Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications
Abstract
:1. Introduction
2. The Biological Role of FAM111A and FAM111B in Cellular Processes
2.1. FAM111A at the Replication Fork
2.2. FAM111A as a Viral Replication Restriction Factor
2.3. FAM111B, an Integral Player in Regulating DNA Repair or Replication, Cell Cycle and Apoptosis Regulation
2.4. The Involvement of FAM111B in Nuclear Transport and Telomere Length Maintenance
2.5. The Overlap in the Cellular Functions of FAM111A and FAM111B
3. Dysregulation of FAM111 Proteases in Genetic Diseases, including Cancer-Associated Fibrosing Disease
3.1. FAM111A Mutations in Genetic Diseases and Cancer
3.2. FAM111B and Fibrosis
3.3. FAM111B and Cancer Progression
(a) | |||
---|---|---|---|
Case No. | FAM111A Variants | Disease | Reference(s) |
1 | c.968G > A (p. Gly323Glu) | Hypoparathyroidism | [53] |
2 | c.968G > A (p. Gly323Glu) | KCS2 | [54] |
3 | c.976T > A (p. Leu326Ile) (c. 1714_1716del) and c.1714_1716delATT (p. Ile572del) | KCS2 | [55] |
4 | c.1714_1716delATT (p. Ile572del) | Hypoparathyroidism | [53] |
5 | c.1012A > G (p. Thr338Ala) | GCLEB | [14] |
6–8 | c.1026_1028delTTC (p. Ser342del) | GCLEB | [14,56] |
9 | c.1026_1028delTCG (p. Ser343del) | GCLEB | [57] |
10 | c.1454G > T (p. Cys485Phe | KCS2 | [58] |
11 | c.1531T > C (p. Tyr511His) | KCS2 | [14] |
12 | c.1542G > T (p. Met514Ile) | GCLEB | [57] |
13 | c.1579C > A (p. Pro527Thr) | GCLEB | [14] |
14 | c.1583A > G (p. Asp528Gly) | GCLEB | [14] |
15 | c.1622C > A (p. Ser541Tyr) | KCS2 | [59] |
16–17 | c.1621T > C (p. Ser541Pro) | KCS2 | [60] |
18 | c.1685A > C (p.Tyr562Ser/Y562S) | KCS2 | [61] |
19–22 | c.1706G > A (p. Arg569His) | KCS2 | [14] |
23–24 | c.1706G > A (p. Arg569His) | KCS2 | [13] |
25–28 | c.1706G > A (p. Arg569His | KCS2 | [62] |
29 | c.1706G > A (p. Arg569His | KCS2 | [63] |
30 | c.1706G > A (p. Arg569His | Hypoparathyroidism | [53] |
31 | c.1706G > A (p. Arg569His) | KCS2 and Sanjad-Sakati syndrome | [64] |
32 | c.1706G > A (p. Arg569His) | KCS2 | [65] |
33 | c.1706G > A (p. Arg569His) | Nanophthalmos | [66] |
34 | c.1706G > A (p. Arg569His) | KCS2 | [67] |
35 | c.1706G > A (p. Arg569His) | KCS2 | [68] |
(b) | |||
Case No. | FAM111B Variants | Disease | Reference(s) |
1,2 | c.1247T > C (p. Phe416Ser) | POIKTMP | [69] |
3–12 | c.1261_1263delAAG (p. Lys421del) | POIKTMP | [46] |
13,14 | c.1289A > C (p. Gln430Pro) | POIKTMP | [70,71] |
15 | c.1292T > C (p. Phe431Ser) | Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED)-like/POIKTMP | [72] |
16–19 | c.1861T > G (p. Tyr621Asp) | POIKTMP | [41] |
20 | c.1873A > C (p. Thr625Pro) | POIKTMP | [73] |
21 | c.1874C > A (p. Thr625Asn) | POIKTMP | [71] |
22–28 | c.1879A > G (p. Arg627Gly) | POIKTMP and pancreatic cancer in case 25 | [15,41,71,74,75] |
29 | c.1881 C > T * (p. Arg627Ser) | POIKTMP | [76] |
30–33 | c.1883G > A (p. Ser628Asn) | POIKTMP | [41,71,77,78] |
34–37 | c.1884T > A (p. Ser628Arg) | POIKTMP and pancreatic cancer in case 34 | [79] |
38 | c.1886T > G (p. Phe629Cys) | POIKTMP with end-stage liver disease | [80] |
39 | c.1886T > C (p. Phe629Ser) | POIKTMP | [81] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem. 2008, 283, 30433–30437. [Google Scholar] [CrossRef] [PubMed]
- Neurath, H.; Walsh, K.A.; Winter, W.P. Evolution of Structure and Function of Proteases: Amino acid sequences of proteolytic enzymes reflect phylogenetic relationships. Science 1967, 158, 1638–1644. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Morton, F.R.; Kok, C.Y.; Kong, J.; Barrett, A.J. MEROPS: The peptidase database. Nucleic Acids Res 2008, 36, D320–D325. [Google Scholar] [CrossRef]
- Hoffmann, S.; Pentakota, S.; Mund, A.; Haahr, P.; Coscia, F.; Gallo, M.; Mann, M.; Taylor, N.M.; Mailand, N. FAM111 protease activity undermines cellular fitness and is amplified by gain-of-function mutations in human disease. EMBO Rep. 2020, 21, e50662. [Google Scholar] [CrossRef]
- Kojima, Y.; Machida, Y.; Palani, S.; Caulfield, T.R.; Radisky, E.S.; Kaufmann, S.H.; Machida, Y.J. FAM111A protects replication forks from protein obstacles via its trypsin-like domain. Nat. Commun. 2020, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Rios-Szwed, D.O.; Alvarez, V.; Sanchez-Pulido, L.; Garcia-Wilson, E.; Jiang, H.; Bandau, S.; Lamond, A.; Alabert, C. FAM111A regulates replication origin activation and cell fitness. Life Sci. Alliance 2023, 6, e202302111. [Google Scholar] [CrossRef]
- Welter, A.L.; Machida, Y.J. Functions and evolution of FAM111 serine proteases. Front. Mol. Biosci. 2022, 9, 1081166. [Google Scholar] [CrossRef]
- Nie, M.; Oravcová, M.; Jami-Alahmadi, Y.; Wohlschlegel, J.A.; Lazzerini-Denchi, E.; Boddy, M.N. FAM111A induces nuclear dysfunction in disease and viral restriction. EMBO Rep. 2021, 22, e50803. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, X.; Li, Y.; Zhang, Z.; Xie, S.; Ren, S.; Li, Y.; Li, H.; Niu, K.; Fu, S. Human FAM111A inhibits vaccinia virus replication by degrading viral protein I3 and is antagonized by poxvirus host range factor SPI-1. Proc. Natl. Acad. Sci. USA 2023, 120, e2304242120. [Google Scholar] [CrossRef]
- Fine, D.A.; Rozenblatt-Rosen, O.; Padi, M.; Korkhin, A.; James, R.L.; Adelmant, G.; Yoon, R.; Guo, L.; Berrios, C.; Zhang, Y. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog. 2012, 8, e1002949. [Google Scholar] [CrossRef]
- Alabert, C.; Bukowski-Wills, J.-C.; Lee, S.-B.; Kustatscher, G.; Nakamura, K.; de Lima Alves, F.; Menard, P.; Mejlvang, J.; Rappsilber, J.; Groth, A. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 2014, 16, 281–291. [Google Scholar] [CrossRef]
- Stingele, J.; Bellelli, R.; Alte, F.; Hewitt, G.; Sarek, G.; Maslen, S.L.; Tsutakawa, S.E.; Borg, A.; Kjær, S.; Tainer, J.A. Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN. Mol. Cell 2016, 64, 688–703. [Google Scholar] [CrossRef] [PubMed]
- Nikkel, S.; Ahmed, A.; Smith, A.; Marcadier, J.; Bulman, D.; Boycott, K. Mother-to-daughter transmission of Kenny–Caffey syndrome associated with the recurrent, dominant FAM111A mutation p. Arg569His. Clin. Genet. 2014, 86, 394–395. [Google Scholar] [CrossRef] [PubMed]
- Unger, S.; Górna, M.W.; Le Béchec, A.; Do Vale-Pereira, S.; Bedeschi, M.F.; Geiberger, S.; Grigelioniene, G.; Horemuzova, E.; Lalatta, F.; Lausch, E. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am. J. Hum. Genet. 2013, 92, 990–995. [Google Scholar] [CrossRef]
- Roversi, G.; Colombo, E.A.; Magnani, I.; Gervasini, C.; Maggiore, G.; Paradisi, M.; Larizza, L. Spontaneous chromosomal instability in peripheral blood lymphocytes from two molecularly confirmed Italian patients with Hereditary Fibrosis Poikiloderma: Insights into cancer predisposition. Genet. Mol. Biol. 2021, 44, e20200332. [Google Scholar] [CrossRef]
- Arowolo, A.; Malebana, M.; Sunda, F.; Rhoda, C. Proposed Cellular Function of the Human FAM111B Protein and Dysregulation in Fibrosis and Cancer. Front. Oncol. 2022, 12, 932167. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhu, Y.; Sun, H.; Li, S.; Duan, X.; Li, S.; Li, Y.; Li, B.; Chen, L. IRF2 inhibits ZIKV replication by promoting FAM111A expression to enhance the host restriction effect of RFC3. Virol. J. 2021, 18, 256. [Google Scholar] [CrossRef] [PubMed]
- Tarnita, R.M.; Wilkie, A.R.; DeCaprio, J.A. Contribution of DNA Replication to the FAM111A-Mediated Simian Virus 40 Host Range Phenotype. J. Virol. 2019, 93, e01330-18. [Google Scholar] [CrossRef]
- Panda, D.; Fernandez, D.J.; Lal, M.; Buehler, E.; Moss, B. Triad of human cellular proteins, IRF2, FAM111A, and RFC3, restrict replication of orthopoxvirus SPI-1 host-range mutants. Proc. Natl. Acad. Sci. USA 2017, 114, 3720–3725. [Google Scholar] [CrossRef]
- Boyd, M.T.; Vlatkovic, N. p53: A molecular marker for the detection of cancer. Expert Opin. Med. Diagn. 2008, 2, 1013–1024. [Google Scholar] [CrossRef]
- Aviner, R.; Shenoy, A.; Elroy-Stein, O.; Geiger, T. Uncovering hidden layers of cell cycle regulation through integrative multi-omic analysis. PLoS Genet. 2015, 11, e1005554. [Google Scholar] [CrossRef]
- Sun, H.; Liu, K.; Huang, J.; Sun, Q.; Shao, C.; Luo, J.; Xu, L.; Shen, Y.; Ren, B. FAM111B, a direct target of p53, promotes the malignant process of lung adenocarcinoma. OncoTargets Ther. 2019, 12, 2829. [Google Scholar] [CrossRef]
- Wang, W.; Gu, Y.; Ni, H.; Quan, Q.; Guo, L. Silencing of FAM111B inhibits tumor growth and promotes apoptosis by decreasing AKT activity in ovarian cancer. Exp. Biol. Med. 2023, 248, 1043–1055. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, M.; Lu, R.; Du, J.; Zhao, Q.; Li, Z.; Li, Y.; Zhang, S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell Int. 2020, 20, 213. [Google Scholar] [CrossRef]
- Kawasaki, K.; Nojima, S.; Hijiki, S.; Tahara, S.; Ohshima, K.; Matsui, T.; Hori, Y.; Kurashige, M.; Umeda, D.; Kiyokawa, H.; et al. FAM111B enhances proliferation of KRAS-driven lung adenocarcinoma by degrading p16. Cancer Sci. 2020, 111, 2635–2646. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, D.V.; Mitrovic, S.L.; Milosavljevic, M.Z.; Ilic, M.B.; Stankovic, V.D.; Vuletic, M.S.; Dimitrijevic Stojanovic, M.N.; Milosev, D.B.; Azanjac, G.L.; Nedeljkovic, V.M.; et al. Breast Cancer and p16: Role in Proliferation, Malignant Transformation and Progression. Healthcare 2021, 9, 1240. [Google Scholar] [CrossRef]
- Shen, H.; Xu, J.; Zhao, S.; Shi, H.; Yao, S.; Jiang, N. ShRNA-mediated silencing of the RFC3 gene suppress ovarian tumor cells proliferation. Int. J. Clin. Exp. Pathol. 2015, 8, 8968–8975. [Google Scholar]
- Eisenberg-Lerner, A.; Bialik, S.; Simon, H.-U.; Kimchi, A. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16, 966–975. [Google Scholar] [CrossRef]
- Mariotto, E.; Viola, G.; Zanon, C.; Aveic, S. A BAG’s life: Every connection matters in cancer. Pharmacol. Ther. 2020, 209, 107498. [Google Scholar] [CrossRef]
- Rhoda, C.; Sunda, F.; Kidzeru, E.; Khumalo, N.P.; Arowolo, A. FAM111B dysregulation promotes malignancy in fibrosarcoma and POIKTMP and a low-cost method for its mutation screening. Cancer Treat Res. Commun. 2023, 34, 100679. [Google Scholar] [CrossRef] [PubMed]
- Kliszczak, M.; Moralli, D.; Jankowska, J.D.; Bryjka, P.; Subha Meem, L.; Goncalves, T.; Hester, S.S.; Fischer, R.; Clynes, D.; Green, C.M. Loss of FAM111B protease mutated in hereditary fibrosing poikiloderma negatively regulates telomere length. Front. Cell Dev. Biol. 2023, 11, 1175069. [Google Scholar] [CrossRef]
- De Lange, T. How shelterin solves the telomere end-protection problem. In Cold Spring Harbor Symposia on Quantitative Biology, 2011; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017. [Google Scholar]
- Jones, M.; Bisht, K.; Savage, S.A.; Nandakumar, J.; Keegan, C.E.; Maillard, I. The shelterin complex and hematopoiesis. J. Clin. Investig. 2016, 126, 1621–1629. [Google Scholar] [CrossRef]
- Rodriguez, R.; Müller, S.; Yeoman, J.A.; Trentesaux, C.; Riou, J.F.; Balasubramanian, S. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 2008, 130, 15758–15759. [Google Scholar] [CrossRef]
- Dey, A.; Chakrabarti, K. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int. J. Mol. Sci. 2018, 19, 333. [Google Scholar] [CrossRef]
- Kenny, F.M.; Linarelli, L. Dwarfism and cortical thickening of tubular bones: Transient hypocalcemia in a mother and son. Am. J. Dis. Child. 1966, 111, 201–207. [Google Scholar] [CrossRef]
- Pu, J.; Xu, Z.; Huang, Y.; Nian, J.; Yang, M.; Fang, Q.; Wei, Q.; Huang, Z.; Liu, G.; Wang, J.; et al. N(6)-methyladenosine-modified FAM111A-DT promotes hepatocellular carcinoma growth via epigenetically activating FAM111A. Cancer Sci. 2023, 114, 3649–3665. [Google Scholar] [CrossRef]
- Schaid, D.J.; McDonnell, S.K.; FitzGerald, L.M.; DeRycke, L.; Fogarty, Z.; Giles, G.G.; MacInnis, R.J.; Southey, M.C.; Nguyen-Dumont, T.; Cancel-Tassin, G.; et al. Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer. Eur. Urol. 2021, 79, 353–361. [Google Scholar] [CrossRef]
- Ji, X.; Ding, F.; Gao, J.; Huang, X.; Liu, W.; Wang, Y.; Liu, Q.; Xin, T. Molecular and Clinical Characterization of a Novel Prognostic and Immunologic Biomarker FAM111A in Diffuse Lower-Grade Glioma. Front. Oncol. 2020, 10, 573800. [Google Scholar] [CrossRef]
- Jiang, L.; Liao, J.; Han, Y. Study on the role and pharmacology of cuproptosis in gastric cancer. Front. Oncol. 2023, 13, 1145446. [Google Scholar] [CrossRef] [PubMed]
- Mercier, S.; Küry, S.; Shaboodien, G.; Houniet, D.T.; Khumalo, N.P.; Bou-Hanna, C.; Bodak, N.; Cormier-Daire, V.; David, A.; Faivre, L. Mutations in FAM111B cause hereditary fibrosing poikiloderma with tendon contracture, myopathy, and pulmonary fibrosis. Am. J. Hum. Genet. 2013, 93, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ullenbruch, M.; Young Choi, Y.; Yu, H.; Ding, L.; Xaubet, A.; Pereda, J.; Feghali-Bostwick, C.A.; Bitterman, P.B.; Henke, C.A.; et al. Telomerase and telomere length in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2013, 49, 260–268. [Google Scholar] [CrossRef]
- Alder, J.K.; Armanios, M. Telomere-mediated lung disease. Physiol. Rev. 2022, 102, 1703–1720. [Google Scholar] [CrossRef]
- Dai, J.; Cai, H.; Li, H.; Zhuang, Y.; Min, H.; Wen, Y.; Yang, J.; Gao, Q.; Shi, Y.; Yi, L. Association between telomere length and survival in patients with idiopathic pulmonary fibrosis. Respirology 2015, 20, 947–952. [Google Scholar] [CrossRef]
- Planas-Cerezales, L.; Arias-Salgado, E.G.; Buendia-Roldán, I.; Montes-Worboys, A.; López, C.E.; Vicens-Zygmunt, V.; Hernaiz, P.L.; Sanuy, R.L.; Leiro-Fernandez, V.; Vilarnau, E.B.; et al. Predictive factors and prognostic effect of telomere shortening in pulmonary fibrosis. Respirology 2019, 24, 146–153. [Google Scholar] [CrossRef]
- Seo, A.; Walsh, T.; Lee, M.; Ho, P.; Hsu, E.K.; Sidbury, R.; King, M.-C.; Shimamura, A. FAM111B mutation is associated with inherited exocrine pancreatic dysfunction. Pancreas 2016, 45, 858. [Google Scholar] [CrossRef] [PubMed]
- Shenglin, Z.; Likun, Q.; Bo, Z.; Hao, C. The Effects of Down-Regulation of FAM111B on Cell Proliferation and Apoptosis in Breast Cancer. J. Mod. Oncol. 2020, 12, 2027–2030. [Google Scholar]
- Wu, H.; Liang, C. Pan-Cancer Analysis of the Tumorigenic Effect and Prognostic Diagnostic Value of FAM111B in Human Carcinomas. Int. J. Gen. Med. 2023, 16, 1845–1865. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.L.; Kavallaris, M.; McCarroll, J.A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 2014, 4, 153. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Gopalakrishnan, V.; Hegde, M.; Kumar, S.; Karki, S.S.; Raghavan, S.C.; Choudhary, B. A novel resveratrol based tubulin inhibitor induces mitotic arrest and activates apoptosis in cancer cells. Sci. Rep. 2016, 6, 34653. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, Z.; Jiao, Y.; Yang, W.; Cui, Q.; Chen, S. Family with sequence similarity 111 member B contributes to tumor growth and metastasis by mediating cell proliferation, invasion, and EMT via transforming acidic coiled-coil protein 3/PI3K/AKT signaling pathway in hepatocellular carcinoma. Environ. Toxicol. 2024, 39, 409–420. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, P.J.; Hunter, J.J.; Hoar, K.M.; Burke, K.E.; Shinde, V.; Ruan, J.; Bowman, D.; Galvin, K.; Ecsedy, J.A. Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: A novel pharmacodynamic method for measuring Aurora A activity. Cancer Res. 2007, 67, 5362–5370. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, M.; Wang, O.; Li, Y.; Jiang, Y.; Li, M.; Xia, W.; Xing, X. Genetic Screening in a Large Chinese Cohort of Childhood Onset Hypoparathyroidism by Next-Generation Sequencing Combined with TBX1-MLPA. J. Bone Miner. Res. 2019, 34, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.E.; Abu-Ghname, A.; Davis, M.J.; Shih, L.; Volk, A.S.; Streff, H.; Buchanan, E.P. Kenny-Caffey Syndrome Type 2: A Unique Presentation and Craniofacial Analysis. J. Craniofac Surg. 2020, 31, e471–e475. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.; Tezcan Ünlü, H.; Ceylaner, S.; Tarım, Ö. Compound Heterozygous Variants in FAM111A Cause Autosomal Recessive Kenny-Caffey Syndrome Type 2. J. Clin. Res. Pediatr. Endocrinol. 2023, 15, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, L.; Barker, R.; Cockell, A.; Ramachandran, V.; Haworth, A.; Homfray, T. Case report: Targeted whole exome sequencing enables the first prenatal diagnosis of the lethal skeletal dysplasia Osteocraniostenosis. BMC Med. Genet. 2020, 21, 7. [Google Scholar] [CrossRef]
- Rosato, S.; Unger, S.; Campos-Xavier, B.; Caraffi, S.G.; Beltrami, L.; Pollazzon, M.; Ivanovski, I.; Castori, M.; Bonasoni, M.P.; Comitini, G.; et al. Clinical and Molecular Diagnosis of Osteocraniostenosis in Fetuses and Newborns: Prenatal Ultrasound, Clinical, Radiological and Pathological Features. Genes 2022, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Shin, Y.L.; Yang, S.; Cheon, C.K.; Cho, J.H.; Lee, B.H.; Kim, G.H.; Lee, J.O.; Seo, E.J.; Choi, J.H.; et al. Diverse genetic aetiologies and clinical outcomes of paediatric hypoparathyroidism. Clin. Endocrinol. 2015, 83, 790–796. [Google Scholar] [CrossRef]
- Abraham, M.B.; Li, D.; Tang, D.; O’Connell, S.M.; McKenzie, F.; Lim, E.M.; Hakonarson, H.; Levine, M.A.; Choong, C.S. Short stature and hypoparathyroidism in a child with Kenny-Caffey syndrome type 2 due to a novel mutation in FAM111A gene. Int. J. Pediatr. Endocrinol. 2017, 2017, 1. [Google Scholar] [CrossRef]
- Cheng, S.S.W.; Chan, P.K.J.; Luk, H.M.; Mok, M.T.; Lo, I.F.M. Adult Chinese twins with Kenny-Caffey syndrome type 2: A potential age-dependent phenotype and review of literature. Am. J. Med. Genet. A 2021, 185, 636–646. [Google Scholar] [CrossRef]
- Müller, R.; Steffensen, T.; Krstić, N.; Cain, M.A. Report of a novel variant in the FAM111A gene in a fetus with multiple anomalies including gracile bones, hypoplastic spleen, and hypomineralized skull. Am. J. Med. Genet. A 2021, 185, 1903–1907. [Google Scholar] [CrossRef]
- Isojima, T.; Doi, K.; Mitsui, J.; Oda, Y.; Tokuhiro, E.; Yasoda, A.; Yorifuji, T.; Horikawa, R.; Yoshimura, J.; Ishiura, H.; et al. A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2. J. Bone Miner. Res. 2014, 29, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.H.; Shen, Y.; Walvoord, E.C.; Miller, T.C.; Moon, J.E.; Hirschhorn, J.N.; Dauber, A. Whole exome sequencing to identify genetic causes of short stature. Horm Res. Paediatr. 2014, 82, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Cavole, T.R.; Perrone, E.; de Faria Soares, M.F.; Dias da Silva, M.R.; Maeda, S.S.; Lazaretti-Castro, M.; Alvarez Perez, A.B. Overlapping phenotype comprising Kenny-Caffey type 2 and Sanjad-Sakati syndromes: The first case report. Am. J. Med. Genet. A 2020, 182, 3029–3034. [Google Scholar] [CrossRef] [PubMed]
- Deconte, D.; Kreusch, T.C.; Salvaro, B.P.; Perin, W.F.; Ferreira, M.A.T.; Kopacek, C.; da Rosa, E.B.; Heringer, J.I.; Ligabue-Braun, R.; Zen, P.R.G.; et al. Ophthalmologic Impairment and Intellectual Disability in a Girl Presenting Kenny-Caffey Syndrome Type 2. J. Pediatr. Genet. 2020, 9, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.; Koller, S.; Atac, D.; Pfäffli, O.A.; Hanson, J.V.M.; Feil, S.; Bähr, L.; Bahr, A.; Kottke, R.; Joset, P.; et al. Genotype-phenotype spectrum in isolated and syndromic nanophthalmos. Acta Ophthalmol. 2021, 99, e594–e607. [Google Scholar] [CrossRef] [PubMed]
- Yerawar, C.; Kabde, A.; Deokar, P. Kenny-Caffey syndrome type 2. QJM 2021, 114, 267–269. [Google Scholar] [CrossRef]
- Ohmachi, Y.; Urai, S.; Bando, H.; Yokoi, J.; Yamamoto, M.; Kanie, K.; Motomura, Y.; Tsujimoto, Y.; Sasaki, Y.; Oi, Y.; et al. Case report: Late middle-aged features of FAM111A variant, Kenny-Caffey syndrome type 2-suggestive symptoms during a long follow-up. Front. Endocrinol. 2022, 13, 1073173. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, F.; Zheng, L.; Li, H.; Liu, M.; Li, M.; Yao, Z. Family of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis caused by a novel FAM 111B mutation. J. Dermatol. 2019, 46, 1014–1018. [Google Scholar] [CrossRef]
- Takeichi, T.; Nanda, A.; Yang, H.S.; Hsu, C.K.; Lee, J.Y.; Al-Ajmi, H.; Akiyama, M.; Simpson, M.; McGrath, J. Syndromic inherited poikiloderma due to a de novo mutation in FAM111B. Br. J. Dermatol. 2017, 176, 534–536. [Google Scholar] [CrossRef]
- Mercier, S.; Küry, S.; Salort-Campana, E.; Magot, A.; Agbim, U.; Besnard, T.; Bodak, N.; Bou-Hanna, C.; Bréhéret, F.; Brunelle, P. Expanding the clinical spectrum of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis due to FAM111B mutations. Orphanet J. Rare Dis. 2015, 10, 135. [Google Scholar] [CrossRef]
- Ferré, E.M.N.; Yu, Y.; Oikonomou, V.; Hilfanova, A.; Lee, C.R.; Rosen, L.B.; Burbelo, P.D.; Vazquez, S.E.; Anderson, M.S.; Barocha, A.; et al. Case report: Discovery of a de novo FAM111B pathogenic variant in a patient with an APECED-like clinical phenotype. Front. Immunol. 2023, 14, 1133387. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zheng, L.; Li, Y.; Li, H.; Yao, Z.; Li, M. Mutation in FAM111B Causes Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy and Pulmonary Fibrosis. Acta Derm.-Venereol. 2019, 99, 695–696. [Google Scholar] [CrossRef]
- Mercier, S.; Küry, S.; Nahon, S.; Salort-Campana, E.; Barbarot, S.; Bézieau, S. FAM111B Mutation Is Associated With Pancreatic Cancer Predisposition. Pancreas 2019, 48, e41–e42. [Google Scholar] [CrossRef] [PubMed]
- Macchiaiolo, M.; Panfili, F.M.; Vecchio, D.; Cortellessa, F.; Gonfiantini, M.V.; Buonuomo, P.S.; Pietrobattista, A.; Francalanci, P.; Travaglini, L.; Bertini, E.S.; et al. Expanding phenotype of FAM111B-related disease focusing on liver involvement: Literature review, report of a case with end-stage liver disease and proposal for a new acronym. Am. J. Med. Genet. A 2022, 188, 2920–2931. [Google Scholar] [CrossRef] [PubMed]
- Dokic, Y.; Albahrani, Y.; Phung, T.; Patel, K.; de Guzman, M.; Hertel, P.; Hunt, R. Hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis: Hepatic disease in a child with a novel pathogenic variant of FAM111B. JAAD Case Rep. 2020, 6, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Kazlouskaya, V.; Feldman, E.J.; Jakus, J.; Heilman, E.; Glick, S. A case of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP) with the emphasis on cutaneous histopathological findings. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e443–e445. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, L.; Wang, P.; Wang, X.; Zhang, G. Case Report: Diverse phenotypes of congenital poikiloderma associated with FAM111B mutations in codon 628: A case report and literature review. Front. Genet. 2022, 13, 926451. [Google Scholar] [CrossRef] [PubMed]
- Goussot, R.; Prasad, M.; Stoetzel, C.; Lenormand, C.; Dollfus, H.; Lipsker, D. Expanding phenotype of hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis caused by FAM111B mutations: Report of an additional family raising the question of cancer predisposition and a short review of early-onset poikiloderma. JAAD Case Rep. 2017, 3, 143–150. [Google Scholar]
- Takimoto-Sato, M.; Miyauchi, T.; Suzuki, M.; Ujiie, H.; Nomura, T.; Ikari, T.; Nakamura, T.; Takahashi, K.; Matsumoto-Sasaki, M.; Kimura, H.; et al. Case Report: Hereditary Fibrosing Poikiloderma With Tendon Contractures, Myopathy, and Pulmonary Fibrosis (POIKTMP) Presenting With Liver Cirrhosis and Steroid-Responsive Interstitial Pneumonia. Front. Genet. 2022, 13, 870192. [Google Scholar] [CrossRef]
- Hoeger, P.H.; Koehler, L.M.; Reipschlaeger, M.; Mercier, S. Hereditary fibrosing poikiloderma (POIKTMP syndrome) report of a new mutation and review of the literature. Pediatr. Dermatol. 2022, 40, 182–187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naicker, D.; Rhoda, C.; Sunda, F.; Arowolo, A. Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications. Int. J. Mol. Sci. 2024, 25, 2845. https://doi.org/10.3390/ijms25052845
Naicker D, Rhoda C, Sunda F, Arowolo A. Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications. International Journal of Molecular Sciences. 2024; 25(5):2845. https://doi.org/10.3390/ijms25052845
Chicago/Turabian StyleNaicker, Danielle, Cenza Rhoda, Falone Sunda, and Afolake Arowolo. 2024. "Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications" International Journal of Molecular Sciences 25, no. 5: 2845. https://doi.org/10.3390/ijms25052845
APA StyleNaicker, D., Rhoda, C., Sunda, F., & Arowolo, A. (2024). Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications. International Journal of Molecular Sciences, 25(5), 2845. https://doi.org/10.3390/ijms25052845