Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications
Abstract
:1. Introduction
2. Biomaterials Based on Synthetic Polymers
2.1. Synthetic Polymers as Biomaterials
2.2. Preparation of Synthetic Polymers as Biomaterials
3. Synthesis and Chemical Structure of PPC
3.1. Synthesis of PPC
3.2. Structure of PPC
4. Properties of PPC
4.1. Solubility
4.2. Mechanical Properties
4.3. Thermal Stability
4.4. Hydrophobicity and Barrier Properties
4.5. Biodegradability
4.6. Biocompatibility
5. Modifications of PPC
5.1. Synthetic Modification
5.2. Post-Polymerization Modification
5.2.1. Physical Blending
5.2.2. Chemical Modification
5.2.3. Biological Modification
6. Biomedical Applications of PPC
6.1. Drug Carriers
6.2. Medical Dressings
6.3. Implants and Scaffolds
6.4. Other Biomedical Applications
7. Other Applications of PPC
8. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012, 37, 237–280. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, Q.-W.; Chen, Q.; Cui, C.; Duan, S.; Kang, Y.; Liu, Y.; Liu, Y.; Muhammad, W.; Shao, S.; et al. Biomedical polymers: Synthesis, properties, and applications. Sci. China Chem. 2022, 65, 1010–1075. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Die Makromol. Chem. 1969, 130, 210–220. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X. Carbon dioxide-based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnol. J. 2010, 5, 1164–1180. [Google Scholar] [CrossRef] [PubMed]
- Luinstra, G.A. Poly(Propylene Carbonate), Old Copolymers of Propylene Oxide and Carbon Dioxide with New Interests: Catalysis and Material Properties. Polym. Rev. 2008, 48, 192–219. [Google Scholar] [CrossRef]
- Ang, R.-R.; Sin, L.T.; Bee, S.-T.; Tee, T.-T.; Kadhum, A.; Rahmat, A.; Wasmi, B.A. Determination of zinc glutarate complexes synthesis factors affecting production of propylene carbonate from carbon dioxide and propylene oxide. Chem. Eng. J. 2017, 327, 120–127. [Google Scholar] [CrossRef]
- Tran, T.N.; Mai, B.T.; Setti, C.; Athanassiou, A. Transparent Bioplastic Derived from CO2-Based Polymer Functionalized with Oregano Waste Extract toward Active Food Packaging. ACS Appl. Mater. Interfaces 2020, 12, 46667–46677. [Google Scholar] [CrossRef]
- Cvek, M.; Paul, U.C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14, 14654–14667. [Google Scholar] [CrossRef]
- Didwal, P.N.; Singhbabu, Y.; Verma, R.; Sung, B.-J.; Lee, G.-H.; Lee, J.-S.; Chang, D.R.; Park, C.-J. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 2021, 37, 476–490. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, S.; Liu, J.; He, T.; Sun, L.; Xu, D.; Yu, X.; Luo, Y.; Zhou, W.; Wu, J. High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries. J. Phys. Chem. C 2015, 119, 27882–27891. [Google Scholar] [CrossRef]
- Zhao, Y.; Lai, J.Q.; Jiang, H.; Li, Y.Y.; Li, Y.; Li, F.Y.; Luo, Z.T.; Xie, D. Effect of molding on the structure and properties of poly(butylene adipate-co-terephthalate)/poly(propylene carbonate)/organically modified montmorillonite nanocomposites. Appl. Clay Sci. 2023, 234, 106854. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Gao, F.; Cao, H.; Zhou, Q.; Wang, X. Biodegradable and resilient poly (propylene carbonate) based foam from high pressure CO2 foaming. Polym. Degrad. Stab. 2019, 165, 12–19. [Google Scholar] [CrossRef]
- Luo, Q.J.; Li, X.J.; Wang, Y.; He, J.F.; Zhang, Q.; Ge, P.F.; Cai, X.; Sun, Q.; Zhu, W.P.; Shen, Z.Q.; et al. A biodegradable CO2-based polymeric antitumor nanodrug via a one-pot surfactant- and solvent-free miniemulsion preparation. Biomater. Sci. 2020, 8, 2234–2244. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Niu, Y.; Li, H. Synthesis and characterization of imidacloprid microspheres for controlled drug release study. React. Funct. Polym. 2016, 106, 99–104. [Google Scholar] [CrossRef]
- Manavitehrani, I.; Le, T.Y.; Daly, S.; Wang, Y.; Maitz, P.K.; Schindeler, A.; Dehghani, F. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater. Sci. Eng. C 2018, 96, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bhanjana, G.; Sharma, A.; Sidhu, M.C.; Dilbaghi, N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 2014, 101, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.K.; Truong, B.T.; Zhang, B.-R.; Jose, R.; Chang, J.-K.; Yang, C.-C. Sandwich-Structured Composite Polymer Electrolyte Based on PVDF-HFP/PPC/Al-Doped LLZO for High-Voltage Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2023, 6, 1475–1487. [Google Scholar] [CrossRef]
- James, B.D.; Hahn, M.E.; Reddy, C.M. Biomaterials Science Can Offer a Valuable Second Opinion on Nature’s Plastic Malady. Environ. Sci. Technol. 2022, 56, 1475–1477. [Google Scholar] [CrossRef]
- Basu, B.; Gowtham, N.; Xiao, Y.; Kalidindi, S.R.; Leong, K.W. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater. 2022, 143, 1–25. [Google Scholar] [CrossRef]
- Chen, C.-K.; Huang, P.-K.; Law, W.-C.; Chu, C.-H.; Chen, N.-T.; Lo, L.-W. Biodegradable Polymers for Gene-Delivery Applications. Int. J. Nanomed. 2020, 15, 2131–2150. [Google Scholar] [CrossRef]
- Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 2019, 134, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Brannigan, R.P.; Dove, A.P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 2016, 5, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Kunduru, K.R.; Hogerat, R.; Ghosal, K.; Shaheen-Mualim, M.; Farah, S. Renewable polyol-based biodegradable polyesters as greener plastics for industrial applications. Chem. Eng. J. 2023, 459, 141211. [Google Scholar] [CrossRef]
- Liang, R.; Yang, X.; Yew, P.Y.M.; Sugiarto, S.; Zhu, Q.; Zhao, J.; Loh, X.J.; Zheng, L.; Kai, D. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J. Nanobiotechnol. 2022, 20, 327. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, B.; Li, M.; Li, J.; Zhang, C.; Han, Y.; Wang, L.; Wang, K.; Zhou, C.; Liu, L.; et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos. Part B Eng. 2021, 224, 109192. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, L.; Wan, F.; Bera, H.; Cun, D.; Rantanen, J.; Yang, M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int. J. Pharm. 2020, 585, 119441. [Google Scholar] [CrossRef] [PubMed]
- Rafique, A.; Bulbul, Y.E.; Usman, A.; Raza, Z.A.; Oksuz, A.U. Effect of cold plasma treatment on polylactic acid and polylactic acid/poly (ethylene glycol) films developed as a drug delivery system for streptomycin sulfate. Int. J. Biol. Macromol. 2023, 235, 123857. [Google Scholar] [CrossRef]
- Kost, B.; Svyntkivska, M.; Brzeziński, M.; Makowski, T.; Piorkowska, E.; Rajkowska, K.; Kunicka-Styczyńska, A.; Biela, T. PLA/β-CD-based fibres loaded with quercetin as potential antibacterial dressing materials. Colloids Surf. B Biointerfaces 2020, 190, 110949. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Pan, Y.; Wang, H.; Wang, W.; Ren, X.; Yuan, H.; Lv, Z.; Zuo, Y.; Liu, Z.; et al. Multifunctional porous poly (L-lactic acid) nanofiber membranes with enhanced anti-inflammation, angiogenesis and antibacterial properties for diabetic wound healing. J. Nanobiotechnol. 2023, 21, 110. [Google Scholar] [CrossRef]
- Flaig, F.; Ragot, H.; Simon, A.; Revet, G.; Kitsara, M.; Kitasato, L.; Hébraud, A.; Agbulut, O.; Schlatter, G. Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate) Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomater. Sci. Eng. 2020, 6, 2388–2400. [Google Scholar] [CrossRef]
- Ranjbar, M.; Dehghan Noudeh, G.; Hashemipour, M.-A.; Mohamadzadeh, I. A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: Mechanochemical properties. Artif. Cells Nanomed. Biotechnol. 2019, 47, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-S.; Hsu, S.-H.; Chang, H.-H.; Chen, M.-H. Challenge Tooth Regeneration in Adult Dogs with Dental Pulp Stem Cells on 3D-Printed Hydroxyapatite/Polylactic Acid Scaffolds. Cells 2021, 10, 3277. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.J.; Shen, S.; Li, Y.; Trinchi, A.; Pejak, D.; Kyratzis, I.; Sola, A.; Wen, C. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges. J. Mater. Sci. Technol. 2022, 111, 120–151. [Google Scholar] [CrossRef]
- Yakdoumi, F.Z.; Hadj-Hamou, A.S.; Rahoui, N.; Rahman, M.; Abetz, V. Polylactic acid nanocomposites containing functionalized multiwalled carbon nanotubes as antimicrobial packaging materials. Int. J. Biol. Macromol. 2022, 213, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, J.; Hu, S.; Wang, X.; Li, M.; Xie, J.; Shi, Q.; Li, B.; Saijilafu; Chen, H. Collagen Modified Anisotropic PLA Scaffold as a Base for Peripheral Nerve Regeneration. Macromol. Biosci. 2022, 22, e2200119. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Li, T.; Cheng, J.; Tao, M.; Li, Z.; Ma, Y.; Javed, R.; Bao, J.; Liang, F.; Guo, W.; et al. Nerve ECM and PLA-PCL based electrospun bilayer nerve conduit for nerve regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1103435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; King, M.W. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv. Healthc. Mater. 2020, 9, e1901358. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- He, H.; Wu, M.; Zhu, J.; Yang, Y.; Ge, R.; Yu, D.-G. Engineered Spindles of Little Molecules around Electrospun Nanofibers for Biphasic Drug Release. Adv. Fiber Mater. 2021, 4, 305–317. [Google Scholar] [CrossRef]
- Peng, Y.; Ma, Y.; Bao, Y.; Liu, Z.; Chen, L.; Dai, F.; Li, Z. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. Int. J. Biol. Macromol. 2021, 183, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, Y.; Xiong, Q.; Xie, C.; An, T.; He, M.; Xia, L.; Wei, S.; Yu, J.; Cheng, S.; et al. Hollow porous PLA/PBAT composite microfibers with enhanced toughness and prolonged drug release for wound healing. Mater. Des. 2024, 237, 112624. [Google Scholar] [CrossRef]
- Kim, B.N.; Ko, Y.-G.; Yeo, T.; Kim, E.J.; Kwon, O.K. Guided Regeneration of Rabbit Calvarial Defects Using Silk Fibroin Nanofiber–Poly(glycolic acid) Hybrid Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 5266–5272. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Laing, R.M.; Wilson, C.A.; McConnell, M.; Ali, M.A. Fabrication and characterization of 3-dimensional electrospun poly(vinyl alcohol)/keratin/chitosan nanofibrous scaffold. Carbohydr. Polym. 2021, 275, 118682. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Alibabaie, A.; Saberi, R.; Esmaeili, M.; Semnani, D.; Karbasi, S. Evaluation of the effects of zein incorporation on physical, mechanical, and biological properties of polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. Int. J. Biol. Macromol. 2023, 253, 126843. [Google Scholar] [CrossRef] [PubMed]
- Metwally, S.; Karbowniczek, J.E.; Szewczyk, P.K.; Marzec, M.M.; Gruszczyński, A.; Bernasik, A.; Stachewicz, U. Single-Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Adv. Mater. Interfaces 2018, 6, 1801211. [Google Scholar] [CrossRef]
- Zhou, N.; Zhu, L.; Dong, Y.-H.; Kim, I.S.; Gao, H.-G.; Zhang, K.-Q. Preparation of biodegradable polypropylene carbonate-polylactic acid core yarn by electrospinning and its antibacterial finishing. Front. Mater. 2023, 10, 1257394. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Zamboulis, A.; Koumentakou, I.; Michailidou, G.; Noordam, M.J.; Bikiaris, D.N. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022, 23, 1841–1863. [Google Scholar] [CrossRef]
- Farzan, A.; Borandeh, S.; Zanjanizadeh Ezazi, N.; Lipponen, S.; Santos, H.A.; Seppälä, J. 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. Eur. Polym. J. 2020, 139, 109988. [Google Scholar] [CrossRef]
- Lu, M.; Li, L.; Zheng, C.; Wang, Y.; Zhang, B.; Wang, L.; Li, Z.; Zhang, Y.; Zhou, Y.; Zhou, C.; et al. 3D printed porous PLGA/n-HA/MgP composite scaffolds with improved osteogenic and angiogenic properties. Mater. Des. 2023, 234, 112351. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Y.; Li, Y.; Jia, L.; Mo, X.; Jiang, G.; Zhou, G. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem. Eng. J. 2019, 382, 122986. [Google Scholar] [CrossRef]
- Zhuo, C.; Qin, Y.; Wang, X.; Wang, F. Temperature-responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide. Chin. J. Chem. 2018, 36, 299–305. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Holtcamp, M.W.; Struck, G.E.; Zimmer, M.S.; Niezgoda, S.A.; Rainey, P.; Robertson, J.B.; Draper, J.D.; Reibenspies, J.H. Catalytic Activity of a Series of Zn(II) Phenoxides for the Copolymerization of Epoxides and Carbon Dioxide. J. Am. Chem. Soc. 1998, 121, 107–116. [Google Scholar] [CrossRef]
- Moore, D.R.; Cheng, M.; Lobkovsky, E.B.; Coates, G.W. Electronic and Steric Effects on Catalysts for CO2/Epoxide Polymerization: Subtle Modifications Resulting in Superior Activities. Angew. Chem. Int. Ed. 2002, 41, 2599–2602. [Google Scholar] [CrossRef]
- Moore, D.R.; Cheng, M.; Lobkovsky, E.B.; Coates, G.W. Mechanism of the alternating copolymerization of epoxides and CO2 using beta-diiminate zinc catalysts: Evidence for a bimetallic epoxide enchainment. J. Am. Chem. Soc. 2003, 125, 11911–11924. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Inoue, S. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Die Makromol. Chem. 1978, 179, 1377–1381. [Google Scholar] [CrossRef]
- Sheng, X.; Wang, Y.; Qin, Y.; Wang, X.; Wang, F. Aluminum porphyrin complexes via delicate ligand design: Emerging efficient catalysts for high molecular weight poly(propylene carbonate). RSC Adv. 2014, 4, 54043–54050. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X.; Zhang, S.; Zhao, X.; Wang, F. Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5959–5967. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Guo, H.; Gao, Y.; Yang, M.; Wang, X. Alternating copolymerization of carbon dioxide and propylene oxide by single-component cobalt salen complexes with various axial group. Polymer 2009, 50, 5071–5075. [Google Scholar] [CrossRef]
- Sujith, S.; Min, J.K.; Seong, J.E.; Na, S.J.; Lee, B.Y. A Highly Active and Recyclable Catalytic System for CO2/Propylene Oxide Copolymerization. Angew. Chem. Int. Ed. 2008, 47, 7306–7309. [Google Scholar]
- Wang, Y.; Qin, Y.; Wang, X.; Wang, F. Trivalent Titanium Salen Complex: Thermally Robust and Highly Active Catalyst for Copolymerization of CO2 and Cyclohexene Oxide. ACS Catal. 2014, 5, 393–396. [Google Scholar] [CrossRef]
- Cao, H.; Qin, Y.; Zhuo, C.; Wang, X.; Wang, F. Homogeneous Metallic Oligomer Catalyst with Multisite Intramolecular Cooperativity for the Synthesis of CO2-Based Polymers. ACS Catal. 2019, 9, 8669–8676. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, R.; Zhou, Z.; Liu, S.; Tao, Y.; Wang, F.; Wang, X. On-Demand Transformation of Carbon Dioxide into Polymers Enabled by a Comb-Shaped Metallic Oligomer Catalyst. ACS Catal. 2021, 12, 481–490. [Google Scholar] [CrossRef]
- Zhang, D.; Boopathi, S.K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Metal-Free Alternating Copolymerization of CO2 with Epoxides: Fulfilling “Green” Synthesis and Activity. J. Am. Chem. Soc. 2016, 138, 11117–11120. [Google Scholar] [CrossRef] [PubMed]
- Klaus, S.; Lehenmeier, M.W.; Herdtweck, E.; Deglmann, P.; Ott, A.K.; Rieger, B. Mechanistic Insights into Heterogeneous Zinc Dicarboxylates and Theoretical Considerations for CO2–Epoxide Copolymerization. J. Am. Chem. Soc. 2011, 133, 13151–13161. [Google Scholar] [CrossRef] [PubMed]
- Marbach, J.; Höfer, T.; Bornholdt, N.; Luinstra, G.A. Catalytic Chain Transfer Copolymerization of Propylene Oxide and CO2 using Zinc Glutarate Catalyst. ChemistryOpen 2019, 8, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, C.; Chen, D.; NI, X.; Jiang, L.; Shen, Z. Copolymerization of Propylene Oxide and CO2 Catalyzed by a Rare Earth Borohydride-Diethylzinc-Glycerine Ternary System. Chin. J. Catal. 2010, 31, 1242–1246. [Google Scholar] [CrossRef]
- Pan, X.; Liu, Z.; Cheng, R.; Jin, D.; He, X.; Liu, B. Experimental and theoretical studies on CO2 and propylene oxide (PO) copolymerization catalyzed by ZnEt2–glycerine–Y(CCl3COO)3 ternary catalyst. J. Organomet. Chem. 2014, 753, 63–71. [Google Scholar] [CrossRef]
- Tran, C.H.; A Kim, S.; Moon, Y.; Lee, Y.; Ryu, H.M.; Baik, J.H.; Hong, S.C.; Kim, I. Effect of dicarbonyl complexing agents on double metal cyanide catalysts toward copolymerization of CO2 and propylene oxide. Catal. Today 2021, 375, 335–342. [Google Scholar] [CrossRef]
- Luinstra, G.A.; Borchardt, E. Material Properties of Poly(propylene carbonates). In Synthetic Biodegradable Polymers; Rieger, B., Kunkel, A., Coates, G.W., Reichardt, R., Dinjus, E., Zevaco, T.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 245, pp. 29–48. [Google Scholar]
- Cui, S.; Li, L.; Wang, Q. Improved molecular chain constraint of poly (propylene carbonate) composites by the synergistic effect of poly(vinyl alcohol) and carbon nanotubes. Compos. Part B Eng. 2020, 194, 108074. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed]
- Bahramian, B.; Fathi, A.; Dehghani, F. A renewable and compostable polymer for reducing consumption of non-degradable plastics. Polym. Degrad. Stab. 2016, 133, 174–181. [Google Scholar] [CrossRef]
- Xing, C.Y.; Wang, H.T.; Hu, Q.Q.; Xu, F.F.; Cao, X.J.; You, J.C.; Li, Y.J. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends. Carbohydr. Polym. 2013, 92, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, D.; Yang, H.; Qu, H.; Yao, C.; Liu, F.; Yu, P.; Yao, J.; You, F.; Jiang, X. Remarkable enhancement in thermal performance of polypropylene carbonate by using exfoliated boron nitride nanosheets. Chem. Eng. J. 2022, 450, 138247. [Google Scholar] [CrossRef]
- Nornberg, B.; Borchardt, E.; Luinstra, G.A.; Fromm, J. Wood plastic composites from poly(propylene carbonate) and poplar wood flour—Mechanical, thermal and morphological properties. Eur. Polym. J. 2014, 51, 167–176. [Google Scholar] [CrossRef]
- Seo, Y.H.; Hyun, Y.B.; Lee, H.J.; Baek, J.W.; Lee, H.C.; Lee, J.H.; Lee, J.; Lee, B.Y. Preparation of double-metal cyanide catalysts with H3Co(CN)6 for propylene oxide homo- and CO2-copolymerization. J. CO2 Util. 2021, 53, 101755. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, Y.; Wu, Q.; Wang, Y.; Tang, R.; Zhou, S.; Yang, J.; Liu, Q.; Shi, G.; Tang, Y.; et al. Spermidine-functionalized biomaterials to modulate implant-induced immune response and enhance wound healing. Chem. Eng. J. 2023, 476, 146416. [Google Scholar] [CrossRef]
- Cao, H.; Wang, X. Carbon dioxide copolymers: Emerging sustainable materials for versatile applications. SusMat 2021, 1, 88–104. [Google Scholar] [CrossRef]
- Flodberg, G.; Helland, I.; Thomsson, L.; Fredriksen, S.B. Barrier properties of polypropylene carbonate and poly(lactic acid) cast films. Eur. Polym. J. 2015, 63, 217–226. [Google Scholar] [CrossRef]
- Wang, D.X.; Li, J.Y.; Zhang, X.C.; Zhang, J.M.; Yu, J.; Zhang, J. Poly(propylene carbonate)/clay nanocomposites with enhanced mechanical property, thermal stability and oxygen barrier property. Compos. Commun. 2020, 22, 100520. [Google Scholar] [CrossRef]
- Li, X.; Deng, N.; Qu, H.; Zeng, H.; Pei, H.; Ye, Y.; Xie, X. Nacre-inspired Polymer Nanocomposites with High-performance and Multifunctional Properties Realized by a Facile Evaporation-induced Self-assembly Approach. ACS Sustain. Chem. Eng. 2019, 7, 19787–19798. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, M.D.; Feng, J.; Zhang, S.D.; Wang, X.H. High Oxygen Barrier Property of Poly(propylene carbonate)/Polyethylene Glycol Nanocomposites with Low Loading of Cellulose Nanocrytals. ACS Sustain. Chem. Eng. 2017, 5, 11246–11254. [Google Scholar] [CrossRef]
- Qin, Y.; Sheng, X.; Liu, S.; Ren, G.; Wang, X.; Wang, F. Recent advances in carbon dioxide based copolymers. J. CO2 Util. 2014, 11, 3–9. [Google Scholar] [CrossRef]
- Li, X.; Meng, L.; Zhang, Y.; Qin, Z.; Meng, L.; Li, C.; Liu, M. Research and Application of Polypropylene Carbonate Composite Materials: A Review. Polymers 2022, 14, 2159. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Ree, M.; Kim, H. Enzymatic degradation of poly(propylene carbonate) and poly(propylene carbonate-co-epsilon-caprolactone) synthesized via CO2 fixation. Catal. Today 2006, 115, 288–294. [Google Scholar] [CrossRef]
- Muthuraj, R.; Mekonnen, T. Carbon Dioxide–Derived Poly(propylene carbonate) as a Matrix for Composites and Nanocomposites: Performances and Applications. Macromol. Mater. Eng. 2018, 303, 1800366. [Google Scholar] [CrossRef]
- Kim, G.; Ree, M.; Kim, H.; Kim, I.J.; Kim, J.R.; Lee, J.I. Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromol. Res. 2008, 16, 473–480. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, X.; Song, C.; Cai, F.; Liu, G.; Chen, C. Understanding the mechanism of enhanced anaerobic biodegradation of biodegradable plastics after alkaline pretreatment. Sci. Total Environ. 2023, 873, 162324. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Nakano, M.; Juni, K.; Inoue, S.; Yoshida, Y. Examination of biodegradability of poly(ethylene carbonate) and poly(propylene carbonate) in the peritoneal cavity in rats. Chem. Pharm. Bull. 1983, 31, 1400–1403. [Google Scholar] [CrossRef]
- Liao, J.; Li, Y.; Zou, Q.; Duan, X.; Yang, Z.; Xie, Y.; Liu, H. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite. Mater. Sci. Eng. C 2016, 63, 285–291. [Google Scholar] [CrossRef]
- Chen, X.Z.; Zhao, S.; Chu, S.L.; Liu, S.; Yu, M.Y.; Li, J.N.; Gao, F.X.; Liu, Y.Y. A novel sustained release fluoride strip based Poly (propylene carbonate) for preventing caries. Eur. J. Pharm. Sci. 2022, 171, 106128. [Google Scholar] [CrossRef] [PubMed]
- Manavitehrani, I.; Fathi, A.; Wang, Y.; Maitz, P.K.; Dehghani, F. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid). ACS Appl. Mater. Interfaces 2015, 7, 22421–22430. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qin, S.; He, M.; Zhou, D.; Qin, Q.; Wang, H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020, 199, 108238. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, L.; Xiao, M.; Wang, S.; Smith, A.T.; Sun, L.; Meng, Y. Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci. 2018, 80, 163–182. [Google Scholar] [CrossRef]
- Tempelaar, S.; Mespouille, L.; Coulembier, O.; Dubois, P.; Dove, A.P. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 2012, 42, 1312–1336. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Feng, J. A one-step strategy for thermally and mechanically reinforced pseudo-interpenetrating poly(propylene carbonate) networks by terpolymerization of CO2, propylene oxide and pyromellitic dianhydride. J. Mater. Chem. A 2013, 1, 3556–3560. [Google Scholar] [CrossRef]
- Liang, J.; Ye, S.; Wang, W.; Fan, C.; Wang, S.; Han, D.; Liu, W.; Cui, Y.; Hao, L.; Xiao, M.; et al. Performance tailorable terpolymers synthesized from carbon dioxide, phthalic anhydride and propylene oxide using Lewis acid-base dual catalysts. J. CO2 Util. 2021, 49, 101558. [Google Scholar] [CrossRef]
- Chidara, V.K.; Boopathi, S.K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X.S. Triethylborane-Assisted Synthesis of Random and Block Poly(estercarbonate)s through One-Pot Terpolymerization of Epoxides, CO2, and Cyclic Anhydrides. Macromolecules 2021, 54, 2711–2719. [Google Scholar] [CrossRef]
- Liu, J.; Jia, M.; Gnanou, Y.; Feng, X. One-Pot Synthesis of CO2-Based Polylactide-b-Poly(ether carbonate)-b-Polylactide Triblock Copolymers and Their Mechanical Properties. Macromolecules 2023, 56, 1615–1624. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, L.; Wang, X.; Zhao, X.; Wang, F. Enhanced mechanical performance of poly(propylene carbonate) via hydrogen bonding interaction with o-lauroyl chitosan. Carbohydr. Polym. 2010, 84, 329–334. [Google Scholar] [CrossRef]
- Han, D.M.; Chen, G.J.; Xiao, M.; Wang, S.J.; Chen, S.; Peng, X.H.; Meng, Y.Z. Biodegradable and Toughened Composite of Poly(Propylene Carbonate)/Thermoplastic Polyurethane (PPC/TPU): Effect of Hydrogen Bonding. Int. J. Mol. Sci. 2018, 19, 2032. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.Y.; Wei, P.F.; Li, L. Preparation of poly (propylene carbonate)/graphite nanoplates-spherical nanocrystal cellulose composite with improved glass transition temperature and electrical conductivity. Compos. Sci. Technol. 2018, 168, 63–73. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem. Eng. J. 2019, 382, 122823. [Google Scholar] [CrossRef]
- Chang, H.; Li, Q.; Xu, C.; Li, R.; Wang, H.; Bu, Z.; Lin, T. Wool powder: An efficient additive to improve mechanical and thermal properties of poly(propylene carbonate). Compos. Sci. Technol. 2017, 153, 119–127. [Google Scholar] [CrossRef]
- Qin, J.; Luo, W.; Li, M.; Chen, P.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Meng, Y. A Novel Multiblock Copolymer of CO2-Based PPC-mb-PBS: From Simulation to Experiment. ACS Sustain. Chem. Eng. 2017, 5, 5922–5930. [Google Scholar] [CrossRef]
- Phillips, O.; Schwartz, J.M.; Kohl, P.A. Thermal decomposition of poly(propylene carbonate): End-capping, additives, and solvent effects. Polym. Degrad. Stab. 2016, 125, 129–139. [Google Scholar] [CrossRef]
- Zeng, S.; Wu, X.; Ren, Y.; He, L. Synthesis of PPC-graft-poly(PEOMA) Brush and PPC Gels via Post-polymerization Modification of Hydroxyl-Functionalized Poly(propylene carbonate). J. Polym. Environ. 2022, 30, 4580–4589. [Google Scholar] [CrossRef]
- Gupta, P.K.; Gahtori, R.; Govarthanan, K.; Sharma, V.; Pappuru, S.; Pandit, S.; Mathuriya, A.S.; Dholpuria, S.; Bishi, D.K. Recent trends in biodegradable polyester nanomaterials for cancer therapy. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 127, 112198. [Google Scholar] [CrossRef]
- Li, H.; Sui, L.; Niu, Y. Synthesis of a carbon dioxide-based amphiphilic block copolymer and its evaluation as a nanodrug carrier. J. Mater. Sci. 2018, 53, 12718–12730. [Google Scholar] [CrossRef]
- Jurak, M.; Wiacek, A.E.; Ladniak, A.; Przykaza, K.; Szafran, K. What affects the biocompatibility of polymers? Adv. Colloid Interface Sci. 2021, 294, 102451. [Google Scholar] [CrossRef]
- Thakur, M.K.; Gupta, R.K.; Thakur, V.K. Surface modification of cellulose using silane coupling agent. Carbohydr. Polym. 2014, 111, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, R.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Surface modifications of scaffolds for bone regeneration. J. Mater. Res. Technol. 2023, 24, 7938–7973. [Google Scholar] [CrossRef]
- Liu, J.; Shen, X.; Tang, S.; Li, H.; Mei, S.; Zheng, H.; Sun, Y.; Zhao, J.; Kaewmanee, R.; Yang, L.; et al. Improvement of rBMSCs Responses to Poly(propylene carbonate) Based Biomaterial through Incorporation of Nanolaponite and Surface Treatment Using Sodium Hydroxide. ACS Biomater. Sci. Eng. 2019, 6, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Niu, Y. Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) for drug delivery. Mater. Sci. Eng. C 2018, 89, 160–165. [Google Scholar] [CrossRef]
- Bhattarai, R.S.; Kumar, V.; Romanova, S.; Bariwal, J.; Chen, H.; Deng, S.; Bhatt, V.R.; Bronich, T.; Li, W.; Mahato, R.I. Nanoformulation design and therapeutic potential of a novel tubulin inhibitor in pancreatic cancer. J. Control. Release 2020, 329, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Mondal, G.; Almawash, S.; Chaudhary, A.K.; Mahato, R.I. EGFR-Targeted Cationic Polymeric Mixed Micelles for Codelivery of Gemcitabine and miR-205 for Treating Advanced Pancreatic Cancer. Mol. Pharm. 2017, 14, 3121–3133. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mundra, V.; Peng, Y.; Wang, Y.; Tan, C.; Mahato, R.I. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics 2018, 8, 4033–4049. [Google Scholar] [CrossRef]
- Mondal, G.; Kumar, V.; Shukla, S.K.; Singh, P.K.; Mahato, R.I. EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules 2015, 17, 301–313. [Google Scholar] [CrossRef]
- Kumar, V.; Mondal, G.; Dutta, R.; Mahato, R.I. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials 2016, 76, 144–156. [Google Scholar] [CrossRef]
- Kumar, V.; Dong, Y.; Kumar, V.; Almawash, S.; Mahato, R.I. The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis. Theranostics 2019, 9, 7537–7555. [Google Scholar] [CrossRef]
- Peng, Y.; Wen, D.; Lin, F.; Mahato, R.I. Co-delivery of siAlox15 and sunitinib for reversing the new-onset of type 1 diabetes in non-obese diabetic mice. J. Control. Release 2018, 292, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.L.; Huang, B.; Ni, S.L.; Gao, L.; Wang, J.G.; Wang, J.; Chen, A.J.; Zhu, S.W.; Wang, B.L.; Li, G.; et al. The combination of db-cAMP and ChABC with poly(propylene carbonate) microfibers promote axonal regenerative sprouting and functional recovery after spinal cord hemisection injury. Biomed. Pharmacother. 2017, 86, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y.; Hu, X.; Shen, J.; Guo, S. Biocompatible Shape Memory Blend for Self-Expandable Stents with Potential Biomedical Applications. ACS Appl. Mater. Interfaces 2017, 9, 13988–13998. [Google Scholar] [CrossRef] [PubMed]
- Alagi, P.; Zapsas, G.; Hadjichristidis, N.; Hong, S.C.; Gnanou, Y.; Feng, X. All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO2 with Epoxides. Macromolecules 2021, 54, 6144–6152. [Google Scholar] [CrossRef]
- Zhou, H.-J.; Yang, G.-W.; Zhang, Y.-Y.; Xu, Z.-K.; Wu, G.-P. Bioinspired Block Copolymer for Mineralized Nanoporous Membrane. ACS Nano 2018, 12, 11471–11480. [Google Scholar] [CrossRef] [PubMed]
- Welle, A.; Kröger, M.; Döring, M.; Niederer, K.; Pindel, E.; Chronakis, I.S. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials 2007, 28, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Fan, R.; Li, X.; Wang, Y.; Han, B.; Gu, Y.; Zhou, L.; Zheng, Y.; Tong, A.; Guo, G. Nanofibers for improving the wound repair process: The combination of a grafted chitosan and an antioxidant agent. Polym. Chem. 2017, 8, 1664–1671. [Google Scholar] [CrossRef]
- Manavitehrani, I.; Fathi, A.; Wang, Y.; Maitz, P.K.; Mirmohseni, F.; Cheng, T.L.; Peacock, L.; Little, D.G.; Schindeler, A.; Dehghani, F. Fabrication of a Biodegradable Implant with Tunable Characteristics for Bone Implant Applications. Biomacromolecules 2017, 18, 1736–1746. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, Z.; Valtchev, P.; Wei, H.; Zreiqat, H.; Dehghani, F. Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf. B Biointerfaces 2012, 93, 75–84. [Google Scholar] [CrossRef]
- Chang, G.W.; Tseng, C.L.; Tzeng, Y.S.; Chen, T.M.; Fang, H.W. An in vivo evaluation of a novel malleable composite scaffold (polypropylene carbonate/poly(D-lactic acid)/tricalcium phosphate elastic composites) for bone defect repair. J. Taiwan Inst. Chem. Eng. 2017, 80, 813–819. [Google Scholar] [CrossRef]
- Quilez-Molina, A.I.; Marini, L.; Athanassiou, A.; Bayer, I.S. UV-Blocking, Transparent, and Antioxidant Polycyanoacrylate Films. Polymers 2020, 12, 2011. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kim, D.; Kim, D.; Oh, S.; Yun, J.; Kim, J.; Lee, S.-S.; Ha, J.S. Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy Environ. Sci. 2015, 8, 1764–1774. [Google Scholar] [CrossRef]
- Douaki, A.; Tran, T.N.; Suarato, G.; Bertolacci, L.; Petti, L.; Lugli, P.; Papadopoulou, E.L.; Athanassiou, A. Thermo-responsive nanofibers for on-demand biocompound delivery platform. Chem. Eng. J. 2022, 445, 136744. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T.; Deng, X.; Sun, Q.; Cao, X.; Feng, Y.; Wang, B.; Roy, V.A.; Li, R.K. Ecofriendly UV-protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin. Int. J. Biol. Macromol. 2019, 126, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Li, F.; Gao, Y.; Jin, J.; Jiang, W. A high-performance structural material based on maize straws and its biodegradable composites of poly (propylene carbonate). Cellulose 2021, 28, 11381–11395. [Google Scholar] [CrossRef]
- Lee, J.; Pan, J.; Chun, J.; Won, Y.Y. Unexpected conformational behavior of poly(poly (ethylene glycol) methacrylate)-poly(propylene carbonate)-poly(poly(ethylene glycol) methacrylate) (PPEGMA-PPC-PPEGMA) amphiphilic block copolymers in micellar solution and at the air-water interface. J. Colloid Interface Sci. 2020, 566, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, S.; Wu, C.; Wang, S.; Han, D.; Huang, S.; Huang, Z.; Xiao, M.; Meng, Y. A new biodegradable CO2-based poly(ester-co-carbonate): Molecular chain building up with crosslinkable domain. J. CO2 Util. 2023, 69, 102403. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Xue, C.; Xin, C.; Li, M.; Nan, C.-W.; Shen, Y. Three-dimensional structured asymmetric electrolytes for high interface stability and fast Li-ion transport in solid-state Li-metal batteries. Mater. Today Energy 2020, 18, 100522. [Google Scholar] [CrossRef]
- Arrese-Igor, M.; Martinez-Ibañez, M.; del Amo, J.M.L.; Sanchez-Diez, E.; Shanmukaraj, D.; Dumont, E.; Armand, M.; Aguesse, F.; López-Aranguren, P. Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion. Energy Storage Mater. 2021, 45, 578–585. [Google Scholar] [CrossRef]
Class | Representative Catalysts | Characteristics | Ref. | |
---|---|---|---|---|
Homogeneous catalysts | Zinc complex | (2,6-R2C6H3O)2Zn(base)2 [R = Ph, tBu, iPr, base = Et2O, THF or propylene carbonate]; (2,4,6-Me3C6H2O)2Zn(pyridine)2 | (1) Relatively low activity (2) Low polymerization rate (3) Molecular weight (MW) of ~45 kg/mol | [53] |
[Zn(OMe)(bdi)]2 | (1) Turnover frequency (TOF) of Ca. ~350 h−1 (2) Low selectivity of PPC (3) Low MW of ~25 kg/mol | [54,55] | ||
Aluminum porphyrin complex | Al-TPP | (1) Relatively low activity (2) Low polymerization rate and TOF (3) Low MW of ~8900 g/mol | [56] | |
Modified Al-TPP | (1) High activity and polymerization rate (2) TOF of Ca. ~560 h−1 (3) High selectivity up to 93% (4) High Mw of 96 kg/mol | [57] | ||
CobaltIII complex | TPP-CoIIIX | (1) TOF of Ca. ~188 h−1 (2) High selectivity of PPC (by-product below 1%) (3) Mw of 48–115 kg/mol | [58] | |
N, N′-bis(salicylidene)-1,2 phenylenediamino CoIII X | (1) TOF of Ca. ~60 h−1 (2) High selectivity of PPC up to 99% (3) Mw of ~40 kg/mol | [59] | ||
Co(salen)X | (1) High activity (2) High TOF of Ca. ~26,000 h−1 (3) High Mw of ~300 kg/mol | [60] | ||
Oligomers of metal complex | Oligomers of Al-porphyrin | (1) High TOF of Ca. 40,000–50,000 h−1 (2) High selectivity of PPC up to 99% (3) Mw of ~200 kg/mol | [62,63] | |
Metal-free | Onium halides and alkoxides | (1) TOF of Ca. ~500 h−1 (2) Selectivity of PPC up to 97% (3) Mw of 0.5–50 kg/mol | [64] | |
Heterogeneous catalysts | Zinc-based | Zinc ethyl (ZnEt2) | (1) Relatively low activity (2) More by-products and less purity | [3] |
Zinc dicarboxylates (ZnSA, ZnGA, ZnAA, and ZnPA); Zinc glutarates | (1) Relatively low activity (2) TOF of Ca. 20–300 h−1 (3) Mw of 12–103 kg/mol | [65,66] | ||
Double metal-based | Rare-earth metal ternary (ZnEt2-C3H8O3-Y(CCl3COO)3; Y(CF3COO)3-ZnEt2-glycerol; Ln(CCl3COO)3-glycerin-ZnEt2) | (1) More by-products and less purity (2) Mw over 100 kg/mol (3) Carbonate unit content (CU%) of 30–40% | [67,68] | |
Zn-CoIII double metal cyanide (DMC) | (1) High activity (2) Low CU% (3) Relatively low Mw | [69] |
No. | Reagent | Phenomenon | Solubility | |
---|---|---|---|---|
1 | Organic reagents | dichloromethane | The film dissolves immediately. | + |
2 | benzene | The film dissolves immediately. | + | |
3 | trifluoroacetic acid | The film dissolves immediately. | + | |
4 | aniline | The film dissolves quickly with no color change. | + | |
5 | N, N-dimethylformamide | The film crumbles and dissolves quickly. | + | |
6 | acetone | The film turns white and dissolves from edges. | + | |
7 | triethyl orthoformate | The film turns white and dissolves from edges. | + | |
8 | diethylene benzene | The film turns white and slowly dissolves. | + | |
9 | N, N-dimethylaniline | The film turns white and slowly dissolves. | + | |
10 | (3-aminopropyl) trimethoxysilane | The film turns white and slowly dissolves. | + | |
11 | ethyl acetate | The film turns white and slowly dissolves. | + | |
12 | methyl methacrylate | The film turns white and slowly dissolves. | + | |
13 | isoamyl acetate | The film turns white and slowly dissolves. | + | |
14 | acetic acid | The film turns white and slowly dissolves. | + | |
15 | propanoic acid | The film turns white and slowly dissolves. | + | |
16 | epichlorohydrin | The film slowly dissolves from edges. | + | |
17 | methyl acet aldehyde | The film crumples and slowly dissolves. | + | |
18 | styrene | The film crumples and dissolves. | + | |
19 | 1,4-dioxane | The film crumples and dissolves. | + | |
20 | acrylic acid | The film crumples and dissolves. | + | |
21 | trimethoxy octadecylsilane | The film dissolves slowly. | + | |
22 | N, N-dimethylacetamide | The film dissolves slowly. | + | |
23 | triethylenetetramine | The film floats on top of the solution. | − | |
24 | glutaric dialdehyde | The film floats on top of the solution. | − | |
25 | dimethicone | The film floats on top of the solution. | − | |
26 | polyethylene glycol | The film floats on top of the solution. | − | |
27 | benzyl alcohol | The film floats on top of the solution. | − | |
28 | hydrazine hydrate | The film floats on top of the solution. | − | |
29 | dimethyl sulfoxide | The film floats on top of the solution. | − | |
30 | formaldehyde | The film sinks in the solution. | − | |
31 | methanol | The film sinks in the solution. | − | |
32 | ethanol | The film sinks in the solution | − | |
33 | n-hexyl alcohol | The film sinks in the solution. | − | |
34 | tert-butanol | The film sinks in the solution. | − | |
35 | 2-butoxy ethanol | The film sinks in the solution. | − | |
36 | dibutyl phthalate | The film sinks in the solution. | − | |
37 | tetraethyl orthosilicate | The film sinks in the solution. | − | |
38 | dodecane | The film sinks in the solution. | − | |
39 | Dodecyl triethoxysilane | The film sinks in the solution. | − | |
40 | triethoxypropylsilane | The film sinks in the solution. | − | |
41 | triethoxyoctylsilane | The film sinks in the solution. | − | |
42 | 1-bromooctane | The film sinks in the solution. | − | |
43 | (3-aminopropyl) triethoxysilane | The film sinks in the solution. | − | |
44 | n-heptane | The film sinks in the solution. | − | |
45 | lactic acid | The film sinks in the solution. | − | |
46 | 2,2,4-trimethylpentane | The film sinks in the solution. | − | |
47 | Inorganic reagents | 98% hydrochloric acid | The film’s surface forms bubbles. | + |
48 | 98% sulfuric acid | The film dissolves slowly. | + | |
49 | phosphoric acid | The film sinks in the solution. | − | |
50 | aqueous ammonia | The film floats on top of the solution. | − |
Suggested Application | Material | Preparation Method | Ref. |
---|---|---|---|
Drug carriers for cancer treatment | mPEG-PPC-mPEG/doxorubicin | Grafting copolymerization and drug loading by shear emulsification | [13] |
PEG-PPC-PEG/doxorubicin | Condensation and drug loading by nanoprecipitation | [115] | |
mPEG-block-PPC-g-dodecanol/CH-3-8 polymeric nanoparticles | Grafting copolymerization and drug loading by coupling reaction | [116] | |
mPEG-block-PPC-g-gemcitabine-g-dodecanol/miR-205 polymeric micelles | Grafting copolymerization and drug loading by coupling reaction | [117] | |
PEG-block-PPC-g-tetraethylenepentamine/GDC-0449/let-7b micelles | Grafting copolymerization and drug loading by coupling reaction | [118] | |
GE11 peptide-PEG-block-PPC-g-gemcitabine-g-dodecanol mixed micelles | Grafting copolymerization and drug loading by coupling reaction | [119] | |
Drug carriers for hepatic fibrosis treatment | mPEG-block-PPC-g-dodecanol-g-tetraethylenepentamine/miR-29b1/GDC-0449 micelles | Grafting copolymerization and drug loading by coupling reaction | [120] |
mPEG-block-PPC-g-dodecanol-g/MDB5 micelles | Grafting copolymerization and drug loading by coupling reaction | [121] | |
Drug carriers for type I diabetes treatment | mPEG-block-PPC-g-dodecanol-g-tetraethylenepentamine/sunitinib micelles | Grafting copolymerization and drug loading by coupling reaction | [122] |
Drug carriers for spinal cord injury treatment | PPC/dibutyryl cyclic adenosine monophosphate/chondroitinase ABC microfibers | Electrospinning | [123] |
Drug carriers for other treatments | PPC/PCL/metoprolol tartrate blends | Melt blending | [124] |
PPC/imidacloprid microspheres | Emulsification and solvent evaporation | [14] | |
Poly(vinyl-cyclohexene carbonate)-g-PPC | Grafting copolymerization | [125] | |
PPC-block-poly(4-vinylcatechol acetonide) copolymers | Grafting copolymerization | [126] | |
Wound dressings | Parallel-aligned PPC microfibers/chitosan nanofibers | Electrospinning and oxygen plasma treatment | [16] |
PPC nanofiber mats | Electrospinning, spin coating and UV treatment | [127] | |
Curcumin-loaded PPC-g-chitosan nanofibers | Electrospinning and encapsulation | [128] | |
Artificial skins | Spermidine-functionalized PPC composite films | Spin coating | [78] |
Bone repair scaffolds | Porous PPC-starch-bioglass scaffolds | Gas foaming | [15] |
PPC-starch composites | Melt blending | [93] | |
Microporous PPC/laponite nanocomposites | Melt blending and surface treatment with sodium hydroxide | [114] | |
PPC-starch-bioglass blends | Melt blending | [129] | |
PPC multilayer membranes | Aminolysis and layer-by-layer assembly | [130] | |
Porous PPC/poly(D-lactic acid)/β-tricalcium phosphate scaffolds | Salt leaching | [131] | |
Medical adhesives/glues | Poly(ethyl cyanoacrylate)/PPC/caffeic acid films | Polymerization in presence of PPC and solvent evaporation | [132] |
Wearable electronic devices | Poly(methyl methacrylate)-PC-lithium perchlorate/multi-walled carbon nanotube/Mn3O4 micro-supercapacitors layer-by-layer-assembled films | Hydrothermal reaction, photolithography and layer-by-layer assembly | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, Y.; Yang, J.; Wu, Q.; Liang, S.; Liu, Z. Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications. Int. J. Mol. Sci. 2024, 25, 2938. https://doi.org/10.3390/ijms25052938
Wang L, Li Y, Yang J, Wu Q, Liang S, Liu Z. Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications. International Journal of Molecular Sciences. 2024; 25(5):2938. https://doi.org/10.3390/ijms25052938
Chicago/Turabian StyleWang, Li, Yumin Li, Jingde Yang, Qianqian Wu, Song Liang, and Zhenning Liu. 2024. "Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications" International Journal of Molecular Sciences 25, no. 5: 2938. https://doi.org/10.3390/ijms25052938
APA StyleWang, L., Li, Y., Yang, J., Wu, Q., Liang, S., & Liu, Z. (2024). Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications. International Journal of Molecular Sciences, 25(5), 2938. https://doi.org/10.3390/ijms25052938