Assessment of the Electrolyte Heterogeneity of Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer Using Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Spectral Differences of Fibrosis, Nerve Tissue, Tumor Stroma, and Cell-Rich Tumor Areas
2.2. Median Peak Areas of Ca and K in Fibrosis, Nerve Tissue, Tumor Stroma, and Cell-Rich Tumor Areas
2.3. Discriminative Power between Different Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer
2.4. Metric Scale to Differentiate Tissues Based on the LIBS Peak Areas of Ca and K Using ROC Analysis
2.5. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Preparation of Segmental Mandibulectomy Specimens
4.3. Experimental Setup
4.4. Spectra Processing
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, R.E. Laser ablation research and development: 60 years strong. Appl. Phys. A 2023, 129, 168. [Google Scholar] [CrossRef]
- Khalkhal, E.; Rezaei-Tavirani, M.; Zali, M.R.; Akbari, Z. The Evaluation of Laser Application in Surgery: A Review Article. J. Lasers Med. Sci. 2019, 10, S104–S111. [Google Scholar] [CrossRef]
- Holzinger, D.; Ureel, M.; Wilken, T.; Müller, A.A.; Schicho, K.; Millesi, G.; Juergens, P. First-in-man application of a cold ablation robot guided laser osteotome in midface osteotomies. J. Craniomaxillofac. Surg. 2021, 49, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Ureel, M.; Augello, M.; Holzinger, D.; Wilken, T.; Berg, B.I.; Zeilhofer, H.F.; Millesi, G.; Juergens, P.; Mueller, A.A. Cold Ablation Robot-Guided Laser Osteotome (CARLO®): From Bench to Bedside. J. Clin. Med. 2021, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Hänel, L.; Kwiatkowski, M.; Heikaus, L.; Schlüter, H. Mass spectrometry-based intraoperative tumor diagnostics. Future Sci. OA 2019, 5, FSO373. [Google Scholar] [CrossRef] [PubMed]
- Busser, B.; Moncayo, S.; Coll, J.-L.; Sancey, L.; Motto-Ros, V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord. Chem. Rev. 2018, 358, 70–79. [Google Scholar] [CrossRef]
- Moros, J.; Laserna, J. Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review. Appl. Spectrosc. 2019, 73, 963–1011. [Google Scholar] [CrossRef]
- Khan, M.N.; Wang, Q.; Idrees, B.S.; Xiangli, W.; Teng, G.; Cui, X.; Zhao, Z.; Wei, K.; Abrar, M. A Review on Laser-Induced Breakdown Spectroscopy in Different Cancers Diagnosis and Classification. Front. Phys. 2022, 10, 10. [Google Scholar] [CrossRef]
- Rohde, M.; Mehari, F.; Klämpfl, F.; Adler, W.; Neukam, F.-W.; Schmidt, M.; Stelzle, F. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy—A prospect for tissue specific laser surgery. J. Biophotonics 2017, 10, 1250–1261. [Google Scholar] [CrossRef]
- Mehari, F.; Rohde, M.; Kanawade, R.; Knipfer, C.; Adler, W.; Klämpfl, F.; Stelzle, F.; Schmidt, M. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery. J. Biophotonics 2016, 9, 1021–1032. [Google Scholar] [CrossRef]
- Kanawade, R.; Mahari, F.; Klämpfl, F.; Rohde, M.; Knipfer, C.; Tangermann-Gerk, K.; Adler, W.; Schmidt, M.; Stelzle, F. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): Prospects for a feedback mechanism for surgical laser systems. J. Biophotonics 2015, 8, 153–161. [Google Scholar] [CrossRef]
- Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; Adler, W.; Stelzle, F.; Schmidt, M. Laser induced breakdown spectroscopy for bone and cartilage differentiation—Ex vivo study as a prospect for a laser surgery feedback mechanism. Biomed. Opt. Express 2014, 5, 4013–4023. [Google Scholar] [CrossRef]
- Hamidi, A.; Bayhaqi, Y.A.; Drusová, S.; Navarini, A.A.; Cattin, P.C.; Canbaz, F.; Zam, A. Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation. Lasers Surg. Med. 2023, 55, 900–911. [Google Scholar] [CrossRef]
- Abbasi, H.; Beltrán Bernal, L.M.; Hamidi, A.; Droneau, A.; Canbaz, F.; Guzman, R.; Jacques, S.L.; Cattin, P.C.; Zam, A. Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy. Biomed. Opt. Express 2020, 11, 1790–1807. [Google Scholar] [CrossRef]
- Mehari, F. Laser-Induced Breakdown Spectroscopy (LIBS) as a Diagnostics Tool for Biological Tissue Analysis; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Technische Fakultät, FAU University Press: Erlangen-Nürnberg, Germany, 2023. [Google Scholar]
- Vlocskó, M.; Piffkó, J.; Janovszky, Á. Intraoperative Assessment of Resection Margin in Oral Cancer: The Potential Role of Spectroscopy. Cancers 2024, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mair, M.; Singhvi, H.; Mahuvakar, A.; Nair, D.; Nair, S.; Chaturvedi, P. Incidence, predictors and impact of positive bony margins in surgically treated T4 stage cancers of the oral cavity. Oral Oncol. 2019, 90, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Smits, R.W.H.; Ten Hove, I.; Dronkers, E.A.C.; Bakker Schut, T.C.; Mast, H.; Baatenburg de Jong, R.J.; Wolvius, E.B.; Puppels, G.J.; Koljenović, S. Evaluation of bone resection margins of segmental mandibulectomy for oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2018, 47, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Winnand, P.; Boernsen, K.O.; Bodurov, G.; Lammert, M.; Hölzle, F.; Modabber, A. Evaluation of electrolyte element composition in human tissue by laser-induced breakdown spectroscopy (LIBS). Sci. Rep. 2022, 12, 16391. [Google Scholar] [CrossRef] [PubMed]
- Winnand, P.; Ooms, M.; Heitzer, M.; Lammert, M.; Hölzle, F.; Modabber, A. Real-time detection of bone-invasive oral cancer with laser-induced breakdown spectroscopy: A proof-of-principle study. Oral Oncol. 2023, 138, 106308. [Google Scholar] [CrossRef] [PubMed]
- Del-Río-Ibisate, N.; Granda-Díaz, R.; Rodrigo, J.P.; Menéndez, S.T.; García-Pedrero, J.M. Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev. Physiol. Biochem. Pharmacol. 2021, 181, 375–427. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Chen, S.; Hao, J.; Wu, P.; Gu, X.; Wei, H.; Li, Z.; Xiao, J. Roles of calcium signaling in cancer metastasis to bone. Explor. Target Antitumor. Ther. 2022, 3, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Winnand, P.; Boernsen, K.O.; Ooms, M.; Heitzer, M.; Lammert, M.; Eschweiler, J.; Hölzle, F.; Modabber, A. The role of potassium in depth profiling of the tumor border in bone-invasive oral cancer using laser-induced breakdown spectroscopy (LIBS): A pilot study. J. Cancer Res. Clin. Oncol. 2023, 149, 16635–16645. [Google Scholar] [CrossRef] [PubMed]
- Vries, E.; Alic, L.; Schols, R.M.; Emanuel, K.S.; Wieringa, F.P.; Bouvy, N.D.; Tuijthof, G.J.M. Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue. Life 2023, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Barroso, E.M.; Smits, R.W.; Bakker Schut, T.C.; ten Hove, I.; Hardillo, J.A.; Wolvius, E.B.; Baatenburg de Jong, R.J.; Koljenović, S.; Puppels, G.J. Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy. Anal. Chem. 2015, 87, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Kqiku, L.; Weiglein, A.H.; Pertl, C.; Biblekaj, R.; Städtler, P. Histology and intramandibular course of the inferior alveolar nerve. Clin. Oral Investig. 2011, 15, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Elmusrati, A.A.; Pilborough, A.E.; Khurram, S.A.; Lambert, D.W. Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma. Br. J. Cancer 2017, 117, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Ishikuro, M.; Sakamoto, K.; Kayamori, K.; Akashi, T.; Kanda, H.; Izumo, T.; Yamaguchi, A. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas. Bone 2008, 43, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Shan, Q.; Takabatake, K.; Kawai, H.; Oo, M.W.; Inada, Y.; Sukegawa, S.; Fushimi, S.; Nakano, K.; Nagatsuka, H. Significance of cancer stroma for bone destruction in oral squamous cell carcinoma using different cancer stroma subtypes. Oncol. Rep. 2022, 47, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, D.; Shu, K.; Xu, Y.; Duan, Y.; Fan, Q.; Lin, Q.; Tuchin, V.V. Optimization of machine learning classification models for tumor cells based on cell elements heterogeneity with laser-induced breakdown spectroscopy. J. Biophotonics 2023, 16, e2023002392023. [Google Scholar] [CrossRef]
- Davison, C.; Beste, D.; Bailey, M.; Felipe-Sotelo, M. Expanding the boundaries of atomic spectroscopy at the single-cell level: Critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells. Anal. Bioanal. Chem. 2023, 415, 6931–6950. [Google Scholar] [CrossRef]
- Pandey, M.; Rao, L.P.; Das, S.R.; Mathews, A.; Chacko, E.M.; Naik, B.R. Patterns of mandibular invasion in oral squamous cell carcinoma of the mandibular region. World J. Surg. Oncol. 2007, 5, 12. [Google Scholar] [CrossRef]
- Teran-Hinojosa, E.; Sobral, H.; Sánchez-Pérez, C.; Pérez-García, A.; Alemán-García, N.; Hernández-Ruiz, J. Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy. Biomed. Opt. Express 2017, 8, 3816–3827. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, W.; Dai, Y.; Qian, C.; Dong, Y.; Chen, Z.; Meng, L.; Jiang, Z.; Huang, T.; Hu, J.; et al. Voltage-gated sodium channel Nav1.5 promotes proliferation, migration and invasion of oral squamous cell carcinoma. Acta Biochim. Et Biophys. Sin. 2019, 51, 562–570. [Google Scholar] [CrossRef]
- Lee, S.H.; Rigas, N.K.; Lee, C.R.; Bang, A.; Srikanth, S.; Gwack, Y.; Kang, M.K.; Kim, R.H.; Park, N.H.; Shin, K.H. Orai1 promotes tumor progression by enhancing cancer stemness via NFAT signaling in oral/oropharyngeal squamous cell carcinoma. Oncotarget 2016, 7, 43239–43255. [Google Scholar] [CrossRef]
- Mücke, T.; Hölzle, F.; Wagenpfeil, S.; Wolff, K.D.; Kesting, M. The role of tumor invasion into the mandible of oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2011, 137, 165–171. [Google Scholar] [CrossRef]
- Mahajan, A.; Dhone, N.; Vaish, R.; Singhania, A.; Malik, A.; Prabhash, K.; Ahuja, A.; Sable, N.; Chaturvedi, P.; Noronha, V.; et al. Prognostic Impact of Pattern of Mandibular Involvement in Gingivo-Buccal Complex Squamous Cell Carcinomas: Marrow and Mandibular Canal Staging System. Front. Oncol. 2021, 11, 752018. [Google Scholar] [CrossRef]
- Moon, Y.; Han, J.H.; Lee, J.J.; Jeong, S. Influence of water content on the laser-induced breakdown spectroscopy analysis of human cell pellet. Spectrochim. Acta Part B At. Spectrosc. 2015, 114, 27–33. [Google Scholar] [CrossRef]
- Peng, J.; He, Y.; Ye, L.; Shen, T.; Liu, F.; Kong, W.; Liu, X.; Zhao, Y. Moisture Influence Reducing Method for Heavy Metals Detection in Plant Materials Using Laser-Induced Breakdown Spectroscopy: A Case Study for Chromium Content Detection in Rice Leaves. Anal. Chem. 2017, 89, 7593–7600. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Sun, H.; Gao, X.; Xu, Y.; Wang, Z.; Wang, Y. Discrimination of lung tumor and boundary tissues based on laser-induced breakdown spectroscopy and machine learning. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106200. [Google Scholar] [CrossRef]
- Teng, G.; Wang, Q.; Zhang, H.; Xiangli, W.; Yang, H.; Qi, X.; Cui, X.; Idrees, B.S.; Wei, K.; Khan, M.N. Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2020, 165, 105787. [Google Scholar] [CrossRef]
- Choi, J.-H.; Shin, S.; Moon, Y.; Han, J.H.; Hwang, E.; Jeong, S. High spatial resolution imaging of melanoma tissue by femtosecond laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2021, 179, 106090. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F. “Reinforcement” by Tumor Microenvironment: The Seventh “R” of Radiobiology. Int. J. Radiat. Oncol. Biol. Phys. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bayhaqi, Y.A.; Hamidi, A.; Navarini, A.A.; Cattin, P.C.; Canbaz, F.; Zam, A. Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography. Biomed. Opt. Express 2023, 14, 2986–3002. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Camblor, P.; Pardo-Fernández, J.C. The Youden Index in the Generalized Receiver Operating Characteristic Curve Context. Int. J. Biostat. 2019, 15, 20180060. [Google Scholar] [CrossRef] [PubMed]
Variable | Fibrosis (n = 254 Spectra) | Nerve Tissue (n = 516 Spectra) | Tumor Stroma (n = 821 Spectra) | Cell-Rich Tumor (n = 1458 Spectra) | p Value |
---|---|---|---|---|---|
Ca | 4.973 (8.369) | 63.64 (15.07) | 30.04 (40.46) | 1.974 (6.47) | <0.0001 |
K | 3.339 (1.31) | 1.738 (1.652) | 5.669 (2.812) | 6.498 (1.75) | <0.0001 |
Variable | Comparison | p Value (Ca) | p Value (K) |
---|---|---|---|
Fibrosis vs. | Nerve tissue | <0.0001 | <0.0001 |
Tumor stroma | <0.0001 | <0.0001 | |
Cell-rich tumor | 0.0326 | <0.0001 | |
Nerve tissue vs. | Fibrosis | <0.0001 | <0.0001 |
Tumor stroma | <0.0001 | <0.0001 | |
Cell-rich tumor | <0.0001 | <0.0001 | |
Tumor stroma vs. | Fibrosis | <0.0001 | <0.0001 |
Nerve tissue | <0.0001 | <0.0001 | |
Cell-rich tumor | <0.0001 | <0.0001 | |
Cell-rich tumor vs. | Fibrosis | 0.0326 | <0.0001 |
Nerve tissue | <0.0001 | <0.0001 | |
Tumor stroma | <0.0001 | <0.0001 |
Variable | AUC (95% CI) | p Value | Cutoff | Sensitivity | Specificity |
---|---|---|---|---|---|
Fibrosis vs. Nerve tissue | |||||
Ca | 0.9851 (0.9789–0.9913) | <0.0001 | >19.92 | 0.9380 | 0.9528 |
K | 0.8157 (0.7866–0.8448) | <0.0001 | <2.239 | 0.6628 | 0.8701 |
Fibrosis vs. Tumor stroma | |||||
Ca | 0.8923 (0.8716–0.9129) | <0.0001 | >12.21 | 0.7990 | 0.8661 |
K | 0.7972 (0.7700–0.8245) | <0.0001 | >4.466 | 0.6760 | 0.8346 |
Fibrosis vs. Cell-rich tumor | |||||
Ca | 0.5963 (0.5594–0.6332) | <0.0001 | <3.414 | 0.6125 | 0.6181 |
K | 0.9161 (0.8994–0.9328) | <0.0001 | >4.499 | 0.8409 | 0.8386 |
Nerve tissue vs. Tumor stroma | |||||
Ca | 0.7978 (0.7735–0.8220) | <0.0001 | <53.68 | 0.7430 | 0.7713 |
K | 0.9304 (0.9179–0.9429) | <0.0001 | >3.428 | 0.8173 | 0.8605 |
Nerve tissue vs. Cell-rich tumor | |||||
Ca | 0.9795 (0.9744–0.9846) | <0.0001 | <34.02 | 0.9520 | 0.8953 |
K | 0.9776 (0.9723–0.9830) | <0.0001 | >3.500 | 0.9554 | 0.8721 |
Tumor stroma vs. Cell-rich tumor | |||||
Ca | 0.8977 (0.8847–0.9107) | <0.0001 | <9.495 | 0.8203 | 0.8636 |
K | 0.6301 (0.6057–0.6545) | <0.0001 | >5.549 | 0.7140 | 0.4872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winnand, P.; Boernsen, K.O.; Ooms, M.; Heitzer, M.; Vohl, N.; Lammert, M.; Hölzle, F.; Modabber, A. Assessment of the Electrolyte Heterogeneity of Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer Using Laser-Induced Breakdown Spectroscopy. Int. J. Mol. Sci. 2024, 25, 2607. https://doi.org/10.3390/ijms25052607
Winnand P, Boernsen KO, Ooms M, Heitzer M, Vohl N, Lammert M, Hölzle F, Modabber A. Assessment of the Electrolyte Heterogeneity of Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer Using Laser-Induced Breakdown Spectroscopy. International Journal of Molecular Sciences. 2024; 25(5):2607. https://doi.org/10.3390/ijms25052607
Chicago/Turabian StyleWinnand, Philipp, Klaus Olaf Boernsen, Mark Ooms, Marius Heitzer, Nils Vohl, Matthias Lammert, Frank Hölzle, and Ali Modabber. 2024. "Assessment of the Electrolyte Heterogeneity of Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer Using Laser-Induced Breakdown Spectroscopy" International Journal of Molecular Sciences 25, no. 5: 2607. https://doi.org/10.3390/ijms25052607
APA StyleWinnand, P., Boernsen, K. O., Ooms, M., Heitzer, M., Vohl, N., Lammert, M., Hölzle, F., & Modabber, A. (2024). Assessment of the Electrolyte Heterogeneity of Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer Using Laser-Induced Breakdown Spectroscopy. International Journal of Molecular Sciences, 25(5), 2607. https://doi.org/10.3390/ijms25052607