 2009, 15, 4499. [Google Scholar] [CrossRef]
- Ayer, A.; Zarjou, A.; Agarwal, A.; Stocker, R. Heme Oxygenases in Cardiovascular Health and Disease. Physiol. Rev. 2016, 96, 1449–1508. [Google Scholar] [CrossRef]
Primers | Primer Sequences | Product Length (bp) |
---|---|---|
Bax | CGCCCTTTTCTACTTTGCCA | 92 |
CCAATGTCCAGCCCATGATG | ||
Bcl2 | CAGTGGGAACCTTTGCGATT | 130 |
CTCTGCACGCTGGTTGAAAG | ||
Caspase3 | ACGTTGTGGCTGAACGTAAA | 117 |
AGTCCACTGATTTGCTTCCGT | ||
CCNA2 | GGACAAAGCTGGCCTGAATC | 122 |
ATTGACTGTTGTGCGTGCTG | ||
CSPG4 | CTGGTCCGGCACAAGAAGAT | 109 |
AGAACACAATGTCCGCTGGT | ||
TGM2 | GCTGTCCGATGCTATGGAGG | 127 |
CTCCAAGCTGAGGCGGTAAT | ||
MYH9 | CCTTCGGGAATGCCAAGACT | 98 |
GGCTCCCACAATGTAGCCAT | ||
CDK1 | AAGTGTGGCCAGAAGTGGAA | 122 |
TTTCGAGAGCAGATCCAAGCC | ||
HMOX1 | CAAGGCACAAGACTCGGCTC | 135 |
GCATAAAGCCCCACAGCAAC | ||
ATG9B | CTGGCTTCCCTTTCCCGAAT | 125 |
AGGTAGATGGCGTGGAGACT | ||
DEPP1 | CCTCCGTGCTGGATGAAACT | 115 |
AAGCGAGTGGTGATGTCCTG | ||
OSGIN2 | TTAGACTCTCCTGGCCGTCT | 106 |
TGCCACGCAACTTTCCTTTG | ||
AVPI1 | GGCTTCCAGTGAGCAGTATGT | 94 |
CTGATGGAGGTAGCTTGTGGG | ||
GCLC | AGGACGAACCCAAACCATCC | 96 |
AGACATGGTCCCACCATACG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gao, Y.; Yao, D.; Li, Z.; Wang, J.; Zhang, X.; Zhao, X.; Zhang, Y. Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells. Int. J. Mol. Sci. 2024, 25, 2578. https://doi.org/10.3390/ijms25052578
Li Y, Gao Y, Yao D, Li Z, Wang J, Zhang X, Zhao X, Zhang Y. Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells. International Journal of Molecular Sciences. 2024; 25(5):2578. https://doi.org/10.3390/ijms25052578
Chicago/Turabian StyleLi, Yina, Yujin Gao, Dan Yao, Zongshuai Li, Jiamian Wang, Xijun Zhang, Xingxu Zhao, and Yong Zhang. 2024. "Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells" International Journal of Molecular Sciences 25, no. 5: 2578. https://doi.org/10.3390/ijms25052578
APA StyleLi, Y., Gao, Y., Yao, D., Li, Z., Wang, J., Zhang, X., Zhao, X., & Zhang, Y. (2024). Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells. International Journal of Molecular Sciences, 25(5), 2578. https://doi.org/10.3390/ijms25052578