Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Analysis of the Plant Architecture-Related Traits
2.2. Genome-Wide Association Study
2.3. Linkage Analysis of the Plant Architecture-Related Traits
2.4. Transcriptome Analysis
2.5. Function Prediction of the Candidate Genes
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Field Experiment
4.2. Plant Architecture-Related Trait Evaluation and Statistical Analysis
4.3. DNA Extraction and Genotyping
4.4. Genome-Wide Association Study and QTL Mapping
4.5. Candidate Gene Function Prediction
4.6. Transcriptome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peiffer, J.A.; Romay, M.C.; Gore, M.A.; Flint-Garcia, S.A.; Zhang, Z.; Millard, M.J.; Gardner, C.; Mcmullen, M.D.; Holland, J.B.; Bradbury, P.J. The Genetic Architecture of Maize Height. Genetics 2014, 196, 1337–1356. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.F.; Zhang, X.B.; Chen, Q.Y.; Xu, G.H.; Xu, D.Y.; Wang, C.L.; Liang, Y.M.; Wu, L.S.; Huang, C. The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol. 2015, 210, 256–268. [Google Scholar] [CrossRef]
- Dong, Y.B.; Zhang, Z.W.; Shi, Q.L.; Wang, Q.L.; Zhou, Q.; Deng, F.; Ma, Z.Y.; Qiao, D.H.; Li, Y.L. QTL consistency for agronomic traits across three generations and potential applications in popcorn. J. Integr. Agric. 2015, 14, 2547–2557. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Zhang, S.H.; Zhou, F.; Qu, Y.Y.; Xie, C.X. QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas 2008, 30, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.P.; Liu, X.H. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize. Genet. Mol. Res. 2013, 12, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Zhang, C.S.; Hao, Z.F.; Wang, Z.H.; Zeng, M.S. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genom. 2016, 17, 178. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.B.; Liu, Z.P.; Dong, X.M.; Guo, J.J.; Chen, G. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol. 2018, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.B.; Lu, J.Y.; Jiang, Q.P.; Liu, Z.B.; Yao, D.; Qu, J.; Liu, S.Y.; Guan, S.Y.; Ma, Y.Y. Maize plant architecture trait QTL mapping and candidate gene identification based on multiple environments and double populations. BMC Plant Biol. 2022, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Jia, B.; Liu, H.H.; Kan, X.; Zhang, Y.; Zhou, R.H.; Li, Z.P.; Yang, L.; Deng, D.X.; Yin, Z.T. Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize. Front. Plant Sci. 2017, 8, 1437. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Zhou, Z.J.; Ding, J.Q.; Wu, Y.B.; Zhou, B.; Wang, R.X.; Ma, J.L.; Wang, S.W.; Zhang, X.C.; Xia, Z.L.; et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front. Plant Sci. 2016, 7, 833. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.X.; Shi, Y.S.; Song, Y.C.; Zhang, D.F.; Li, C.H.; Buckler, E.S.; Li, Y. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol. J. 2016, 14, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.M.; Shao, X.Y.; Pei, Y.H.; Guo, X.M.; Li, J.; Song, X.Y.; Zhao, M.A. Genetic diversity and genome-wide association study of major ear quantitative traits using high-density SNPs in maize. Front. Plant Sci. 2018, 9, 966. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, H.W.; Liu, S.X.; Ferjani, A.; Li, J.S.; Yan, J.B.; Yang, X.H.; Qin, F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 2016, 48, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, X.Y.; Song, J.F.; Li, H.M.; Zhao, X.D.; Zhang, P.; Li, Z.M.; Tian, Z.Q.; Lv, M.; Deng, C.; et al. Genetic dissection of maize plant architecture using a novel nested association mapping population. Plant Genome 2022, 15, e20179. [Google Scholar] [CrossRef] [PubMed]
- Du, X.M.; Ling-hu, J.J.; Shang, H.J.; Reid, L.M.; Zhu, X.Y.; Wang, J.H.; Wang, G.Y. Fine mapping of Leafy, a dominant mutant conferring extra leaves above the ear in maize. Euphytica 2015, 206, 49–56. [Google Scholar] [CrossRef]
- Bouchet, S.; Bertin, P.; Presterl, T.; Jamin, P.; Coubriche, D.; Gouesnard, B.; Laborde, J.; Charcosset, A. Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits. Heredity 2017, 118, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Liu, M.; Dong, Z.; Li, Q.; Fei, S.; Xiang, H.; Liu, B.; Jin, W. Maize Plant Architecture is Regulated by the Ethylene Biosynthetic Gene ZmACS7. Plant Physiol. 2020, 183, 1184–1199. [Google Scholar] [CrossRef]
- Multani, D.S.; Briggs, S.P.; Chamberlin, M.A.; Blakeslee, J.J.; Murphy, A.S.; Johal, G.S. Loss of an MDR Transporter in Compact Stalks of Maize br2 and Sorghum dw3 Mutants. Science 2003, 302, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Knller, A.S.; Blakeslee, J.J.; Richards, E.L.; Peer, W.A.; Murphy, A.S. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. J. Exp. Bot. 2010, 61, 3689–3696. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, X.; Zhang, Z.H.; Liu, H.H.; Lin, Z.W. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity 2018, 121, 75–86. [Google Scholar] [CrossRef]
- Balzan, S.; Carraro, N.; Salleres, B.; Dal-Cortivo, C.; Tuinstra, M.R.; Johal, G.; Varotto, S. Genetic and phenotypic characterization of a novel brachytic2 allele of maize. Plant Growth Regul. 2018, 86, 81–92. [Google Scholar] [CrossRef]
- Pilu, R.; Cassani, E.; Villa, D.; Curiale, S.; Panzeri, D.; Badone, F.C.; Landoni, M. Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Mol. Breed. 2007, 20, 83–91. [Google Scholar] [CrossRef]
- Zhang, M.L.; Lu, X.D.; Li, C.L.; Bing, Y.; Xian-sheng, D. Auxin Efflux Carrier ZmPGP1 Mediates Root Growth Inhibition under Aluminum Stress. Plant Physiol. 2018, 177, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, P.C.; Wei, J.; Wang, H.M.; Fang, Y.; Xu, C.W. Natural Variation and Domestication Selection of ZmPGP1 Affects Plant Architecture and Yield-Related Traits in Maize. Genes 2019, 10, 664. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Ma, S.J.; Zhang, K.Y.; Liu, X.H.; Hu, L.L.; Wang, W.M.; Zheng, L.W. Genome-Wide Identification of Gramineae Brassinosteroid-Related Genes and Their Roles in Plant Architecture and Salt Stress Adaptation. Int. J. Mol. Sci. 2022, 23, 5551. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.B.; Zhao, Y.P.; Xie, Y.R.; Wang, H.Y. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. J. Exp. Bot. 2018, 69, 4675–4688. [Google Scholar] [CrossRef] [PubMed]
- Vanous, A.; Gardner, C.; Blanco, M.; Martin-Schwarze, A.; Lipka, A.E.; Flint-Garcia, S.; Bohn, M.; Edwards, J.; Lübberstedt, T. Association map of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. Plant Genome 2018, 11, 170083. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.C.; Xu, Y.C.; Li, K.; Peng, Y.; Zhan, W.; Li, W.Q.; Li, L.; Yan, J.B. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol. 2017, 175, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Lu, Y.L.; Yang, X.H.; Huang, J.; Zhou, Y.; Ali, F.; Wen, W.W.; Liu, J.; Li, J.S.; Yan, J.B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. 2014, 10, e1004573. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.L.; Yu, H.Q.; Wen, Q.; Fu, F.L.; Li, W.C. Genome-Wide Analysis of LAZ1 Gene Family from Maize. J. Plant Growth Regul. 2020, 39, 656–668. [Google Scholar] [CrossRef]
- Liu, B.L.; Yu, H.Q.; Yang, Q.Y.; Ding, L.; Sun, F.A.; Qu, J.T.; Feng, W.Q.; Yang, Q.Q.; Li, W.C.; Fu, F.L. Zinc Transporter ZmLAZ1-4 Modulates Zinc Homeostasis on Plasma and Vacuolar Membrane in Maize. Front. Plant Sci. 2022, 13, 881055. [Google Scholar] [CrossRef]
- Chen, C.; Sun, X.L.; Duan-mu, H.Z.; Zhu, D.; Yu, Y.; Cao, L.; Liu, A.L.; Jia, B.W.; Xiao, J.L.; Zhu, Y.M. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses. PLoS ONE 2015, 10, e0141888. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Zou, J.Z.; Kong, L.; Hu, S.Q.; Wang, B.Y.; Yang, J.; Xie, G.S. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Sci. 2016, 247, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, X.M.; Sun, Y.F.; Wang, X.J.; Chen, X.M.; Guo, J.; Duan, Y.H.; Huang, L.L.; Kang, Z.S. Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses. Mol. Biol. Rep. 2011, 38, 3857–3866. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.D.; He, S.J.; Qi, Y.W.; Li, Y.M.; Zhou, X.H.; Liu, Y.; Liu, X.H.; Ding, M.Y.; Lv, X.L.; Li, F.H. Identification of QTLs and their candidate genes for the number of maize tassel branches in F2 from two higher generation sister lines using QTL mapping and RNA-seq analysis. Front. Plant Sci. 2023, 14, 1202755. [Google Scholar]
- Wang, Y.L.; Bi, Y.Q.; Jiang, F.Y.; Shaw, R.K.; Sun, J.C.; Hu, C.; Guo, R.J.; Fan, X.M. Map and functional analysis of QTL for kernel number per row in tropical and temperate–tropical introgression lines of Maize (Zea mays L.). Curr. Issues Mol. Biol. 2023, 45, 4416–4430. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Jing, J.G.; Zhang, Z.Q.; Chen, S.B.; Sang, Z.Q.; Li, W.H. GWAS and Meta-QTL Analysis of yield-related ear traits in Maize. Plants 2023, 12, 3806. [Google Scholar]
- Gyawali, A.; Gyawali, A.; Shrestha, V.; Guill, K.E.; Flint-Garcia, S.; Beissinger, T.M. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs. BMC Plant Biol. 2019, 19, 412. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Zhai, L.H.; Liu, R.X.; Bai, W.; Zhang, Z.X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J. 2013, 73, 405–416. [Google Scholar] [CrossRef]
- Yin, X.; Yin, X.F.; Bi, Y.Q.; Jiang, F.Y.; Guo, R.J.; Zhang, Y.D.; Fan, J.; Kang, M.S.; Fan, X.M. Fine mapping of candidate quantitative trait loci for plant and ear height in a maize nested-association mapping population. Front. Plant Sci. 2022, 13, 963985. [Google Scholar] [CrossRef]
- Li, H.J.; Yang, Q.S.; Fan, N.N.; Zhang, M.; Zhai, H.J.; Ni, Z.F.; Zhang, Y.R. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. BMC Genet. 2017, 18, 36. [Google Scholar] [CrossRef]
- Tanksley, S.D. Mapping polygenes. Annu. Rev. Genet. 1993, 27, 205–233. [Google Scholar] [CrossRef]
- Incognito, S.J.P.; Maddonni, G.Á.; López, C.G. Genetic control of maize plant architecture traits under contrasting plant densities. Euphytica 2020, 216, 20. [Google Scholar] [CrossRef]
- Sun, W.Q.; Sun, Q.; Tian, L.; Sun, Y.J.; Yu, S.B. A Structure variation in qPH8. 2 detrimentally affects plant architecture and yield in rice. Plants 2023, 12, 3336. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhang, X.R.; Zhao, Y.J.; Li, Y.J.; Zhang, G.F.; Peng, Z.H.; Zhang, J.R. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol. J. 2018, 16, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Bo, C.; Wang, M.J.; Yuan, H.T.; Li, W.; Chen, H.W.; Ma, Q.; Cai, R.H. Overexpression of the maize WRKY114 gene in transgenic rice reduce plant height by regulating the biosynthesis of GA. Plant Signal. Behav. 2021, 16, 1967635. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Yu, Z.P.; Zhang, M.L.; Wang, M.L.; Lu, X.D.; Liu, X.; Li, Y.B.; Zhang, X.S.; Tan, B.C.; Li, C.L.; et al. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol. J. 2021, 20, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Wu, G.X.; Zhao, Y.P.; Wang, B.B.; Zhao, B.B.; Kong, D.X.; Wei, H.B.; Chen, C.X.; Wang, H.Y. CRISPR/Cas9-Mediated Knockout and Overexpression Studies Reveal a Role of Maize Phytochrome C in Regulating Flowering Time and Plant Height. Plant Biotechnol. J. 2020, 18, 2520–2532. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, M.; Thilges, K.; Cho, M.J.; Mark Cigan, A. MS26/CYP704B is required for anther and pollen wall development in bread wheat (Triticum aestivum L.) and combining mutations in all three homeologs causes male sterility. PLoS ONE 2017, 12, e0177632. [Google Scholar] [CrossRef]
- Cigan, A.M.; Singh, M.; Benn, G.; Feigenbutz, L.; Kumar, M.; Cho, M.J.; Svitashev, S.; Young, J. Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol. J. 2016, 15, 379–389. [Google Scholar] [CrossRef]
- Djukanovic, V.; Smith, J.; Lowe, K.; Yang, M.; Gao, H.; Jones, S.; Nicholson, M.G.; West, A.; Lape, J.; Bidney, D.; et al. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I–CreI homing endonuclease. Plant J. 2013, 76, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Guo, X.Y.; Wang, A.G.; Liu, P.F.; Wu, W.Q.; Zhao, Q.; Zhao, M.Y.; Zhu, Y.F.; Chen, Z.H. Quantitative trait loci mapping of plant architecture-related traits using the high-throughput genotyping by sequencing method. Euphytica 2019, 215, 212. [Google Scholar] [CrossRef]
- Kresovich, S. Quantitative genetics in maize breeding. Field Crops Res. 1990, 23, 78–79. [Google Scholar] [CrossRef]
- Wu, X.; Wang, A.G.; Guo, X.Y.; Liu, P.F.; Zhu, Y.F.; Li, X.S.; Chen, Z.H. Genetic characterization of maize germplasm derived from Suwan population and temperate resources. Hereditas 2019, 156, 2. [Google Scholar] [CrossRef]
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-bysequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Lai, J.S.; Li, R.Q.; Xu, X.; Jin, W.W.; Xu, M.L.; Zhao, H.N.; Xiang, Z.K.; Song, W.B.; Ying, K.; Zhang, M.; et al. Genomewide patterns of genetic variation among elite maize inbred lines. Nat. Genet. 2010, 42, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Yu, J.M.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Wang, S.B.; Feng, J.Y.; Ren, W.L.; Huang, B.; Zhou, L.; Wen, Y.J.; Zhang, J.; Dunwell, J.M.; Xu, S.Z.; Zhang, Y.M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Lu, X.F.; Tu, L.; Gao, Y.; Wang, D.; Guo, S.; Xiao, Y.F.; Xiao, P.F.; Guo, X.Y.; et al. Integration of GWAS, linkage analysis and transcriptome analysis to reveal the genetic basis of flowering time-related traits in maize. Front. Plant Sci. 2023, 14, 1145327. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
Environment | Trait | Value (cm) | Range a | Skewness | Kurtosis | CV(%) b |
---|---|---|---|---|---|---|
Zhangye | PH | 214.95 ± 30.05 | 138.33~310.00 | 0.269 | 0.612 | 14 |
EH | 95.20 ± 24.35 | 31.67~171.67 | 0.615 | 0.572 | 26 | |
LN | 15.2 ± 2.04 | 10.00~21.67 | 0.37 | 0.302 | 13 | |
Guiyang | PH | 170.09 ± 29.18 | 82.33~259.67 | −0.008 | 0.156 | 17 |
EH | 56.49 ± 15.04 | 19.67~94.67 | 0.226 | −0.258 | 27 | |
LN | 13.41 ± 1.14 | 11.00~15.00 | −0.257 | −1.122 | 8 | |
Sanya | PH | 185.16 ± 25.60 | 123.33~258.00 | 0.046 | −0.11 | 14 |
EH | 62.79 ± 13.49 | 26.67~108.33 | 0.175 | 0.13 | 21 | |
LN | 12.23 ± 1.33 | 8.33~15.67 | 0.188 | 0.249 | 11 |
Source of Variance | Genotype | Environment | Genotype × Environment | Broad-Sense Heritability H2 (%) |
---|---|---|---|---|
PH | 350.62 ** | 523.88 ** | 593.99 ** | 62 |
EH | 126.52 ** | 428.20 ** | 271.92 ** | 56 |
LN | 0.65 ** | 2.25 ** | 2.17 ** | 45 |
SNP Name | Chromosome | Position | Candidate Interval | Trait |
---|---|---|---|---|
PZE-101198702 | 1 | 246065082 | 246024932–246105232 | PHSY, EHGY |
PUT-163a-78121249-4396 | 3 | 141912418 | 141872268–141952568 | EHGY, LNGY |
SYN21465 | 4 | 184629742 | 184589592–184669892 | EHZY, LNZY |
PZE-106027247 | 6 | 64142485 | 64102335–64182635 | PHGY, EHGY |
SYN34204 | 7 | 145631181 | 145591031–145671331 | EHZY, LNZY, LNGY |
SYN37324 | 9 | 1038593 | 998443–1078743 | EHGY, LNGY |
Trait | QTL | Chr. | Left Marker | Right Marker | Environment | Lod | PVE (%) | Add |
---|---|---|---|---|---|---|---|---|
PH | qPH3-1 | 3 | S3_187960135 | S3_188121526 | ZY | 4.61 | 6.57 | 5.48 |
qPH4-1 | 4 | S4_43000415 | S4_43093206 | GY | 3.00 | 5.19 | 12.07 | |
qPH4-2 | 4 | S4_38067503 | S4_38893611 | ZY | 3.14 | 4.37 | −3.41 | |
qPH8-1 | 8 | S8_121726317 | S8_122100797 | ZY | 3.03 | 3.64 | −3.29 | |
EH | qEH1-1 | 1 | S1_268192037 | S1_268327863 | ZY | 5.51 | 5.79 | 14.99 |
qEH5-1 | 5 | S5_59950812 | S5_60043203 | GY | 3.00 | 9.20 | 14.75 | |
qEH5-2 | 5 | S5_135586624 | S5_136062818 | ZY | 3.34 | 5.88 | 13.52 | |
qEH9-1 | 9 | S9_13399713 | S9_14224384 | ZY | 3.42 | 4.13 | 6.24 | |
qEH9-2 | 9 | S9_17058222 | S9_17191253 | ZY | 3.88 | 4.32 | 5.62 | |
qEH9-3 | 9 | S9_21938538 | S9_22119724 | ZY | 3.63 | 4.26 | 9.18 | |
qEH9-4 | 9 | S9_62092382 | S9_62374416 | ZY | 3.22 | 3.94 | 9.30 | |
qEH9-5 | 9 | S9_117989798 | S9_118700100 | ZY | 3.53 | 5.88 | −12.50 | |
LN | qLN1-1 | 1 | S1_71148329 | S1_71295345 | GY | 39.76 | 4.93 | −26.78 |
qLN1-2 | 1 | S1_121195417 | S1_121304991 | GY | 30.65 | 4.92 | −26.72 | |
qLN2-1 | 2 | S2_46244778 | S2_46383849 | GY | 27.79 | 4.92 | −26.71 | |
qLN2-2 | 2 | S2_108284115 | S2_108372309 | GY | 4.31 | 4.92 | −26.70 | |
qLN3-1 | 3 | S3_5011915 | S3_5113035 | GY | 33.59 | 4.92 | −26.75 | |
qLN4-1 | 4 | S4_98857060 | S4_99140779 | GY | 30.20 | 4.92 | −26.72 | |
qLN4-2 | 4 | S4_203027166 | S4_203092635 | GY | 26.17 | 4.92 | −26.73 | |
qLN4-3 | 4 | S4_242005439 | S4_242167358 | GY | 38.87 | 4.93 | −26.66 | |
qLN5-1 | 5 | S5_131941861 | S5_132084920 | GY | 39.00 | 4.92 | −26.71 | |
qLN6-1 | 6 | S6_116958340 | S6_117047670 | GY | 42.2703 | 4.93 | −26.56 | |
qLN7-1 | 7 | S7_1076898 | S7_1130364 | GY | 44.3195 | 4.93 | −26.67 | |
qLN7-2 | 7 | S7_160730663 | S7_161578861 | ZY | 4.829 | 18.11 | 0.95 | |
qLN8-1 | 8 | S8_96818124 | S8_97337845 | GY | 34.2739 | 4.93 | −26.67 | |
qLN8-2 | 8 | S8_138010301 | S8_138087002 | GY | 32.0265 | 4.93 | −26.57 | |
qLN8-3 | 8 | S8_145998976 | S8_146131133 | GY | 33.7216 | 4.93 | −26.79 | |
qLN10-1 | 10 | S10_35037696 | S10_35186671 | GY | 3.064 | 1.66 | 9.17 | |
qLN10-2 | 10 | S10_58062903 | S10_58090968 | GY | 37.6121 | 4.92 | −26.77 | |
qLN10-3 | 10 | S10_69014140 | S10_69182216 | GY | 31.1681 | 4.93 | −26.62 | |
qLN10-4 | 10 | S10_137044625 | S10_137150459 | GY | 35.7406 | 4.92 | −26.73 | |
qLN10-5 | 10 | S10_19080057 | S10_19080191 | ZY | 3.9703 | 5.77 | 0.70 |
NO. | Gene ID | Regulation | Annotation |
---|---|---|---|
1 | Zm00001d022445 | Downregulated | Alpha galactosidase A |
2 | Zm00001d006682 | Downregulated | Zinc finger, C2H2 type |
3 | Zm00001d048783 | Downregulated | Glycosyl hydrolases family 35 |
4 | Zm00001d041861 | Downregulated | Alpha galactosidase A |
5 | Zm00001d004434 | Downregulated | Alpha galactosidase A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Liu, P.; Tu, L.; Guo, X.; Wang, A.; Zhu, Y.; Jiang, Y.; Zhang, C.; Xu, Y.; Chen, Z.; et al. Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize. Int. J. Mol. Sci. 2024, 25, 2694. https://doi.org/10.3390/ijms25052694
Lu X, Liu P, Tu L, Guo X, Wang A, Zhu Y, Jiang Y, Zhang C, Xu Y, Chen Z, et al. Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize. International Journal of Molecular Sciences. 2024; 25(5):2694. https://doi.org/10.3390/ijms25052694
Chicago/Turabian StyleLu, Xuefeng, Pengfei Liu, Liang Tu, Xiangyang Guo, Angui Wang, Yunfang Zhu, Yulin Jiang, Chunlan Zhang, Yan Xu, Zehui Chen, and et al. 2024. "Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize" International Journal of Molecular Sciences 25, no. 5: 2694. https://doi.org/10.3390/ijms25052694
APA StyleLu, X., Liu, P., Tu, L., Guo, X., Wang, A., Zhu, Y., Jiang, Y., Zhang, C., Xu, Y., Chen, Z., & Wu, X. (2024). Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize. International Journal of Molecular Sciences, 25(5), 2694. https://doi.org/10.3390/ijms25052694