Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Baseline Patient Characteristics
2.2. RNA Extraction, Sequencing, and Data Analysis
2.3. Bioinformatic Analysis
2.4. Data Validation via qRT-PCR
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. MED and DCM
3.3. MED9 Motif Enrichment Analysis
3.4. PPI Network Analysis and Gene Ontology (GO)
3.5. Hub DCM-Related Gene Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fauchier, L.; Bisson, A.; Bodin, A. Heart failure with preserved ejection fraction and atrial fibrillation: Recent advances and open questions. BMC Med. 2023, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Camacho Londoño, J.E.; Tian, Q.; Hammer, K.; Schröder, L.; Camacho Londoño, J.; Reil, J.C.; He, T.; Oberhofer, M.; Mannebach, S.; Mathar, I.; et al. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur. Heart J. 2015, 36, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Heymans, S.; Lakdawala, N.K.; Tschöpe, C.; Klingel, K. Dilated cardiomyopathy: Causes, mechanisms, and current and future treatment approaches. Lancet 2023, 402, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A. Inherited Cardiomyopathies. Circ. J. 2014, 78, 2347–2356. [Google Scholar] [CrossRef]
- Herman, D.S.; Lam, L.; Taylor, M.R.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of Titin Causing Dilated Cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628. [Google Scholar] [CrossRef]
- Nishiuchi, S.; Makiyama, T.; Aiba, T.; Nakajima, K.; Hirose, S.; Kohjitani, H.; Yamamoto, Y.; Harita, T.; Hayano, M.; Wuriyanghai, Y.; et al. Gene-Based Risk Stratification for Cardiac Disorders in LMNA Mutation Carriers. Circ. Cardiovasc. Genet. 2017, 10, e001603. [Google Scholar] [CrossRef]
- Pugh, T.J.; Kelly, M.A.; Gowrisankar, S.; Hynes, E.; Seidman, M.A.; Baxter, S.M.; Bowser, M.; Harrison, B.; Aaron, D.; Mahanta, L.M.; et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet. Med. 2014, 16, 601–608. [Google Scholar] [CrossRef]
- Muntoni, F.; Di Lenarda, A.; Porcu, M.; Sinagra, G.; Mateddu, A.; Marrosu, G.; Ferlini, A.; Cau, M.; Milasin, J.; Melis, M.A.; et al. Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy. Heart 1997, 78, 608–612. [Google Scholar] [CrossRef]
- Schiano, C.; Casamassimi, A.; Vietri, M.T.; Rienzo, M.; Napoli, C. The roles of Mediator complex in cardiovascular diseases. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2014, 1839, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Conaway, R.C.; Conaway, J.W. The Mediator complex and transcription elongation. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2013, 1829, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Devesa, A.; Ibanez, B.; Malick, W.A.; Tinuoye, E.O.; Bustamante, J.; Peyra, C.; Rosenson, R.S.; Bhatt, D.L.; Stone, G.W.; Fuster, V. Primary Prevention of Subclinical Atherosclerosis in Young Adults: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 82, 2152–2162. [Google Scholar] [CrossRef]
- Malik, S.; Roeder, R.G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 2010, 11, 761–772. [Google Scholar] [CrossRef]
- Soutourina, J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 2018, 19, 262–274. [Google Scholar] [CrossRef]
- Schilbach, S.; Hantsche, M.; Tegunov, D.; Dienemann, C.; Wigge, C.; Urlaub, H.; Cramer, P. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 2017, 551, 204–209. [Google Scholar] [CrossRef]
- Allen, B.L.; Taatjes, D.J. The Mediator complex: A central integrator of transcription. Nat. Rev. Mol. Cell Biol. 2015, 16, 155–166. [Google Scholar] [CrossRef]
- Schiano, C.; Costa, V.; Aprile, M.; Grimaldi, V.; Maiello, C.; Esposito, R.; Soricelli, A.; Colantuoni, V.; Donatelli, F.; Ciccodicola, A.; et al. Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing. Cardiol. J. 2017, 24, 539–553. [Google Scholar] [CrossRef]
- Fleige, S.; Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Asp. Med. 2006, 27, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Jensen, T.H. Nuclear quality control of RNA polymerase II transcripts. Wiley Interdiscip. Rev. RNA 2010, 1, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef]
- Richter, W.F.; Nayak, S.; Iwasa, J.; Taatjes, D.J. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2022, 23, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Schiano, C.; Balbi, C.; Burrello, J.; Ruocco, A.; Infante, T.; Fiorito, C.; Panella, S.; Barile, L.; Mauro, C.; Vassalli, G.; et al. De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis 2022, 354, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Choudhary, K.; Gonzalez-Teran, B.; Ang, Y.-S.; Thomas, R.; Stone, N.R.; Liu, L.; Zhou, P.; Zhu, C.; Ruan, H.; et al. Transcription Factor GATA4 Regulates Cell Type–Specific Splicing Through Direct Interaction with RNA in Human Induced Pluripotent Stem Cell–Derived Cardiac Progenitors. Circulation 2022, 146, 770–787. [Google Scholar] [CrossRef] [PubMed]
- Fraidenraich, D.; Stillwell, E.; Romero, E.; Wilkes, D.; Manova, K.; Basson, C.T.; Benezra, R. Rescue of Cardiac Defects in Id Knockout Embryos by Injection of Embryonic Stem Cells. Science 2004, 306, 247–252. [Google Scholar] [CrossRef]
- Moskowitz, I.P.; Kim, J.B.; Moore, M.L.; Wolf, C.M.; Peterson, M.A.; Shendure, J.; Nobrega, M.A.; Yokota, Y.; Berul, C.; Izumo, S.; et al. A Molecular Pathway Including Id2, Tbx5, and Nkx2-5 Required for Cardiac Conduction System Development. Cell 2007, 129, 1365–1376. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, L.; Deng, Z.; Ding, Y.; Mo, X.; Xu, Z.; Gao, Q.; Yi, L. Novel Missense Variants of ZFPM2/FOG2 Identified in Conotruncal Heart Defect Patients Do Not Impair Interaction with GATA4. PLoS ONE 2014, 9, e102379. [Google Scholar] [CrossRef]
- Hentges, K.E. The Mediator complex: Crucial functions in transcription with links to development and disease. Semin. Cell Dev. Biol. 2011, 22, 728. [Google Scholar] [CrossRef]
- Cohn, J.N.; Duprez, D.A. Time to Foster a Rational Approach to Preventing Cardiovascular Morbid Events. J. Am. Coll. Cardiol. 2008, 52, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Grueter, C.E. Mediator Complex Dependent Regulation of Cardiac Development and Disease. Genom. Proteom. Bioinform. 2013, 11, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Glessner, J.T.; Bick, A.G.; Ito, K.; Homsy, J.G.; Rodriguez-Murillo, L.; Fromer, M.; Mazaika, E.; Vardarajan, B.; Italia, M.; Leipzig, J.; et al. Increased Frequency of De Novo Copy Number Variants in Congenital Heart Disease by Integrative Analysis of Single Nucleotide Polymorphism Array and Exome Sequence Data. Circ. Res. 2014, 115, 884–896. [Google Scholar] [CrossRef]
- Crawford, T.; Karamat, F.; Lehotai, N.; Rentoft, M.; Blomberg, J.; Strand, Å.; Björklund, S. Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress. Sci. Rep. 2020, 10, 5073. [Google Scholar] [CrossRef]
- Larivière, L.; Plaschka, C.; Seizl, M.; Petrotchenko, E.V.; Wenzeck, L.; Borchers, C.H.; Cramer, P. Model of the Mediator middle module based on protein cross-linking. Nucleic Acids Res. 2013, 41, 9266–9273. [Google Scholar] [CrossRef]
- Rienzo, M.; Costa, V.; Scarpato, M.; Schiano, C.; Casamassimi, A.; Grimaldi, V.; Ciccodicola, A.; Napoli, C. RNA-Seq for the identification of novel Mediator transcripts in endothelial progenitor cells. Gene 2014, 547, 98–105. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzese, M.; Zanfardino, M.; Soricelli, A.; Coppola, A.; Maiello, C.; Salvatore, M.; Schiano, C.; Napoli, C. Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. Int. J. Mol. Sci. 2024, 25, 3057. https://doi.org/10.3390/ijms25053057
Franzese M, Zanfardino M, Soricelli A, Coppola A, Maiello C, Salvatore M, Schiano C, Napoli C. Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. International Journal of Molecular Sciences. 2024; 25(5):3057. https://doi.org/10.3390/ijms25053057
Chicago/Turabian StyleFranzese, Monica, Mario Zanfardino, Andrea Soricelli, Annapaola Coppola, Ciro Maiello, Marco Salvatore, Concetta Schiano, and Claudio Napoli. 2024. "Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification" International Journal of Molecular Sciences 25, no. 5: 3057. https://doi.org/10.3390/ijms25053057
APA StyleFranzese, M., Zanfardino, M., Soricelli, A., Coppola, A., Maiello, C., Salvatore, M., Schiano, C., & Napoli, C. (2024). Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. International Journal of Molecular Sciences, 25(5), 3057. https://doi.org/10.3390/ijms25053057