Acute and Chronic Exposure to Linagliptin, a Selective Inhibitor of Dipeptidyl Peptidase-4 (DPP-4), Has an Effect on Dopamine, Serotonin and Noradrenaline Level in the Striatum and Hippocampus of Rats
Abstract
:1. Introduction
2. Results
2.1. Ex Vivo Neurochemical Studies—The Analysis of the Concentration of Dopamine, Serotonin and Noradrenaline and Their Metabolites Using HPLC-ED
2.1.1. The Effect of Acute and Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on the Concentration of Dopamine and Its Metabolites in the Striatum in Rats
2.1.2. The Effect of Acute and Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on the Concentration of Dopamine and Its Metabolites in the Hippocampus in Rats
2.1.3. The Effect of Acute and Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on the Concentration of Serotonin and Its Metabolite in the Striatum in Rats
2.1.4. The Effect of Acute and Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on the Concentration of Serotonin and Its Metabolite in the Hippocampus in Rats
2.1.5. The Effect of Acute and Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on the Concentration of Noradrenaline and Its Metabolite in the Striatum in Rats
2.1.6. The Effect of Acute and Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on the Concentration of Noradrenaline and Its Metabolite in the Hippocampus in Rats
2.2. The Analysis of mRNA Expression of Dopamine, Serotonin and Noradrenaline Receptors Using RQ-PCR in the Striatum and Hippocampus of Rats
2.2.1. The Effect of Acute Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on mRNA Expression of D1, D2, 5-HT1A, 5-HT2A, α1A and α2A Receptors in the Striatum and Hippocampus in Rats
2.2.2. The Effect of Chronic Exposure to Linagliptin (10 and 20 mg/kg, i.p.) on mRNA Expression of D1, D2, 5-HT1A, 5-HT2A, α1A and α2A Receptors in the Striatum and the Hippocampus in Rats
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drug
4.3. Experimental Procedure
4.4. Neurochemical Analysis—Ex Vivo Biochemical Studies Assessed Using HPLC-ED in the Striatum and Hippocampus of Rats
4.5. Analysis of mRNA Expression of Dopamine, Serotonin and Noradrenaline Receptors Using RQ-PCR in the Striatum and Hippocampus of Rats
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3-MT | 3-methoxytyramine |
5-HIAA | 5-hydroxyindoleacetic acid |
CNS | the central nervous system |
COMT | catechol-O-methyltransferase |
DAT | dopamine transporter |
DOPAC | 3,4-dihydroxyphenylacetic acid |
DPP-4 enzyme | the dipeptidyl peptidase-4 enzyme |
FSCV | fast-scan cyclic voltammetry |
GLP-1 | the glucagon-like peptide-1 |
HVA | homovanillic acid |
i.p. | intraperitoneally |
HPLC-ED | high-performance liquid chromatography with electrochemical detection |
NA | noradrenaline |
NMDA | N-methyl-D-aspartate |
NMN | normetanephrine |
RQ-PCR | real-time quantitative reverse transcription polymerase chain reaction |
SD | standard deviation |
SEM | standard error of the mean |
Ser | serotonin |
VMAT2 | vesicular monoamine transporter 2 |
VTA | ventral tegmental area |
References
- Körner, M.; Stöckli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med. 2007, 48, 736–743. [Google Scholar] [CrossRef]
- Mayo, K.E.; Miller, L.J.; Bataille, D.; Dalle, C.; Göke, B.; Thorens, B.; Drucker, D.J. International union of pharmacology. XXXV. The glucagon receptor family. Pharmacol. Rev. 2003, 55, 167–194. [Google Scholar] [CrossRef]
- Karaca, M.; Magnan, C.; Kargar, C. Functional pancreatic beta-cell mass: Involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab. 2009, 35, 77–84. [Google Scholar] [CrossRef]
- Kieffer, T.J.; McIntosh, C.H.; Pederson, R.A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995, 136, 3585–3596. [Google Scholar] [CrossRef]
- Lovshin, J.A.; Drucker, D.J. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009, 5, 262–269. [Google Scholar] [CrossRef]
- Kastin, A.J.; Akerstrom, V.; Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 2002, 18, 7–14. [Google Scholar] [CrossRef]
- Grill, H.J.; Hayes, M.R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012, 16, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.L.; Han, V.K.; Simmons, J.G.; Towle, A.C.; Lauder, J.M.; Lund, P.K. Distribution of glucagonlike peptide I (GLP-I); glucagon; and glicentin in the rat brain: An immunocytochemical study. J. Comp. Neurol. 1988, 271, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn-Smith, I.J.; Gnanamanickam, G.J.; Reimann, F.; Gribble, F.M.; Trapp, S. Preproglucagon (PPG) neurons innervate neurochemically identified autonomic neurons in the mouse brainstem. Neuroscience 2013, 229, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn-Smith, I.J.; Marina, N.; Manton, R.N.; Reimann, F.; Gribble, F.M.; Trapp, S. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience 2015, 284, 872–887. [Google Scholar] [CrossRef]
- Llewellyn-Smith, I.J.; Reimann, F.; Gribble, F.M.; Trapp, S. Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 2011, 180, 111–121. [Google Scholar] [CrossRef]
- Cork, S.C.; Richards, J.E.; Holt, M.K.; Gribble, F.M.; Reimann, F.; Trapp, S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 2015, 4, 718–731. [Google Scholar] [CrossRef]
- Alhadeff, A.L.; Rupprecht, L.E.; Hayes, M.R. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012, 153, 647–658. [Google Scholar] [CrossRef]
- Dossat, A.M.; Lilly, N.; Kay, K.; Williams, D.L. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 2011, 31, 14453–14457. [Google Scholar] [CrossRef]
- Heppner, K.M.; Kirigiti, M.; Secher, A.; Paulsen, S.J.; Buckingham, R.; Pyke, C.; Knudsen, L.B.; Vrang, N.; Grove, K.L. Expression and distribution of glucagon-like peptide-1 receptor mRNA; protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology 2015, 156, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Rinaman, L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010, 1350, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Turton, M.D.; O’Shea, D.; Gunn, I.; Beak, S.A.; Edwards, C.M.; Meeran, K.; Choi, S.J.; Taylor, G.M.; Heath, M.M.; Lambert, P.D.; et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996, 379, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Chaudhri, O.B.; Parkinson, J.R.; Kuo, Y.T.; Druce, M.R.; Herlihy, A.H.; Bell, J.D.; Dhillo, W.S.; Stanley, S.A.; Ghatei, M.A.; Bloom, S.R. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem. Biophys. Res. Commun. 2006, 350, 298–306. [Google Scholar] [CrossRef]
- Ranganath, L.R.; Beety, J.M.; Morgan, L.M.; Wright, J.W.; Howland, R.; Marks, V. Attenuated GLP-1 secretion in obesity: Cause or consequence? Gut 1996, 38, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Moretto, T.J.; Milton, D.R.; Ridge, T.D.; Macconell, L.A.; Okerson, T.; Wolka, A.M.; Brodows, R.G. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug–naive patients with type 2 diabetes: A randomized; double-blind; placebo-controlled; parallel-group study. Clin. Ther. 2008, 30, 1448–1460. [Google Scholar] [CrossRef]
- Drucker, D.J. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef]
- Koshal, P.; Jamwal, S.; Kumar, P. Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2018, 136 Pt B, 271–279. [Google Scholar] [CrossRef]
- Egecioglu, E.; Engel, J.A.; Jerlhag, E. The glucagon-like peptide 1 analogue; exendin-4; attenuates the rewarding properties of psychostimulant drugs in mice. PLoS ONE 2013, 8, e69010. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.L.; Erreger, K.; Galli, A.; Stanwood, G.D. GLP-1 analog attenuates cocaine reward. Mol. Psychiatry 2013, 18, 961–962. [Google Scholar] [CrossRef] [PubMed]
- Egecioglu, E.; Engel, J.A.; Jerlhag, E. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation; accumbal dopamine release; conditioned place preference as well as the expression of locomotor sensitization in mice. PLoS ONE 2013, 8, e77284. [Google Scholar] [CrossRef] [PubMed]
- Egecioglu, E.; Steensland, P.; Fredriksson, I.; Feltmann, K.; Engel, J.A.; Jerlhag, E. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology 2013, 38, 1259–1270. [Google Scholar] [CrossRef]
- Vallöf, D.; Maccioni, P.; Colombo, G.; Mandrapa, M.; Jörnulf, J.W.; Egecioglu, E.; Engel, J.A.; Jerlhag, E. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents. Addict. Biol. 2016, 21, 422–437. [Google Scholar] [CrossRef] [PubMed]
- Łupina, M.; Talarek, S.; Kotlińska, J.; Gibuła-Tarłowska, E.; Listos, P.; Listos, J. The role of linagliptin; a selective dipeptidyl peptidase-4 inhibitor; in the morphine rewarding effects in rats. Neurochem. Int. 2020, 133, 104616. [Google Scholar] [CrossRef]
- Listos, J.; Listos, P.; Baranowska-Bosiacka, I.; Karpiuk, A.; Filarowska, J.; Łupina, M.; Słowik, T.; Zawiślak, S.; Kotlińska, J. Linagliptin; a Selective Dipeptidyl Peptidase-4 Inhibitor; Reduces Physical and Behavioral Effects of Morphine Withdrawal. Molecules 2022, 27, 2478. [Google Scholar] [CrossRef]
- Kasina, S.V.S.K.; Baradhi, K.M. Dipeptidyl Peptidase IV (DPP IV) Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pipatpiboon, N.; Pintana, H.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur. J. Neurosci. 2013, 37, 839–849. [Google Scholar] [CrossRef]
- D’Amico, M.; Filippo, C.D.; Marfella, R.; Abbatecola, A.M.; Ferraraccio, F.; Rossi, F.; Paolisso, G. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp. Gerontol. 2010, 45, 202–207. [Google Scholar] [CrossRef]
- Kosaraju, J.; Gali, C.C.; Khatwal, R.B.; Dubala, A.; Chinni, S.; Holsinger, R.M.; Madhunapantula, V.S.; Muthureddy Nataraj, S.K.; Basavan, D. Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology 2013, 72, 291–300. [Google Scholar] [CrossRef]
- Kosaraju, J.; Murthy, V.; Khatwal, R.B.; Dubala, A.; Chinni, S.; Muthureddy Nataraj, S.K.; Basavan, D. Vildagliptin: An anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced alzheimer’s disease. J. Pharm. Pharmacol. 2013, 65, 1773–1784. [Google Scholar] [CrossRef]
- Isik, A.T.; Soysal, P.; Yay, A.; Usarel, C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res. Clin. Pract. 2017, 123, 192–198. [Google Scholar] [CrossRef]
- Badawi, G.A.; Abd El Fattah, M.A.; Zaki, H.F.; El Sayed, M.I. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease. Inflammopharmacology 2017, 25, 369–382. [Google Scholar] [CrossRef] [PubMed]
- ElGamal, R.Z.; Tadros, M.G.; Menze, E.T. Linagliptin counteracts rotenone’s toxicity in non-diabetic rat model of Parkinson’s disease: Insights into the neuroprotective roles of DJ-1, SIRT-1/Nrf-2 and implications of HIF1-α. Eur. J. Pharmacol. 2023, 941, 175498. [Google Scholar] [CrossRef]
- Manciu, F.S.; Manciu, M.; Ciubuc, J.D.; Sundin, E.M.; Ochoa, K.; Eastman, M.; Durrer, W.G.; Guerrero, J.; Lopez, B.; Subedi, M.; et al. Simultaneous Detection of Dopamine and Serotonin-A Comparative Experimental and Theoretical Study of Neurotransmitter Interactions. Biosensors 2018, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, G.; Esposito, E.; Di Matteo, V. Role of serotonin in central dopamine dysfunction. CNS Neurosci. Ther. 2010, 16, 179–194. [Google Scholar] [CrossRef]
- Weinshenker, D.; Schroeder, J.P. There and back again: A tale of norepinephrine and drug addiction. Neuropsychopharmacology 2007, 32, 1433–1451. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Eckhardt, M.; Langkopf, E.; Tadayyon, M.; Himmelsbach, F.; Mark, M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3;7-dihydro-purine-2;6-dione (BI 1356); a novel xanthine-based dipeptidyl peptidase 4 inhibitor; has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J. Pharmacol. Exp. Ther. 2008, 325, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Tada, Y.; Gladson, S.; Nishimura, R.; Shimomura, I.; Karasawa, S.; Tatsumi, K.; West, J. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir. Res. 2017, 18, 177. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, S.; Coskun, Z.M.; Bolkent, S. Immunohistochemical, apoptotic and biochemical changes by dipeptidyl peptidase-4 inhibitor-sitagliptin in type-2 diabetic rats. Pharmacol. Rep. 2015, 67, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Vulto, A.G.; Westenberg, H.G.; Meijer, L.B.; Versteeg, D.H. The dopamine metabolite 3-methoxytyramine is not a suitable indicator of dopamine release in the rat brain. J. Neurochem. 1986, 47, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Waldmeier, P.C.; Lauber, J.; Blum, W.; Richter, W.J. 3-Methoxytyramine: Its suitability as an indicator of synaptic dopamine release. Naunyn Schmiedebergs Arch. Pharmacol. 1981, 315, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Nair, N.P.; Bozarth, M. Striatal 3-methoxytyramine as an index of dopamine release effects of electrical stimulation. Neurosci. Lett. 1982, 32, 291–294. [Google Scholar] [CrossRef]
- Sotnikova, T.D.; Beaulieu, J.M.; Espinoza, S.; Masri, B.; Zhang, X.; Salahpour, A.; Barak, L.S.; Caron, M.G.; Gainetdinov, R.R. The dopamine metabolite 3-methoxytyramine is a neuromodulator. PLoS ONE 2010, 5, e13452. [Google Scholar] [CrossRef]
- Antkiewicz-Michaluk, L.; Ossowska, K.; Romańska, I.; Michaluk, J.; Vetulani, J. 3-Methoxytyramine; an extraneuronal dopamine metabolite plays a physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Eur. J. Pharmacol. 2008, 599, 32–35. [Google Scholar] [CrossRef]
- Wood, P.L.; Kim, H.S.; Stocklin, K.; Rao, T.S. Dynamics of the striatal 3-MT pool in rat and mouse: Species differences as assessed by steady-state measurements and intracerebral dialysis. Life Sci. 1988, 42, 2275–2281. [Google Scholar] [CrossRef]
- Badawi, G.A.; Abd El Fattah, M.A.; Zaki, H.F.; El Sayed, M.I. Sitagliptin and Liraglutide Modulate L-dopa Effect and Attenuate Dyskinetic Movements in Rotenone-Lesioned Rats. Neurotox. Res. 2019, 35, 635–653. [Google Scholar] [CrossRef]
- Fortin, S.M.; Roitman, M.F. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol. Behav. 2017, 176, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Liu, J.J.; Xia, J.; Liu, J.; Mirabella, V.; Pang, Z.P. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep. 2015, 12, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Mietlicki-Baase, E.G.; Ortinski, P.I.; Rupprecht, L.E.; Olivos, D.R.; Alhadeff, A.L.; Pierce, R.C.; Hayes, M.R. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1367–E1374. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.E.; Anderberg, R.H.; Göteson, A.; Gribble, F.M.; Reimann, F.; Skibicka, K.P. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE 2015, 10, e0119034. [Google Scholar] [CrossRef]
- Harasta, A.E.; Power, J.M.; von Jonquieres, G.; Karl, T.; Drucker, D.J.; Housley, G.D.; Schneider, M.; Klugmann, M. Septal glucagon-like peptide 1 receptor expression determines suppression of cocaine-induced behavior. Neuropsychopharmacology 2015, 40, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Reddy, I.A.; Pino, J.A.; Weikop, P.; Osses, N.; Sørensen, G.; Bering, T.; Valle, C.; Bluett, R.J.; Erreger, K.; Wortwein, G.; et al. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl. Psychiatry 2016, 6, e809. [Google Scholar] [CrossRef]
- Jensen, M.E.; Galli, A.; Thomsen, M.; Jensen, K.L.; Thomsen, G.K.; Klausen, M.K.; Vilsbøll, T.; Christensen, M.B.; Holst, J.J.; Owens, A.; et al. Glucagon-like peptide-1 receptor regulation of basal dopamine transporter activity is species-dependent. Neurochem. Int. 2020, 138, 104772. [Google Scholar] [CrossRef] [PubMed]
- Secnik, J.; Cermakova, P.; Fereshtehnejad, S.M.; Dannberg, P.; Johnell, K.; Fastbom, J.; Winblad, B.; Eriksdotter, M.; Religa, D. Diabetes in a Large Dementia Cohort: Clinical Characteristics and Treatment from the Swedish Dementia Registry. Diabetes Care 2017, 40, 1159–1166. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Morris, J.K.; Bomhoff, G.L.; Gorres, B.K.; Davis, V.A.; Kim, J.; Lee, P.P.; Brooks, W.M.; Gerhardt, G.A.; Geiger, P.C.; Stanford, J.A. Insulin resistance impairs nigrostriatal dopamine function. Exp. Neurol. 2011, 231, 171–180. [Google Scholar] [CrossRef]
- Elbassuoni, E.A.; Ahmed, R.F. Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson’s with pre-existing diabetes. Neurochem. Int. 2019, 131, 104583. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.; Li, L.; Hölscher, C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol. 2015, 768, 21–27. [Google Scholar] [CrossRef]
- Ji, C.; Xue, G.F.; Lijun, C.; Feng, P.; Li, D.; Li, L.; Li, G.; Hölscher, C. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson’s disease by increasing expression of BNDF. Brain Res. 2016, 1634, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Li, X.G.; Kong, X.; Huang, R.; Ruan, Z.; Yao, K.; Deng, Z.; Xie, M.; Shinzato, I.; Yin, Y.; et al. Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 2009, 37, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, D.; Feng, P.; Li, L.; Xue, G.F.; Li, G.; Hölscher, C. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain. Neuroreport 2016, 27, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Zhang, X.; Li, D.; Ji, C.; Yuan, Z.; Wang, R.; Xue, G.; Li, G.; Hölscher, C. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 2018, 133, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Tan, C.; Zhao, L.; Liang, Y.; Liu, G.; Liu, H.; Zhong, Y.; Liu, Z.; Mo, L.; Liu, X.; et al. Glucose metabolism impairment in Parkinson’s disease. Brain Res. Bull. 2023, 199, 110672. [Google Scholar] [CrossRef]
- Nassar, N.N.; Al-Shorbagy, M.Y.; Arab, H.H.; Abdallah, D.M. Saxagliptin: A novel antiparkinsonian approach. Neuropharmacology 2015, 89, 308–317. [Google Scholar] [CrossRef]
- Nonogaki, K.; Kaji, T. Pharmacological stimulation of serotonin 5-HT1B receptors enhances increases in plasma active glucagon-like peptide-1 levels induced by dipeptidyl peptidase-4 inhibition independently of feeding in mice. Diabetes Metab. 2015, 41, 425–428. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, X.; Chen, Y.; Wang, Y.; Li, X.; Lin, L.; Zhang, H. Exendin-4; an analogue of glucagon-like peptide-1; attenuates hyperalgesia through serotonergic pathways in rats with neonatal colonic sensitivity. J. Physiol. Pharmacol. 2014, 65, 349–357. [Google Scholar]
- Brunetti, L.; Orlando, G.; Recinella, L.; Leone, S.; Ferrante, C.; Chiavaroli, A.; Lazzarin, F.; Vacca, M. Glucagon-like peptide 1 (7-36) amide (GLP-1) and exendin-4 stimulate serotonin release in rat hypothalamus. Peptides 2008, 29, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, R.H.; Richard, J.E.; Eerola, K.; López-Ferreras, L.; Banke, E.; Hansson, C.; Nissbrandt, H.; Berqquist, F.; Gribble, F.M.; Reimann, F.; et al. Glucagon-like peptide-1 and its analogues act in the dorsal raphe and modulate central serotonin to reduce appetite and body weight. Diabetes 2017, 66, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Vestlund, J.; Jerlhag, E. Glucagon-like peptide-1 receptors and sexual behaviors in male mice. Psychoneuroendocrinology 2020, 117, 104687. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Fekete, C.; Legradi, G.; Lechan, R.M. Glucagon like peptide-1 (7–36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res. 2003, 985, 163–168. [Google Scholar] [CrossRef]
- Larsen, P.J.; Tang-Christensen, M.; Holst, J.J.; Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 1997, 77, 257–270. [Google Scholar] [CrossRef]
DA (ng/g Tissue) | DOPAC (ng/g Tissue) | 3-MT (ng/g Tissue) | HVA (ng/g Tissue) | (DOPAC/DA) × 100 | (3-MT/DA) × 100 | (HVA/DA) × 100 | |||
---|---|---|---|---|---|---|---|---|---|
Striatum | Single doe of linagliptin | vehicle | 10,508.0 ± 902.1 | 1309.0 ± 78.74 | 286.6 ± 41.62 | 1292.0 ± 106.9 | 13.53 ± 0.3970 | 2.771 ± 0.3841 | 11.87 ± 0.7049 |
vehicle + linagliptin 10 | 10,669.0 ± 504.6 | 1524.0 ± 94.70 | 525.3 ± 40.24 * | 1361.0 ± 71.05 | 14.58 ± 0.7214 | 5.053 ± 0.4216 ** | 13.01 ± 0.3776 | ||
vehicle + linagliptin 20 | 10,793.0 ± 314.6 | 1477.0 ± 101.9 | 556.5 ± 58.28 ** | 1353.0 ± 110.9 | 14.05 ± 0.5923 | 5.314 ± 0.4909 ** | 12.83 ± 0.6536 | ||
Chronic administration of linagliptin | vehicle | 10,291.0 ± 851.6 | 1373.0 ± 128.0 | 287.7 ± 28.34 | 1291.0 ± 78.44 | 13.95 ± 0.5291 | 3.080 ± 0.3014 | 12.60 ± 0.6355 | |
vehicle + linagliptin 10 | 13,392.0 ± 303.8 ** | 2026.0 ± 135.8 ** | 428.8 ± 34.18 * | 1665.0 ± 43.77 ** | 14.38 ± 1.688 | 2.945 ± 0.4348 | 12.51 ± 0.5049 | ||
vehicle + linagliptin 20 | 13,996.0 ± 560.9 *** | 1971.0 ± 132.8 ** | 497.0 ± 47.71 ** | 1551.0 ± 79.22 * | 13.04 ± 1.205 | 3.499 ± 0.3576 | 11.01 ± 0.3662 |
DA (ng/g Tissue) | DOPAC (ng/g Tissue) | 3-MT (ng/g Tissue) | HVA (ng/g Tissue) | (DOPAC/DA) × 100 | (3-MT/DA) × 100 | (HVA/DA) × 100 | |||
---|---|---|---|---|---|---|---|---|---|
Hippocampus | Single doe of linagliptin | vehicle | 13.62 ± 1.726 | 7.020 ± 1.405 | 7.920 ± 1.194 | 13.54 ± 2.962 | 57.60 ± 12.57 | 54.99 ± 8.728 | 89.42 ± 26.14 |
vehicle + linagliptin 10 | 11.90 ± 1.266 | 5.440 ± 0.7359 | 6.780 ± 1.175 | 7.500 ± 0.8972 | 46.20 ± 5.802 | 51.21 ± 12.92 | 58.79 ± 5.910 | ||
vehicle + linagliptin 20 | 19.60 ± 1.770 * | 3.264 ± 0.4847 * | 2.800 ± 0.3266 ** | 6.075 ± 0.9232 | 18.64 ± 2.797 ** | 15.13 ± 0.7017 * | 26.42 ± 3.261 * | ||
Chronic administration of linagliptin | vehicle | 15.86 ± 1.689 | 8.500 ± 1.268 | 7.850 ± 1.230 | 14.34 ± 2.422 | 43.53 ± 7.601 | 49.24 ± 10.89 | 87.41 ± 28.82 | |
vehicle + linagliptin 10 | 27.67 ± 3.471 | 9.500 ± 1.848 | 6.200 ± 0.3887 | 18.33 ± 2.741 | 26.06 ± 3.601 | 21.52 ± 3.145 | 52.40 ± 6.793 | ||
vehicle + linagliptin 20 | 25.67 ± 4.224 | 6.333 ± 1.856 | 9.000 ± 0.8018 | 13.25 ± 0.9402 | 30.46 ± 5.142 | 31.96 ± 2.943 | 54.07 ± 6.820 |
Ser (ng/g Tissue) | 5-HIAA (ng/g Tissue) | (5-HIAA/Ser) × 100 | |||
---|---|---|---|---|---|
Striatum | Single dose of linagliptin | vehicle | 268.5 ± 10.92 | 392.9 ± 15.01 | 133.2 ± 2.433 |
vehicle + linagliptin 10 | 348.8 ± 23.67 ** | 455.8 ± 15.91 * | 133.7 ± 3.687 | ||
vehicle + linagliptin 20 | 390.7 ± 4.022 **** | 510.5 ± 16.74 **** | 130.8 ± 4.506 | ||
Chronic administration of linagliptin | vehicle | 276.0 ± 9.716 | 397.5 ± 25.56 | 132.1 ± 2.371 | |
vehicle + linagliptin 10 | 202.4 ± 20.07 * | 264.8 ± 12.39 * | 145.5 ± 11.72 | ||
vehicle + linagliptin 20 | 273.2 ± 15.72 | 467.3 ± 40.43 | 157.0 ± 10.60 |
Ser (ng/g Tissue) | 5-HIAA (ng/g Tissue) | (5-HIAA/Ser) × 100 | |||
---|---|---|---|---|---|
Hippocampus | Single dose of linagliptin | vehicle | 165.0 ± 15.37 | 238.0 ± 34.56 | 144.6 ± 8.653 |
vehicle + linagliptin 10 | 244.4 ± 24.64 * | 388.4 ± 22.55 ** | 162.3 ± 6.242 | ||
vehicle + linagliptin 20 | 241.0 ± 19.93 * | 404.5 ± 17.91 ** | 172.0 ± 8.768 | ||
Chronic administration of linagliptin | vehicle | 161.4 ± 18.30 | 244.3 ± 27.72 | 154.5 ± 11.94 | |
vehicle + linagliptin 10 | 131.4 ± 13.60 | 150.8 ± 13.66 | 112.6 ± 14.79 | ||
vehicle + linagliptin 20 | 153.0 ± 18.23 | 406.2 ± 59.31 * | 232.1 ± 29.61 * |
NA (ng/g Tissue) | NMN (ng/g Tissue) | (NMN/NA) × 100 | |||
---|---|---|---|---|---|
Striatum | Single dose of linagliptin | vehicle | 316.4 ± 14.32 | 5.250 ± 1.656 | 1.643 ± 0.5179 |
vehicle + linagliptin 10 | 549.5 ± 24.73 **** | 2.280 ± 0.2947 | 0.4692 ± 0.05262 ** | ||
vehicle + linagliptin 20 | 613.0 ± 30.35 **** | 1.760 ± 0.1893 * | 0.2922 ± 0.03848 ** | ||
Chronic administration of linagliptin | vehicle | 305.8 ± 11.41 | 5.140 ± 1.962 | 1.882 ± 0.5059 | |
vehicle + linagliptin 10 | 318.3 ± 15.36 | 3.486 ± 1.035 | 1.55 ± 0.2218 | ||
vehicle + linagliptin 20 | 286.3 ± 15.58 | 4.129 ± 0.9987 | 1.212 ± 0.1997 |
NA (ng/g Tissue) | NMN (ng/g Tissue) | (NMN/NA) × 100 | |||
---|---|---|---|---|---|
Hippocampus | Single dose of linagliptin | vehicle | 402.2 ± 28.55 | 30.00 ± 5.060 | 7.389 ± 2.050 |
vehicle + linagliptin 10 | 391.3 ± 11.79 | 5.340 ± 1.093 *** | 1.346 ± 0.2132 **** | ||
vehicle + linagliptin 20 | 380.4 ± 39.10 | 4.733 ± 0.8401 **** | 1.352 ± 0.2107 **** | ||
Chronic administration of linagliptin | vehicle | 425.6 ± 28.79 | 29.75 ± 6.524 | 7.062 ± 1.621 | |
vehicle + linagliptin 10 | 530.0 ± 32.50 | 27.60 ± 1.536 | 5.808 ± 0.5894 | ||
vehicle + linagliptin 20 | 482.5 ± 67.61 | 29.00 ± 6.688 | 5.226 ± 0.2510 |
mRNA | D1 [mRNA/ GAPDH] | D2 [mRNA/ GAPDH] | 5-HT1A [mRNA/ GAPDH] | 5-HT2A [mRNA/ GAPDH] | α1A [mRNA/ GAPDH] | α2A [mRNA/ GAPDH] | |
---|---|---|---|---|---|---|---|
Expression Drugs | |||||||
Striatum | vehicle | 0.02542 ± 0.008658 | 0.007618 ± 0.006601 | 0.00003833 ± 0.00002639 | 0.000534 ± 0.0003628 | 0.0003375 ± 0.0003526 | 0.000052 ± 0.00003564 |
Vehicle + linagliptin 10 | 0.028 ± 5.01 × 10−3 | 0.00678 ± 3.43 × 10−3 | 0.00004137 ± 0.0000357 | 0.000603 ± 0.000144 | 0.00029 ± 0.000142 | 0.000038 ± 2.51 × 10−5 | |
vehicle + linagliptin 20 | 0.021 ± 3.25 × 10−3 | 0.00812 ± 4.21 × 10−3 | 0.00006519 ± 0.0000298 | 0.000419 ± 0.00017 | 0.000381 ± 0.000201 | 0.000063 ± 2.89 × 10−5 | |
Hippocampus | vehicle | 0.0004933 ± 0.0003678 | 0.0002 ± 6.12 × 10−5 | 0.000228 ± 0.000163 | 0.0002 ± 0.000226 | 7.67 × 10−5 ± 0.00008963 | 0.00003 ± 2.58 × 10−5 |
vehicle + linagliptin 10 | 5.42 × 10−4 ± 3.19 × 10−4 | 2.40 × 10−4 ± 3.20 × 10−4 | 0.000261 ± 1.29 × 10−4 | 0.000143 ± 7.89 × 10−5 | 6.31 × 10−5 ± 4.21 × 10−5 | 2.40 × 10−5 ± 1.42 × 10−5 | |
vehicle + linagliptin 20 | 4.36 × 10−4 ± 2.80 × 10−4 | 2.61 × 10−4 ± 2.36 × 10−4 | 0.000249 ± 7.89 × 10−5 | 0.000098 ± 2.94 × 10−5 | 6.99 × 10−5 ± 5.90 × 10−5 | 2.81 × 10−5 ± 1.99 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łupina, M.; Wąsik, A.; Baranowska-Bosiacka, I.; Tarnowski, M.; Słowik, T.; Listos, P.; Kotlińska, J.; Kosik-Bogacka, D.; Gutowska, I.; Listos, J. Acute and Chronic Exposure to Linagliptin, a Selective Inhibitor of Dipeptidyl Peptidase-4 (DPP-4), Has an Effect on Dopamine, Serotonin and Noradrenaline Level in the Striatum and Hippocampus of Rats. Int. J. Mol. Sci. 2024, 25, 3008. https://doi.org/10.3390/ijms25053008
Łupina M, Wąsik A, Baranowska-Bosiacka I, Tarnowski M, Słowik T, Listos P, Kotlińska J, Kosik-Bogacka D, Gutowska I, Listos J. Acute and Chronic Exposure to Linagliptin, a Selective Inhibitor of Dipeptidyl Peptidase-4 (DPP-4), Has an Effect on Dopamine, Serotonin and Noradrenaline Level in the Striatum and Hippocampus of Rats. International Journal of Molecular Sciences. 2024; 25(5):3008. https://doi.org/10.3390/ijms25053008
Chicago/Turabian StyleŁupina, Małgorzata, Agnieszka Wąsik, Irena Baranowska-Bosiacka, Maciej Tarnowski, Tymoteusz Słowik, Piotr Listos, Jolanta Kotlińska, Danuta Kosik-Bogacka, Izabela Gutowska, and Joanna Listos. 2024. "Acute and Chronic Exposure to Linagliptin, a Selective Inhibitor of Dipeptidyl Peptidase-4 (DPP-4), Has an Effect on Dopamine, Serotonin and Noradrenaline Level in the Striatum and Hippocampus of Rats" International Journal of Molecular Sciences 25, no. 5: 3008. https://doi.org/10.3390/ijms25053008
APA StyleŁupina, M., Wąsik, A., Baranowska-Bosiacka, I., Tarnowski, M., Słowik, T., Listos, P., Kotlińska, J., Kosik-Bogacka, D., Gutowska, I., & Listos, J. (2024). Acute and Chronic Exposure to Linagliptin, a Selective Inhibitor of Dipeptidyl Peptidase-4 (DPP-4), Has an Effect on Dopamine, Serotonin and Noradrenaline Level in the Striatum and Hippocampus of Rats. International Journal of Molecular Sciences, 25(5), 3008. https://doi.org/10.3390/ijms25053008