Regeneration of Non-Alcoholic Fatty Liver Cells Using Chimeric FGF21/HGFR: A Novel Therapeutic Approach
Abstract
:1. Introduction
2. Results
2.1. Construction of Stable AML12 Cell Line for Expression of Chimeric FGF21/HGFR
2.2. FGF21/HGFR on AML12 Cells Are Closely Related Glycogen Accumulation Ability
2.3. FGF21/HGFR Promotes LDL Uptake on AML12 Cells
2.4. Evaluation of the Expression for Hepatocyte-Function-Related Genes
3. Discussion
4. Materials and Methods
4.1. Construction of Chimeric FGF21/HGFR Receptor
4.2. Cell Culture and Treatment
4.3. Periodic Acid–Schiff (PAS) Staining
4.4. LDL Uptake Assay
4.5. Reverse Transcription (RT)-PCR and Real-Time PCR
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obes. Facts 2016, 9, 65–90. [Google Scholar] [CrossRef] [PubMed]
- Halmos, T.; Suba, I. A nem alkoholos zsírmáj mint a metabolikus szindróma komponense és kauzális kapcsolatai egyéb kórképekkel [Non-alcoholic fatty liver disease, as a component of the metabolic syndrome, and its causal correlations with other extrahepatic diseases]. Orv. Hetil. 2017, 158, 2051–2061. [Google Scholar] [CrossRef]
- Zeigerer, A. NAFLD—A rising metabolic disease. Mol. Metab. 2021, 50, 101274. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef]
- He, X.-L.; Chen, J.-Y.; Feng, Y.-L.; Song, P.; Wong, Y.K.; Xie, L.-L.; Wang, C.; Zhang, Q.; Bai, Y.-M.; Gao, P.; et al. Single-cell RNA sequencing deciphers the mechanism of sepsis-induced liver injury and the therapeutic effects of artesunate. Acta Pharmacol. Sin. 2023, 44, 1801–1814. [Google Scholar] [CrossRef]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Björnsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e10. [Google Scholar] [CrossRef] [PubMed]
- Markan, K.R.; Naber, M.C.; Ameka, M.K.; Anderegg, M.D.; Mangelsdorf, D.J.; Kliewer, S.A.; Mohammadi, M.; Potthoff, M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014, 63, 4057–4063. [Google Scholar] [CrossRef] [PubMed]
- Drescher, H.K.; Schumacher, F.; Schenker, T.; Baues, M.; Lammers, T.; Hieronymus, T.; Trautwein, C.; Streetz, K.L.; Kroy, D.C. c-Met Signaling Protects from Nonalcoholic Steatohepatitis-(NASH-) Induced Fibrosis in Different Liver Cell Types. Oxidative Med. Cell. Longev. 2018, 2018, 6957497. [Google Scholar] [CrossRef]
- Falamarzi, K.; Malekpour, M.; Tafti, M.F.; Azarpira, N.; Behboodi, M.; Zarei, M. The role of FGF21 and its analogs on liver associated diseases. Front. Med. 2022, 9, 967375. [Google Scholar] [CrossRef]
- Attia, S.L.; Softic, S.; Mouzaki, M. Evolving Role for Pharmacotherapy in NAFLD/NASH. Clin. Transl. Sci. 2021, 14, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lu, W.; Lin, T.; You, P.; Ye, M.; Huang, Y.; Jiang, X.; Wang, C.; Wang, F.; Lee, M.-H.; et al. Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol. 2013, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Baier, P.; Wolf-Vorbeck, G.; Hempel, S.; Hopt, U.T.; von Dobschuetz, E. Effect of liver regeneration after partial hepatectomy and ischemia-reperfusion on expression of growth factor receptors. World J. Gastroenterol. 2006, 12, 3835–3840. [Google Scholar] [CrossRef]
- Yang, Y.P.; Ma, H.; Starchenko, A.; Huh, W.J.; Li, W.; Hickman, F.E.; Zhang, Q.; Franklin, J.L.; Mortlock, D.P.; Fuhrmann, S.; et al. A Chimeric Egfr Protein Reporter Mouse Reveals Egfr Localization and Trafficking In Vivo. Cell Rep. 2017, 19, 1257–1267. [Google Scholar] [CrossRef]
- Ma, C.; Avenell, A.; Bolland, M.; Hudson, J.; Stewart, F.; Robertson, C.; Sharma, P.; Fraser, C.; MacLennan, G. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: Systematic review and meta-analysis. BMJ 2017, 359, j4849. [Google Scholar] [CrossRef]
- Parlati, L.; Régnier, M.; Guillou, H.; Postic, C. New targets for NAFLD. JHEP Rep. 2021, 3, 100346. [Google Scholar] [CrossRef]
- Kroy, D.C.; Schumacher, F.; Ramadori, P.; Hatting, M.; Bergheim, I.; Gassler, N.; Boekschoten, M.V.; Müller, M.; Streetz, K.L.; Trautwein, C. Hepatocyte specific deletion of c-Met leads to the development of severe non-alcoholic steatohepatitis in mice. J. Hepatol. 2014, 61, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression From NAFLD to NASH. Transplantation 2019, 103, e1–e13. [Google Scholar] [CrossRef]
- Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new developments and old themes. Biochem. J. 2012, 441, 763–787. [Google Scholar] [CrossRef]
- Soon, G.S.T.; Torbenson, M. The Liver and Glycogen: In Sickness and in Health. Int. J. Mol. Sci. 2023, 24, 6133. [Google Scholar] [CrossRef]
- Perla, F.M.; Prelati, M.; Lavorato, M.; Visicchio, D.; Anania, C. The Role of Lipid and Lipoprotein Metabolism in Non-Alcoholic Fatty Liver Disease. Children 2017, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, N.; Kato, M.; Shundo, Y.; Tajiri, H.; Tanaka, M.; Yamashita, N.; Kohjima, M.; Kotoh, K.; Nakamuta, M.; Takayanagi, R.; et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 2008, 38, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.A. The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis. Endocrinol. Metab. 2017, 32, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, Y. Hepatocyte Nuclear Factor 4α in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Chin. Med. J. 2022, 135, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Q.; Liu, M.; Xu, G.; Yin, H.; Wang, D.; Xie, F.; Jin, B.; Jin, Y.; Yang, H.; et al. Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease. Endocrine 2020, 69, 294–302. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Chen, J.; Sang, T.; Peng, H.; Lin, X.; Zhao, Q.; Chen, S.; Eling, T.; Wang, X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol. 2022, 52, 102322. [Google Scholar] [CrossRef]
Genes | Forward Primer | Reverse Primer |
---|---|---|
GAPDH | 5′-CTGCACCACCAACTGCTTAG-3′ | 5′-GTCTTCTGGGTGGCAGTGAT-3′ |
Hnf4a | 5′-TGCGAACTCCTTCTGGATGACC-3′ | 5′-CAGCACGTCCTTAAACACCATGG-3′ |
Albumin | 5′-CAGTGTTGTGCAGAGGCTGACA-3′ | 5′-GGAGCACTTCATTCTCTGACGG-3′ |
Scap | 5′-AGAATTCCACAGGTCCCGTT-3′ | 5′-CTGCGCATCCTATCCAATTC-3′ |
Acc1 | 5′-TGACAGACTGATCGCAGAGAAAG-3′ | 5′-TGGAGAGCCCCACACACA-3′ |
Hgf | 5′-GTCCTGAAGGCTCAGACTTGGT-3′ | 5′-CCAGCCGTAAATACTGCAAGTGG-3′ |
Hgfr | 5′-GCAATTTCTTCAACCGTCCTTG-3′ | 5′-AAACCATTGGACAAAGTGTG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Kim, S.-J.; Hyun, J.; Kim, H.-W.; Jang, J.-H. Regeneration of Non-Alcoholic Fatty Liver Cells Using Chimeric FGF21/HGFR: A Novel Therapeutic Approach. Int. J. Mol. Sci. 2024, 25, 3092. https://doi.org/10.3390/ijms25063092
Kim S-J, Kim S-J, Hyun J, Kim H-W, Jang J-H. Regeneration of Non-Alcoholic Fatty Liver Cells Using Chimeric FGF21/HGFR: A Novel Therapeutic Approach. International Journal of Molecular Sciences. 2024; 25(6):3092. https://doi.org/10.3390/ijms25063092
Chicago/Turabian StyleKim, Sung-Jun, So-Jung Kim, Jeongeun Hyun, Hae-Won Kim, and Jun-Hyeog Jang. 2024. "Regeneration of Non-Alcoholic Fatty Liver Cells Using Chimeric FGF21/HGFR: A Novel Therapeutic Approach" International Journal of Molecular Sciences 25, no. 6: 3092. https://doi.org/10.3390/ijms25063092
APA StyleKim, S. -J., Kim, S. -J., Hyun, J., Kim, H. -W., & Jang, J. -H. (2024). Regeneration of Non-Alcoholic Fatty Liver Cells Using Chimeric FGF21/HGFR: A Novel Therapeutic Approach. International Journal of Molecular Sciences, 25(6), 3092. https://doi.org/10.3390/ijms25063092