The Relative Contribution of Glycine–GABA Cotransmission in the Core of the Respiratory Network
Abstract
:1. Introduction
2. Results
2.1. Photo-Stimulation of ChR2 in Glycinergic Neurons
2.2. Postsynaptic Responses to Stimulation
2.3. Differential Contribution of Glycine and GABA Transmission within and between BötC and preBötC
2.4. Glycinergic vs. Non-Glycinergic Postsynaptic Neurons
3. Discussion
3.1. Differential Loading of Synaptic Vesicles
3.2. GABA/Glycine Cotransmission Is the Default Mode in the Neonatal Respiratory Network
3.3. Limitations
3.4. Implications for Network Function
4. Materials and Methods
4.1. Animals
4.2. Acute Brainstem Slice Preparation
4.3. Electrophysiology
4.4. Optogenetic Stimulation
4.5. Data Handling and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.C.; Abdala, A.P.; Rybak, I.A.; Paton, J.F. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2577–2587. [Google Scholar] [CrossRef]
- Kam, K.; Worrell, J.W.; Ventalon, C.; Emiliani, V.; Feldman, J.L. Emergence of population bursts from simultaneous activation of small subsets of preBotzinger complex inspiratory neurons. J. Neurosci. 2013, 33, 3332–3338. [Google Scholar] [CrossRef]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef]
- Wallen-Mackenzie, A.; Gezelius, H.; Thoby-Brisson, M.; Nygard, A.; Enjin, A.; Fujiyama, F.; Fortin, G.; Kullander, K. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J. Neurosci. 2006, 26, 12294–12307. [Google Scholar] [CrossRef]
- Burke, P.G.; Abbott, S.B.; McMullan, S.; Goodchild, A.K.; Pilowsky, P.M. Somatostatin selectively ablates post-inspiratory activity after injection into the Botzinger complex. Neuroscience 2010, 167, 528–539. [Google Scholar] [CrossRef]
- Smith, J.C.; Abdala, A.P.; Koizumi, H.; Rybak, I.A.; Paton, J.F. Spatial and functional architecture of the mammalian brain stem respiratory network: A hierarchy of three oscillatory mechanisms. J. Neurophysiol. 2007, 98, 3370–3387. [Google Scholar] [CrossRef]
- Ezure, K.; Tanaka, I.; Kondo, M. Glycine is used as a transmitter by decrementing expiratory neurons of the ventrolateral medulla in the rat. J. Neurosci. 2003, 23, 8941–8948. [Google Scholar] [CrossRef]
- Jonas, P.; Bischofberger, J.; Sandkuhler, J. Corelease of two fast neurotransmitters at a central synapse. Science 1998, 281, 419–424. [Google Scholar] [CrossRef]
- Rahman, J.; Latal, A.T.; Besser, S.; Hirrlinger, J.; Hülsmann, S. Mixed miniature postsynaptic currents resulting from co-release of glycine and GABA recorded from glycinergic neurons in the neonatal respiratory network. Eur. J. Neurosci. 2013, 37, 1229–1241. [Google Scholar] [CrossRef]
- Rahman, J.; Besser, S.; Schnell, C.; Eulenburg, V.; Hirrlinger, J.; Wojcik, S.M.; Hülsmann, S. Genetic ablation of VIAAT in glycinergic neurons causes a severe respiratory phenotype and perinatal death. Brain Struct. Funct. 2015, 220, 2835–2849. [Google Scholar] [CrossRef]
- Koizumi, H.; Koshiya, N.; Chia, J.X.; Cao, F.; Nugent, J.; Zhang, R.; Smith, J.C. Structural-functional properties of identified excitatory and inhibitory interneurons within pre-Botzinger complex respiratory microcircuits. J. Neurosci. 2013, 33, 2994–3009. [Google Scholar] [CrossRef]
- Hirrlinger, J.; Marx, G.; Besser, S.; Sicker, M.; Köhler, S.; Hirrlinger, P.G.; Wojcik, S.M.; Eulenburg, V.; Winkler, U.; Hülsmann, S. GABA-Glycine Cotransmitting Neurons in the Ventrolateral Medulla: Development and Functional Relevance for Breathing. Front. Cell Neurosci. 2019, 13, 517. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Berger, A.J. Cotransmission of GABA and glycine to brain stem motoneurons. J. Neurophysiol. 1999, 82, 1638–1641. [Google Scholar] [CrossRef]
- Bohlhalter, S.; Mohler, H.; Fritschy, J.M. Inhibitory neurotransmission in rat spinal cord: Co-localization of glycine- and GABAA-receptors at GABAergic synaptic contacts demonstrated by triple immunofluorescence staining. Brain Res. 1994, 642, 59–69. [Google Scholar] [CrossRef]
- Moore, L.A.; Trussell, L.O. Corelease of Inhibitory Neurotransmitters in the Mouse Auditory Midbrain. J. Neurosci. 2017, 37, 9453–9464. [Google Scholar] [CrossRef]
- Todd, A.J.; Watt, C.; Spike, R.C.; Sieghart, W. Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J. Neurosci. 1996, 16, 974–982. [Google Scholar] [CrossRef]
- Ritter, B.; Zhang, W. Early postnatal maturation of GABAA-mediated inhibition in the brainstem respiratory rhythm-generating network of the mouse. Eur. J. Neurosci. 2000, 12, 2975–2984. [Google Scholar] [CrossRef]
- Zafra, F.; Gomeza, J.; Olivares, L.; Aragon, C.; Gimenez, C. Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur. J. Neurosci. 1995, 7, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Hülsmann, S.; Hagos, L.; Eulenburg, V.; Hirrlinger, J. Inspiratory Off-Switch Mediated by Optogenetic Activation of Inhibitory Neurons in the preBotzinger Complex In Vivo. Int. J. Mol. Sci. 2021, 22, 2019. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, M.G.; Kugler, S.; Hülsmann, S. Probing the function of glycinergic neurons in the mouse respiratory network using optogenetics. Respir. Physiol. Neurobiol. 2019, 265, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Ausborn, J.; Koizumi, H.; Barnett, W.H.; John, T.T.; Zhang, R.; Molkov, Y.I.; Smith, J.C.; Rybak, I.A. Organization of the core respiratory network: Insights from optogenetic and modeling studies. PLoS Comput. Biol. 2018, 14, e1006148. [Google Scholar] [CrossRef] [PubMed]
- Vafadari, B.; Oku, Y.; Tacke, C.; Harb, A.; Hülsmann, S. In-vivo optogenetic identification and electrophysiology of glycinergic neurons in pre-Botzinger complex of mice. Respir. Physiol. Neurobiol. 2024, 320, 104188. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.R.; Dick, T.E.; Furuya, W.I.; Galan, R.F.; Dutschmann, M. Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. J. Physiol. 2020, 598, 2061–2079. [Google Scholar] [CrossRef] [PubMed]
- Furuya, W.I.; Dhingra, R.R.; Trevizan-Bau, P.; McAllen, R.M.; Dutschmann, M. The role of glycinergic inhibition in respiratory pattern formation and cardio-respiratory coupling in rats. Curr. Res. Physiol. 2021, 4, 80–93. [Google Scholar] [CrossRef]
- Dhingra, R.R.; Furuya, W.I.; Bautista, T.G.; Dick, T.E.; Galan, R.F.; Dutschmann, M. Increasing Local Excitability of Brainstem Respiratory Nuclei Reveals a Distributed Network Underlying Respiratory Motor Pattern Formation. Front. Physiol. 2019, 10, 887. [Google Scholar] [CrossRef]
- Mesuret, G.; Khabbazzadeh, S.; Bischoff, A.M.; Safory, H.; Wolosker, H.; Hülsmann, S. A neuronal role of the Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) for glycine inhibitory transmission and respiratory pattern. Sci. Rep. 2018, 8, 8536. [Google Scholar] [CrossRef]
- Edelstein, A.; Amodaj, N.; Hoover, K.; Vale, R.; Stuurman, N. Computer Control of Microscopes Using µManager. Curr. Protoc. Mol. Biol. 2010, 92, 14.20.1–14.20.17. [Google Scholar] [CrossRef]
- R_Core_Team R. A Language and Environment for Statistical Computing, R Foundation for Statistical Computing; R_Core_Team R: Vienna, Austria, 2013. [Google Scholar]
- Mangiafico, S.S. An R Companion for the Handbook of Biological Statistics. Version 1.3.9, Revised 2023. 2015. Available online: https://www.r-project.org/ (accessed on 13 February 2024).
- Neher, R.A.; Mitkovski, M.; Kirchhoff, F.; Neher, E.; Theis, F.J.; Zeug, A. Blind source separation techniques for the decomposition of multiply labeled fluorescence images. Biophys. J. 2009, 96, 3791–3800. [Google Scholar] [CrossRef]
- Oke, Y.; Miwakeichi, F.; Oku, Y.; Hirrlinger, J.; Hülsmann, S. Cell types and synchronous-activity patterns of inspiratory neurons in the preBotzinger complex of mouse medullary slices during early postnatal development. Sci. Rep. 2023, 13, 586. [Google Scholar] [CrossRef]
BötC to preBötC | Within BötC | Within preBötC | preBötC to BötC | |
---|---|---|---|---|
≥50% glycinergic | 83% | 92% | 63% | 83% |
≥75% glycinergic | 64% | 55% | 15% | 60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harb, A.; Tacke, C.; Vafadari, B.; Hülsmann, S. The Relative Contribution of Glycine–GABA Cotransmission in the Core of the Respiratory Network. Int. J. Mol. Sci. 2024, 25, 3128. https://doi.org/10.3390/ijms25063128
Harb A, Tacke C, Vafadari B, Hülsmann S. The Relative Contribution of Glycine–GABA Cotransmission in the Core of the Respiratory Network. International Journal of Molecular Sciences. 2024; 25(6):3128. https://doi.org/10.3390/ijms25063128
Chicago/Turabian StyleHarb, Ali, Charlotte Tacke, Behnam Vafadari, and Swen Hülsmann. 2024. "The Relative Contribution of Glycine–GABA Cotransmission in the Core of the Respiratory Network" International Journal of Molecular Sciences 25, no. 6: 3128. https://doi.org/10.3390/ijms25063128
APA StyleHarb, A., Tacke, C., Vafadari, B., & Hülsmann, S. (2024). The Relative Contribution of Glycine–GABA Cotransmission in the Core of the Respiratory Network. International Journal of Molecular Sciences, 25(6), 3128. https://doi.org/10.3390/ijms25063128