The Bioactivity and Phytochemicals of Muscari comosum (Leopoldia comosa), a Plant of Multiple Pharmacological Activities
Abstract
:1. Introduction
2. Literature Search
3. Botanical Description
4. Toxicity and Adverse Reactions
5. Phytochemicals Reported in LC
Sr. No. | Compound Name | Amount (mg/g) | Compound Type | Type of Extract/Fraction | Part of Plant | Ref |
---|---|---|---|---|---|---|
1 | Gallic acid | 0.31 | Phenolic acid | Methanol extract | Bulbs | [30] |
2 | Vanillic acid | 0.28 | Phenolic acid | Methanol extract | Bulbs | [30] |
3 | Chlorogenic acid | 0.85 | Phenolic acid | Methanol extract | Bulbs | [30] |
4 | Caffeic acid | 0.45 | Phenolic acid | Methanol extract | Bulbs | [30] |
5 | Ferulic acid | 1.32 | Phenolic acid | Methanol extract | Bulbs | [30] |
6 | Catechin | 1.17 | Flavonoids | Methanol extract | Bulbs | [30] |
7 | Epicatechin | 0.36 | Flavonoids | Methanol extract | Bulbs | [30] |
8 | Rutin | 0.11 | Flavonoid glycoside | Methanol extract | Bulbs | [30] |
9 | Naringenin | 0.17 | Flavonoids | Methanol extract | Bulbs | [30] |
10 | Kaempferol | 0.24 | Flavonoids | Methanol extract | Bulbs | [30] |
11 | 1-Tetradecene | 0.04 | Hydrocarbon | n-hexane fraction of extract from cultivated bulbs | Bulbs | [30] |
12 | Tetradecane | 0.03 | Hydrocarbon | n-hexane fraction, cultivated bulbs | Bulbs | [29] |
13 | Pentadecane | 0.10 | Hydrocarbon | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
14 | Phenol, 2,4-bis(1,1-dimethylethyl)- | 0.13 | Other | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
15 | Hexadecane | 0.14 | Hydrocarbon | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
16 | 1,2-Benzenedicarboxylic acid, diethyl ester | 0.04 | Phthalate ester. | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
17 | Cyclotetradecane | 0.01 | Other | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
18 | Octadecane | 0.13 | Hydrocarbon | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
19 | Neophytadiene | 0.14 | Hydrocarbon | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
20 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 0.32 | Other | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
21 | Pentadecanoic acid, ethyl ester | 1.27 | Fatty acid ester | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
22 | Myristic acid | 17.52 | Fatty acid | n-hexane fraction of extract from wild bulbs | Bulbs | [29] |
23 | Margaric acid | 1.20 | Fatty acid | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
24 | 8,11-Octadecadienoic acid | 1.34 | Fatty acid | n-hexane fraction of extract from wild bulbs | Bulbs | [29] |
25 | 7-Octadecenoic acid | 1.30 | Fatty acid | n-hexane fraction of extract from wild bulbs | Bulbs | [29] |
26 | Linoleic acid | 12.92 | Fatty acid | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
27 | Linolenic acid | 4.22 | Fatty acid | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
28 | (R)-(−)-14-Methyl-8-hexadecyn-1-ol | 0.50 | Other | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
29 | 9,17-Octadecadienal, (Z)- | 0.10 | Other | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
30 | Adipic acid | 1.5 | Other | n-hexane fraction of extract from wild bulbs | Bulbs | [29] |
31 | Tricosanoic acid | 0.03 | Other | n-hexane fraction of extract from wild bulbs | Bulbs | [29] |
32 | β-Monolinolein | 2.30 | Other | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
33 | 1,2-Benzenedicarboxylic acid, dinonyl ester | 5.62 | Phthalic acid monoester | n-hexane fraction of extract from wild bulbs | Bulbs | [29] |
34 | (22R, 24S)-22,24-Dimethylcholesterol | 0.50 | Sterol | n-hexane fraction of extract from cultivated bulbs | Bulbs | [29] |
35 | Mevalonic acid lactone | 3.7 | Other | Dichloromethane fractions | Leaves | [31] |
36 | Cinnamic acid | Trace | Carboxylic acid | Dichloromethane fractions | Inflorescences | [31] |
37 | Benzoic acid, 4-hydroxy-, methyl ester | 2.2 | Other | Dichloromethane fractions | Leaves | [31] |
38 | p-Hydroxycinnamic acid | 0.9 | Phenolic acid | Dichloromethane fractions | Leaves | [31] |
39 | Syringic acid | 1.9 | Phenolic acid | Dichloromethane fractions | Inflorescences | [31] |
40 | 7-Hydroxy-3-(1,1-dimethylprop-2-enyl)coumarin | 0.2 | Other | Dichloromethane fractions | Leaves | [31] |
41 | Butanedioic acid | TA | Carboxylic acid | n-hexane | Inflorescences | [31] |
42 | Caprylic acid | 0.3 | Carboxylic acid | n-hexane | Leaves | [31] |
43 | Azelaaldehydic acid | 0.6 | Carboxylic acid | n-hexane | Leaves | [31] |
44 | Undecanoic acid | 0.1 | Carboxylic acid | n-hexane | Leaves | [31] |
45 | Lauric acid | 0.5 | Fatty acid | n-hexane | Leaves | [31] |
46 | Oleic acid | 0.1 | Fatty acid | n-hexane | Inflorescences | [31] |
47 | Pentadecanoic acid | 0.5 | Fatty acid | n-hexane | Leaves | [31] |
48 | Tetradecanoic acid | 0.2 | Fatty acid | n-hexane | Leaves | [31] |
49 | Palmitic acid | 19.8 | Fatty acid | n-hexane | Leaves | [31] |
50 | 10,13-Octadecadienoic acid | 0.2 | Fatty acid | n-hexane | Leaves | [31] |
51 | Stearic acid | 7.9 | Fatty acid | n-hexane | Inflorescences | [31] |
52 | Eicosanoic acid | 1.2 | Fatty acid | n-hexane | Inflorescences | [31] |
53 | Behenic acid | 0.9 | Fatty acid | n-hexane | Leaves | [31] |
54 | Lignoceric acid | 0.6 | Fatty acid | n-hexane | Inflorescences | [31] |
55 | 3α, 5-cyclo-ergosta-7,22-dien-6-one | 0.3 | Phytosterols | n-hexane | Inflorescences | [31] |
56 | Stigmast-7-en-3-ol, (3β, 5α)- | 0.3 | Phytosterols | n-hexane | Leaves | [31] |
57 | Stigmasta-3,5-dien-7-one | 0.3 | Phytosterols | n-hexane | Inflorescences | [31] |
58 | Ethyl caprylate | 0.9%a | n-hexane | Bulbs | [27] | |
59 | 9-oxo-Nonanoic acid, ethyl ester | 2.7% a | n-hexane | Bulbs | [27] | |
60 | Ethyl palmitate | 19.7% a | n-hexane | Bulbs | [27] | |
61 | Heptadecanoic acid | 2.8% a | Fatty acid | n-hexane | Bulbs | [27] |
62 | Ethyl heptadecanoate | 1.4% a | n-hexane | Bulbs | [27] | |
63 | Ethyl linoleate | 4.9% a | n-hexane | Bulbs | [27] | |
64 | Ethyl stearate | 1.5% a | n-hexane | Bulbs | [27] | |
65 | Eucosterol | NP | Phytosterols | Acetone | Bulbs | [15] |
66 | Ketotriol | NP | Phytosterols | Acetone | Bulbs | [17] |
67 | Diketotriol | NP | Phytosterols | Acetone | Bulbs | [17] |
68 | (23R)-17,23-epoxy-33,31-dihydroxy-27-nor-5α-lanost-8-ene-15,24-dione | NP | Phytosterols | Acetone | Bulbs | [18] |
69 | (23R)-17,23-epoxy-31-hydroxy-2 7-nor-5α-lanost-8-ene-3,15,24-trione | NP | Other | Acetone | Bulbs | [18] |
70 | Muscomosin | NP | Homoisoflavonoids | Ether | Bulbs | [25] |
71 | 3′-hydroxy-3,9dihydroeucomin | NP | Homoisoflavonoids | Ether | Bulbs | [25] |
72 | 4′demethyl-3,9-dihydroeucomin | NP | Homoisoflavonoids | Ether | Bulbs | [25] |
73 | 7-O-methyl-3,9_dihydropunctatin | NP | Homoisoflavonoids | Ether | Bulbs | [24] |
74 | 8-O-demethyl-7-O-methyl-3,9_dihydropunctatin | NP | Homoisoflavonoids | Ether | Bulbs | [24] |
75 | 3,9-dihydroeucomnalin | NP | Homoisoflavonoids | Ether | Bulbs | [24] |
76 | Comosin | NP | Homoisoflavonoids | Ether | Bulbs | [3] |
77 | 8-O-demethyl-8-O-acetyl-7-O-methyl-3,9dihydropunctatin | NP | Homoisoflavonoids | Ether | Bulbs | [3] |
78 | H2 | NP | Homoisoflavonoids | Ether | Bulbs | [34] |
79 | H5 | NP | Homoisoflavonoids | Ether | Bulbs | [34] |
80 | Muscaroside A | NP | Glycoside | Acetone | Bulbs | [20] |
81 | Muscaroside B | NP | Glycoside | Acetone | Bulbs | [21] |
82 | Muscaroside C | NP | Glycoside | Acetone | Bulbs | [22] |
83 | Muscaroside D | NP | Glycoside | Acetone | Bulbs | [23] |
84 | Muscaroside E | NP | Glycoside | Acetone | Bulbs | [23] |
85 | Muscaroside F | NP | Glycoside | Acetone | Bulbs | [23] |
6. Bioactivities
6.1. Antioxidant Activity
Activity | Dose | Method | Result | Refs |
---|---|---|---|---|
Antioxidant activity | Extract from bulbs in ethanol | DPPH | >80% | [5] |
Lipid peroxidation in liposome inhibition assay | >85% | |||
XO inhibition | >35% | |||
Extract from bulbs in ethanol and n-hexane | Metal chelating assay | IC50 values of 78.8 (ethanol) and 113.6 (n-hexane) μg/mL | [27] | |
FRAP | 66.7 ± 3.1 (ethanol) and 112.4 ± 2.5 (n-hexane) μM Fe/g | |||
ABTS | 1.7 ± 0.7 and 3.8 ± 0.9 TEAC value | |||
DPPH of ethanol and n-hexane extracts | IC50 values of 40.9 (ethanol) and 46.6 (n-hexane) μg/mL, | [28] | ||
Extract from bulbs of wild and cultivated plants (raw, dichloromethane, and ethyl acetate fractions) | DPPH | IC50 values of raw, dichloromethane, and ethyl acetate fractions were 152.90, 38.97, and 31.57 μg/mL, respectively, for the bulbs of wild plants; and the IC50 values of dichloromethane and ethyl acetate fractions were 11.25 and 53.24 μg/mL, respectively, for the bulbs of cultivated plants. | [29] | |
β-carotene-linoleic acid bleaching assay | IC50 values of raw, dichloromethane, and ethyl acetate fractions were 24.68, 17.30, and 57.71 μg/mL, respectively, for the bulbs of wild plants; and the IC50 values of dichloromethane and ethyl acetate fractions were 8.54 and 4.51 μg/mL, respectively, for the bulbs of cultivated plants. | |||
Methanolic (70%) extract from LC bulbs | DPPH, nitric oxide, and superoxide radicals scavenging assay | IC50 = 36.73 μg/mL (DPPH) IC25 = 144.13 μg/mL (NO) IC50 = 54.15 μg/mL (superoxide anion radical) | [30] | |
Ethanolic extracts from bulbs from raw, boiled, and steam-cooked bulbs | DPPH | IC50 = 1.34 mg/mL (raw) IC50 = 3.59 mg/mL (steam-cooked) IC50 = 9.63 mg/mL (boiled) | [12] | |
β-carotene-linoleic acid bleaching assay | IC50 = 9.13 mg/mL (raw) IC50 = 17.37 mg/mL (steam-cooked) IC50 = 14.81 mg/mL (boiled) | |||
Extract from LC bulbs obtained using a dynamic extractor | DPPH | The IC50 = 10.2 ± 0.2 μg/mL (n = 5). | [13] | |
BCB assay (The IC50 of antilipoperoxidant activity, measured by BCB assay, for ascorbic acid was 1.50 ± 0.10 μg/mL.) | IC50 = 10.80 ± 0.74 μg/mL (30 min) and 81.4 ± 1.28 μg/mL (60 min) (n = 5 for each test). | |||
Extract of leaves | DPPH | The IC50 values of raw, n-hexane, dichloromethane, and ethyl acetate fractions were 154.8, >1000, >1000, and 86.09 μg/mL, respectively, for the extract from leaves; and the | [31] | |
BCB assay | dichloromethane and ethyl acetate fractions were 44.46, >100, >100, and 23.73 μg/mL, respectively, for the extract from leaves. | |||
Extract from inflorescences | DPPH | The IC50 values of raw, n-hexane, dichloromethane, and ethyl acetate fractions were 316.6, >1000, 472.1, and 102.4 μg/mL, respectively, for the extract from inflorescences. | ||
BCB assay | The IC50 values of raw, n-hexane, dichloromethane, and ethyl acetate fractions were 84.42, >1000, >1000, and 53.35 μg/mL, respectively, for the extract from inflorescences. | |||
Aqueous and organic extract from bulbs | HPSA | The percentages of scavenging activities were 62.12 ± 0.2, 61.89 ± 0.3, 61.72 ± 0.1, 61.3 ± 0.16, 61.09 ± 0.05, 61.24 ± 0.2, 60.94 ± 0.2, 62.67 ± 0.06, and 61.91 ± 0.1 for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | [32] | |
Trolox equivalent antioxidant capacity (μg of Trolox equivalent per mg of dry plant extract) | The Trolox equivalent (μg TE/mgE) antioxidant capacity values were 27.46 ± 0.69, 17.18 ± 0.17, 6.63 ± 0.31, 225.86 ± 1.04, 89.47 ± 0.68, 364.96 ± 0.28, 343.02 ± 1.44, 381.63 ± 0.63, and 360.93 ± 0.25 for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | |||
DPPH | The IC50 values were 1011.33 ± 4.37, 1089.33 ± 0.92, 1140 ± 20.64, 139.4 ± 6.93, 220.5 ± 2.91, 99.76 ± 0.04, 100 ± 0.03, 10.08 ± 0.01, and 10.15 ± 0.04 μg/mL for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | |||
FRAP assay (μg of Trolox equivalent per mg of dry plant extract) | The Trolox equivalent (μg TE/mgE) antioxidant activity values were 12.9 ± 0.1, 11.16 ± 0.52, 15.27 ± 0.1, 131.55 ± 0.26, 49.24 ± 0.13, 277.74 ± 0.67, 225.77 ± 0.15, 394.77 ± 0.74, 358.77 ± 0.74 for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | |||
Reducing power assay (μg of ascorbic acid equivalent per mg of dry plant extract) | The Trolox equivalent (μg TE/mgE) antioxidant activity values were 8.36 ± 0.06, 7.91 ± 0.14, 10.68 ± 0.13, 59.40 ± 0.21, 18.86 ± 0.05, 147.39 ± 1.07, 133.32 ± 0.8, 356.7 ± 0.92, and 283.95 ± 0.59 for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | |||
Aqueous and methanolic (50 and 70%) extracts from bulbs | DPPH | IC50 = 38.02 μg/mL (aqueous) IC50 = 29.43 μg/mL (50% methanolic) IC50 = 24.60 μg/mL (70% methanolic) | [33] | |
Nitric oxide scavenging | IC50 = 269.21 μg/mL (aqueous) IC50 = 168.52 μg/mL (50% methanolic) IC50 = 122.94 μg/mL (70% methanolic) | |||
Superoxide radicals scavenging | IC50 = 51.43 μg/mL (aqueous) IC50 = 50.10 μg/mL (50% methanolic) IC50 = 36.50 μg/mL (70% methanolic) | |||
Reducing power | 37.93 (mg GAE/g) (aqueous) 44.51(mg GAE/g) (50% methanolic) 47.52(mg GAE/g) (70% methanolic) | |||
1, 5, 10, 50, 100, and 600 µg/mL | In HepG2 cells the intracellular ROS level was measured with DCFH-DA. | Pre-treatment with low doses (100–1 µg/mL) of the extracts for 24 h protected cells from oxidative stress and ROS ↓. | ||
Aqueous and methanolic extracts from bulbs | RT-PCR | NRF2 ↑ (aqueous and 50% methanolic extracts), SOD-2 ↑ (aqueous and methanolic extracts), GPX1 ↑ (aqueous and 70% methanolic extracts), NQO1 ↑ (50% methanolic extract), ABCC6 ↑ (aqueous extract) | ||
Anti-obesity | Extracts from bulbs of wild and cultivated plants in raw, dichloromethane, and ethyl acetate fractions | Lipase inhibition assay (orlistat is taken as positive control IC50 = 0.018 mg/mL) | The IC50 values of raw, dichloromethane, and ethyl acetate fractions were 0.166, 0.290, and 0.153 mg/mL, respectively, from the bulbs of wild plants; and the IC50 values of dichloromethane and ethyl acetate fractions were 0.218 and 0.469 mg/mL, respectively. | [29] |
Leaves and inflorescences of wild and cultivated plants in raw, dichloromethane, and ethyl acetate fractions | The IC50 values of raw, n-hexane, dichloromethane, and ethyl acetate fractions were 3.819, 0.369, 1.409, and 0.336 mg/mL, respectively, for the leaves of wild plants; and the IC50 values of raw, n-hexane, dichloromethane, and ethyl acetate fractions were 6.561, 0.736, 1.570, and 0.780 mg/mL, respectively, for the inflorescences of wild plants. | [31] | ||
Ethanolic extract from LC bulbs | Inhibition assays for pancreatic lipase (positive controls, i.e., orlistat IC50 values = 0.19 μg/mL) | IC50 values of 70.5 ± 0.89 μg/mL for extract and 57.20 ± 0.19 μg/mL for positive control drug | [13] | |
Inhibition assays for pancreatic α-amylase (positive controls i.e., acarbose IC50 = 36.50 ± 0.32 μg/mL) | IC50 values of 46.3 ± 0.23 μg/mL for extract and 36.50 ± 0.32 μg/mL for positive control drug | |||
Wistar rats oral administration of 20 or 60 mg/die for 12 weeks | Anthropometric and metabolic variables | Body weight ↓, circumference of waist ↓ perirenal ↓, retroperitoneal ↓, epididymal ↓, and abdominal fat ↓ weight ↓ and CSI ↓ values of heart and liver, ROS ↓ | ||
Blood biochemical measurements and HOMA-IR index | ROS production ↓, triglycerides ↓, LDL cholesterol ↓, LDL-cholesterol-ox ↓, and total cholesterol ↓; similarly, the level of plasma insulin ↓, basal glycemia level ↓, and HOMA-IR index ↓ | |||
Tissue histology | In abdominal fat, the areas of adipocytes ↓. In liver samples, the presence of fat vacuoles ↓, the triglyceride content of liver ↓. | |||
WB analysis of key enzymes of gluconeogenesis | The expression of PEPCK ↓ and G6Pase ↓ | |||
Anti-diabetes activity | Extract from LC bulbs in ethanol and n-hexane | α-amylase inhibition assay (positive controls i.e., acarbose IC50 = 50.0 ± 0.9 μg/mL) | IC50 = 81.3 ± 2.7 μg/mL (ethanol) IC50 = 166.9 ± 3.4 μg/mL (n-hexane) | [27] |
α-Glucosidase (positive controls, i.e., acarbose IC50 = 35.5 ± 1.2 μg/mL) | IC50 = 112.8 ± 3.3 μg/mL (ethanol) IC50 = 200.8 ± 2.8 μg/mL (n-hexane) | |||
Ethanolic extracts from raw, boiled, and steam-cooked bulbs | α-amylase inhibition assay | IC50 values of 0.16 ± 0.03, 0.73 ± 0.13, and 0.69 ± 0.02 mg/mL in RB, SB, and BB, respectively | [12] | |
Methanolic extract from LC bulbs | α-amylase (positive control acarbose IC50 = 47.33 μg/mL) | IC50: 75.17 μg/mL | [30] | |
α-glucosidase (positive control acarbose IC50 = 33.72 μg/mL) | IC50: 85.33 μg/mL | |||
Aqueous (decocted, infused, and macerated) and organic (ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl) extract from bulbs | α-amylase (positive control acarbose IC50 = 616.33 μg/mL) | The IC50 values were 1200, 2880, 2752, 2264 2384, 2219, 2289, 2512, and 2897 μg/mL for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | [32] | |
α-glucosidase inhibition assay (positive control acarbose IC50 = 195 μg/mL) | The IC50 values were 238.5, 258.9, 268.2, 257.9, 162.7, 85.4, 85.9, 136, and 130.8 μg/mL for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | |||
β-galactosidase inhibition assay (positive control quercetin IC50 = 171.16 μg/mL) | The IC50 values were 216, 205, 245, 182, 196, 163, 200, 240, and 291 μg/mL for decocted aqueous, infused aqueous, macerated aqueous, ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl, respectively. | |||
Anti-AD | n-hexane and ethanolic extract from bulbs | Acetylcholinesterase and butyrylcholinesterase inhibiting activities | IC50 = 131 μg/mL (ethanol) AChE IC50 = 282.9 μg/mL (ethanol) BChE IC50 = 104.9 μg/mL (n-hexane) AChE IC50 = 128.1 μg/mL (n-hexane) BChE. | [28] |
Methanolic extract from LC bulbs | Acetylcholinesterase inhibition assay (positive control, i.e., galantamine IC50 = 8.9760.15 μg/mL) | IC50 = 107.6465.38 μg/mL | [30] | |
Anti-cancer | 100, 200, and 400 mg/kg 50% ethanol fraction of aqueous bulb extract | Walker-256 (intramuscular) carcinosarcoma | Weight of tumor decreased | [16] |
Ethanolic extracts from raw and cooked bulbs | MTT assay of MCF-7 cell line | IC50 = 10.27 μg/mL (ethanol) raw IC50 = 669.3 μg/mL (ethanol) cooked | [12] | |
Anti-inflammation | Five homoisoflavones and fraction at 100 μg/ear | Croton oil-induced mouse ear dermatitis | 27–41% ↓ (in inflammation) | [34] |
Methanolic extract from LC bulbs (25, 50, and 75 mg/mL) | MMP-2 and MMP-9 derived from the primary culture of rat astrocytes activated with LPS detected through gelatin gel zymography and 1,10 phenanthroline used as a positive control | MMP-2 ↓ and MMP-9 ↓ (completely inhibited the activity of MMP-9 at 50 mg/mL) | [30] | |
Antibacterial activity | Aqueous and ethanolic extracts from LC bulbs | Inhibition of biofilm formation through methicillin-resistant Staphylococcus aureus studied through staining with crystal violet | IC50 = 8 μg/mL (aqueous) raw IC50 = 16 μg/mL (ethanol) cooked | [41] |
Extract of LC bulbs in different solvents: ethanolic, macerated ethanolic, acetone, macerated acetone, diethyl ether, and macerated diethyl. | Agar disc diffusion assay measuring the zone of inhibition formed around the discs against selected bacterial species (Bacillus subtilis, Staphylococcus aureus, Listeria innocua, Pseudomonas aeruginosa, Proteus mirabilis, and Escherichia coli). | Inhibition was observed against Listeria innocua and Proteus mirabilis. | [32] | |
Immune stimulation | 0.1 mL of the alcoholic plant extract in two different concentrations (0.5 mg/fish and 2 mg/fish) | Sparus aurata NBT-positive cells count | NBT-positive cells count ↑ | [42] |
Specific growth rate | Growth ↑ | |||
Lysozyme activity of serum samples | Lysozyme activity ↑ | |||
Total and differential leukocyte count | level of total leukocyte ↑, neutrophils ↑, monocytes ↑, and eosinophils counts ↑ |
6.2. Anti-Diabetes
6.3. Anti-Obesity
6.4. Antibacterial
6.5. Immune Enhancement Effect of LC Bulb Extracts
6.6. Anti-Cancer Activity
6.7. Anti-Inflammatory
6.8. Anti-Alzheimer’s Disease
7. Discussion and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casoria, P.; Menale, B.; Muoio, R.; Botanico, O. Muscari comosum, Liliaceae, in the food habits of south Italy. Econ. Bot. 1999, 53, 113–115. [Google Scholar]
- Boulfia, M.; Lamchouri, F.; Lachkar, N.; Khabbach, A.; Zalaghi, A.; Toufik, H. Socio-economic value and ethnobotanical study of Moroccan wild plant: Leopoldia comosa L. bulbs. Ethnobot. Res. Appl. 2021, 21, 1–17. [Google Scholar]
- Adinolfi, M.; Barone, G.; Belardini, M.; Lanzetta, R.; Laonigro, G.; Parrilli, M. Homoisoflavanones from Muscari comosum bulbs. Phytochemistry 1985, 24, 2423–2426. [Google Scholar] [CrossRef]
- Motti, R.; Antignani, V.; Idolo, M. Traditional plant use in the Phlegraean fields Regional Park (Campania, Southern Italy). Hum. Ecol. 2009, 37, 775–782. [Google Scholar] [CrossRef]
- Pieroni, A.; Janiak, V.; Dürr, C.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2002, 16, 467–473. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, W.; Richardson, A.; Van Remmen, H.; Ikeno, Y.; Salmon, A.B. Oxidative damage associated with obesity is prevented by overexpression of CuZn-or Mn-superoxide dismutase. Biochem. Biophys. Res. Commun. 2013, 438, 78–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Zhou, J.; Shao, Q. Glutathione peroxidase GPX1 and its dichotomous roles in cancer. Cancers 2022, 14, 2560. [Google Scholar] [CrossRef]
- Jaiswal, V.; Cho, Y.-I.; Lee, H.-J. Preliminary Study to Explore the Immune-Enhancement Mechanism of Platycodon grandiflorus Extract through Comparative Transcriptome Analysis. Appl. Sci. 2021, 11, 226. [Google Scholar] [CrossRef]
- Jaiswal, V.; Lee, H.-J. Antioxidant activity of Urtica dioica: An important property contributing to multiple biological activities. Antioxidants 2022, 11, 2494. [Google Scholar] [CrossRef]
- Mulholland, D.A.; Schwikkard, S.L.; Crouch, N.R. The chemistry and biological activity of the Hyacinthaceae. Nat. Prod. Rep. 2013, 30, 1165–1210. [Google Scholar] [CrossRef]
- Canale, A.; Benelli, G.; Benvenuti, S. First record of insect pollinators visiting Muscari comosum (L.) Miller (Liliaceae-Hyacinthaceae), an ancient Mediterranean food plant. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2014, 148, 889–894. [Google Scholar]
- Casacchia, T.; Sofo, A.; Casaburi, I.; Marrelli, M.; Conforti, F.; Statti, G.A. Antioxidant, enzyme-inhibitory and antitumor activity of the wild dietary plant Muscari comosum (L.) Mill. Int. J. Plant Biol. 2017, 8, 6895. [Google Scholar] [CrossRef]
- Casacchia, T.; Scavello, F.; Rocca, C.; Granieri, M.; Beretta, G.; Amelio, D.; Gelmini, F.; Spena, A.; Mazza, R.; Toma, C. Leopoldia comosa prevents metabolic disorders in rats with high-fat diet-induced obesity. Eur. J. Nutr. 2019, 58, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Foti, C.; Nettis, E.; Cassano, N.; Damiani, E.; Ferrannini, A.; Vena, G. Allergy to Muscari comosum bulb. Allergy 2007, 62, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- Parrilli, M.; Lanzetta, R.; Dovinola, V.; Adinolfi, M.; Mangoni, L. Glycosides from Muscari comosum. 1. Eucosterol glycoside and structure of its methanolysis products. Can. J. Chem. 1981, 59, 2261–2265. [Google Scholar] [CrossRef]
- Prescott, B.; Caldes, G. Chemical studies of an antitumor substance from African onions. Proc. Soc. Exp. Biol. Med. 1968, 129, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Parrilli, M.; Lanzetta, R.; Adinolfi, M.; Mangoni, L. Glycosides from m uscari comosum—III: The structure of further authentic aglycones. Tetrahedron 1980, 36, 3591–3596. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, G.; Mangoni, L.; Parrilli, M. Triterpenes from Bulbs of Muscari comosum, 3. The Structure of Two Minor Novel Nortriterpene Components. J. Nat. Prod. 1984, 47, 544–546. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, G.; Mangoni, L.; Parrilli, M. Triterpenes from bulbs of Muscari comosum, 4. The structure of further novel nortriterpene components. J. Nat. Prod. 1984, 47, 721–723. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, G.; Mangoni, L.; Parrilli, M. Glycosides from Muscari comosum. 4. Structure of muscaroside A. Can. J. Chem. 1983, 61, 2633–2637. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, G.; Mangoni, L.; Parrilli, M. Glycosides from Muscari comosum. 5. structure of muscaroside B. Can. J. Chem. 1984, 62, 1223–1226. [Google Scholar] [CrossRef]
- Lanzetta, R.; Laonigro, G.; Parrilli, M.; Breitmaier, E. Glycosides from Muscari comosum. 6. Use of homo-and heteronuclear two-dimensional nuclear magnetic resonance spectroscopy for the structure determination of the novel glycoside muscaroside C. Can. J. Chem. 1984, 62, 2874–2878. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Corsaro, M.M.; Lanzetta, R.; Mangoni, L.; Parrilli, M. Glycosides from Muscari comosum. 7. Structure of three novel muscarosides. Can. J. Chem. 1987, 65, 2317–2326. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Belardini, M.; Lanzetta, R.; Laonigro, G.; Parrilli, M. 3-Benzyl-4-chromanones from Muscari comosum. Phytochemistry 1984, 23, 2091–2093. [Google Scholar] [CrossRef]
- Adinolfi, M.; Barone, G.; Lanzetta, R.; Laonigro, G.; Mangoni, L.; Parrilli, M. Three 3-benzyl-4-chromanones from Muscari comosum. Phytochemistry 1985, 24, 624–626. [Google Scholar] [CrossRef]
- Borgonovo, G.; Caimi, S.; Morini, G.; Scaglioni, L.; Bassoli, A. Taste-active compounds in a traditional Italian food: ‘Lampascioni’. Chem. Biodivers. 2008, 5, 1184–1194. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Pugliese, A.; Bonesi, M.; Solimene, U.; Menichini, F. Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts. Int. J. Food Sci. Nutr. 2010, 61, 780–791. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Bonesi, M.; Frega, N.; Menichini, F. Radical scavenging activity and cholinesterase inhibitory activity of Leopoldia comosa (L.) bulbs. Prog. Nutr. 2011, 13, 300–303. [Google Scholar]
- Marrelli, M.; La Grotteria, S.; Araniti, F.; Conforti, F. Investigation of the Potential Health Benefits as Lipase Inhibitor and Antioxidant of Leopoldia comosa (L.) Parl.: Variability of Chemical Composition of Wild and Cultivated Bulbs. Plant Foods Hum. Nutr. 2017, 72, 274–279. [Google Scholar] [CrossRef]
- Larocca, M.; Di Marsico, M.; Riccio, P.; Rossano, R. The in vitro antioxidant properties of Muscari comosum bulbs and their inhibitory activity on enzymes involved in inflammation, post-prandial hyperglycemia, and cognitive/neuromuscular functions. J. Food Biochem. 2018, 42, e12580. [Google Scholar] [CrossRef]
- Marrelli, M.; Araniti, F.; Statti, G.; Conforti, F. Metabolite profiling and biological properties of aerial parts from Leopoldia comosa (L.) Parl.: Antioxidant and anti-obesity potential. South Afr. J. Bot. 2019, 120, 104–111. [Google Scholar] [CrossRef]
- Boulfia, M.; Lamchouri, F.; Senhaji, S.; Lachkar, N.; Bouabid, K.; Toufik, H. Mineral content, chemical analysis, in vitro antidiabetic and antioxidant activities, and antibacterial power of aqueous and organic extracts of Moroccan Leopoldia comosa (L.) parl. Bulbs. Evid.-Based Complement. Altern. Med. 2021, 2021, 9932291. [Google Scholar] [CrossRef]
- Giglio, F.; Castiglione Morelli, M.A.; Matera, I.; Sinisgalli, C.; Rossano, R.; Ostuni, A. Muscari comosum L. Bulb extracts modulate oxidative stress and redox signaling in hepg2 cells. Molecules 2021, 26, 416. [Google Scholar] [CrossRef]
- Loggia, R.D.; Del Negro, P.; Tubaro, A.; Barone, G.; Parrilli, M. Homoisoflavanones as Anti-inflammatory Principles of Muscari comosum. Planta Med. 1989, 55, 587–588. [Google Scholar] [CrossRef]
- Jaiswal, V.; Park, M.; Lee, H.-J. Comparative transcriptome analysis of the expression of antioxidant and immunity genes in the spleen of a Cyanidin 3-O-Glucoside-treated alzheimer’s mouse model. Antioxidants 2021, 10, 1435. [Google Scholar] [CrossRef]
- Kumari, B.; Chauhan, K.; Trivedi, J.; Jaiswal, V.; Kanwar, S.S.; Pokharel, Y.R. Benzothiazole-Based-Bioconjugates with Improved Antimicrobial, Anticancer and Antioxidant Potential. ChemistrySelect 2018, 3, 11326–11332. [Google Scholar] [CrossRef]
- Jaiswal, V.; Chauhan, S.; Lee, H.-J. The bioactivity and phytochemicals of Pachyrhizus erosus (L.) Urb.: A multifunctional underutilized crop plant. Antioxidants 2021, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Battaglini, M.; Moles, N.; Ciofani, G. Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases. ACS Omega 2022, 7, 25974–25990. [Google Scholar] [CrossRef] [PubMed]
- Marino, P.; Pepe, G.; Basilicata, M.G.; Vestuto, V.; Marzocco, S.; Autore, G.; Procino, A.; Gomez-Monterrey, I.M.; Manfra, M.; Campiglia, P. Potential Role of Natural Antioxidant Products in Oncological Diseases. Antioxidants 2023, 12, 704. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Park, J.Y.; Kang, K.S.; Hwang, G.S. Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells. Molecules 2021, 26, 1387. [Google Scholar] [CrossRef] [PubMed]
- Quave, C.L.; Plano, L.R.; Pantuso, T.; Bennett, B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008, 118, 418–428. [Google Scholar] [CrossRef]
- Baba, E.; Uluköy, G.; Mammadov, R. Effects of Muscari comosum extract on nonspecific immune parameters in gilthead seabream, Sparus aurata (L. 1758). J. World Aquac. Soc. 2014, 45, 173–182. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2018, 8, 361–376. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.Y.; Lee, S.; Kang, K.S. In Vitro Studies to Assess the α-Glucosidase Inhibitory Activity and Insulin Secretion Effect of Isorhamnetin 3-O-Glucoside and Quercetin 3-O-Glucoside Isolated from Salicornia herbacea. Processes 2021, 9, 483. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, D.; Seo, Y.-H.; Ryu, S.-M.; Lee, A.-Y.; Moon, B.-C.; Kim, W.-J.; Kang, K.-S.; Lee, J. Chemical Constituents from the Roots of Angelica reflexa That Improve Glucose-Stimulated Insulin Secretion by Regulating Pancreatic β-Cell Metabolism. Pharmaceutics 2023, 15, 1239. [Google Scholar] [CrossRef] [PubMed]
- Tsur, A.M.; Twig, G. The actual burden of obesity—Accounting for multimorbidity. Lancet Diabetes Endocrinol. 2022, 10, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Oh, S.; Kim, S.-Y.; Ahn, H.; Son, M.; Heo, S.-J.; Byun, K.; Jeon, Y.-J. Anti-obesity effects of Ishophloroglucin A from the brown seaweed Ishige okamurae (Yendo) via regulation of leptin signal in ob/ob mice. Algal Res. 2022, 61, 102533. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.; Park, J.Y.; Park, I.-H.; Kang, K.S.; Shin, M.-S. The Beneficial Effect of Salicornia herbacea Extract and Isorhamnetin-3-O-glucoside on Obesity. Processes 2023, 11, 977. [Google Scholar] [CrossRef]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res. 2020, 155, 104681. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- Min, S.J.; Kim, S.J.; Park, J.Y.; Seo, C.-S.; Choi, Y.-K. Preparation of Herbal Extracts for Intestinal Immune Modulation Activity Based on In Vitro Screening and In Vivo Evaluation of Zingiber officinale Rosc. Extracts. Mol. 2023, 28, 6743. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Shanaida, M.; Oleshchuk, O.; Semenova, Y.; Mujawdiya, P.K.; Ivankiv, Y.; Pokryshko, O.; Noor, S.; Piscopo, S.; Adamiv, S.; et al. Natural Ingredients to Improve Immunity. Pharmaceuticals 2023, 16, 528. [Google Scholar] [CrossRef] [PubMed]
- Sarfati, D.; Gurney, J. Preventing cancer: The only way forward. Lancet 2022, 400, 540–541. [Google Scholar] [CrossRef] [PubMed]
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; et al. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022, 150, 113054. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Lee, H.-J. Pharmacological Properties of Shionone: Potential Anti-Inflammatory Phytochemical against Different Diseases. Molecules 2024, 29, 189. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.S.; Seo, H.J. Association between WHO First-Step Analgesic Use and Risk of Breast Cancer in Women of Working Age. Pharmaceuticals 2023, 16, 323. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Lee, H.-J. Pharmacological Activities of Mogrol: Potential Phytochemical against Different Diseases. Life 2023, 13, 555. [Google Scholar] [CrossRef]
- Dang, T.K.; Hong, S.-M.; Dao, V.T.; Nguyen, D.T.; Nguyen, K.V.; Nguyen, H.T.; Ullah, S.; Tran, H.T.; Kim, S.Y. Neuroprotective effects of total alkaloids fraction of Huperzia serrata on scopolamine-induced neurodegenerative animals. Phytother. Res. 2023, 37, 140–150. [Google Scholar] [CrossRef]
- Bhat, B.A.; Almilaibary, A.; Mir, R.A.; Aljarallah, B.M.; Mir, W.R.; Ahmad, F.; Mir, M.A. Natural Therapeutics in Aid of Treating Alzheimer’s Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders. Front. Neurosci. 2022, 16, 884345. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother. 2022, 146, 112556. [Google Scholar] [CrossRef]
- Dodson, M.; Shakya, A.; Anandhan, A.; Chen, J.; Garcia, J.G.; Zhang, D.D. NRF2 and diabetes: The good, the bad, and the complex. Diabetes 2022, 71, 2463–2476. [Google Scholar] [CrossRef]
- Xia, Y.; Zhai, X.; Qiu, Y.; Lu, X.; Jiao, Y. The Nrf2 in Obesity: A Friend or Foe? Antioxidants 2022, 11, 2067. [Google Scholar] [CrossRef]
- Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019, 8, 2252–2267. [Google Scholar] [CrossRef] [PubMed]
- De Plano, L.M.; Calabrese, G.; Rizzo, M.G.; Oddo, S.; Caccamo, A. The Role of the Transcription Factor Nrf2 in Alzheimer’s Disease: Therapeutic Opportunities. Biomolecules 2023, 13, 549. [Google Scholar] [CrossRef]
- Chen, M.-m.; Meng, L.-h. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol. Sin. 2022, 43, 1623–1632. [Google Scholar] [CrossRef]
- Klisic, A.; Kocic, G.; Kavaric, N.; Jovanovic, M.; Stanisic, V.; Ninic, A. Body mass index is independently associated with xanthine oxidase activity in overweight/obese population. Eat. Weight. Disord.-Stud. Anorex. Bulim. Obes. 2020, 25, 9–15. [Google Scholar] [CrossRef]
- Prabhu, S.; Burrage, E.; Luthman, J.; Oudomvilay, C.; Luna, N.; Childers, R.; Hanshew, A.; Englund, P.; Tierno, V.; Hoover, J. Xanthine oxidase mediates stress-induced Alzheimer’s Disease progression in triple transgenic mice. Physiology 2023, 38, 5730102. [Google Scholar] [CrossRef]
- Hasan, M.; Fariha, K.A.; Barman, Z.; Mou, A.D.; Miah, R.; Habib, A.; Tuba, H.R.; Ali, N. Assessment of the relationship between serum xanthine oxidase levels and type 2 diabetes: A cross-sectional study. Sci. Rep. 2022, 12, 20816. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Q.; Zhou, J.-C.; Wu, Y.-Y.; Ren, F.-Z.; Lei, X.G. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic. Biol. Med. 2018, 127, 108–115. [Google Scholar] [CrossRef]
- Shin, E.-J.; Chung, Y.H.; Sharma, N.; Nguyen, B.T.; Lee, S.H.; Kang, S.W.; Nah, S.-Y.; Wie, M.B.; Nabeshima, T.; Jeong, J.H. Glutathione Peroxidase-1 Knockout Facilitates Memory Impairment Induced by β-Amyloid (1–42) in Mice via Inhibition of PKC βII-Mediated ERK Signaling; Application with Glutathione Peroxidase-1 Gene-Encoded Adenovirus Vector. Neurochem. Res. 2020, 45, 2991–3002. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Gupta Vallur, P.; Phaëton, R.; Mythreye, K.; Hempel, N. Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants 2017, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Massaad, C.A.; Washington, T.M.; Pautler, R.G.; Klann, E. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2009, 106, 13576–13581. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaiswal, V.; Lee, H.-J. The Bioactivity and Phytochemicals of Muscari comosum (Leopoldia comosa), a Plant of Multiple Pharmacological Activities. Int. J. Mol. Sci. 2024, 25, 2592. https://doi.org/10.3390/ijms25052592
Jaiswal V, Lee H-J. The Bioactivity and Phytochemicals of Muscari comosum (Leopoldia comosa), a Plant of Multiple Pharmacological Activities. International Journal of Molecular Sciences. 2024; 25(5):2592. https://doi.org/10.3390/ijms25052592
Chicago/Turabian StyleJaiswal, Varun, and Hae-Jeung Lee. 2024. "The Bioactivity and Phytochemicals of Muscari comosum (Leopoldia comosa), a Plant of Multiple Pharmacological Activities" International Journal of Molecular Sciences 25, no. 5: 2592. https://doi.org/10.3390/ijms25052592
APA StyleJaiswal, V., & Lee, H. -J. (2024). The Bioactivity and Phytochemicals of Muscari comosum (Leopoldia comosa), a Plant of Multiple Pharmacological Activities. International Journal of Molecular Sciences, 25(5), 2592. https://doi.org/10.3390/ijms25052592