The Expanding Diversity of Viruses from Extreme Environments
Abstract
:1. Introduction
2. Thermophilic/Acidophilic Viruses
3. Halophilic/Alkalophilic Viruses
4. Psychrophilic Viruses
5. Barophilic Viruses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivanovski, D. Concerning The Mosaic Disease of the Tobacco Plant. In Phytopathological Classics; American Phytopathological Society Press: St. Paul, MN, USA, 1942; Volume 7, pp. 67–70. [Google Scholar]
- Beijerinck, M. Concerning A Contagium Vivum Fluidum as Cause of the Spot Disease of Tobacco Leaves. In Phytopathological Classics; American Phytopathological Society Press: St. Paul, MN, USA, 1942; Volume 65, pp. 3–21. [Google Scholar]
- Lechevalier, H. Dmitri Iosifovich Ivanovski (1864–1920). Bacteriol. Rev. 1972, 36, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Zaitlin, M. The Discovery of the Causal Agent of the Tobacco Mosaic Disease. In Discoveries in Plant Biology; World Scientific: Singapore, 1998; pp. 105–110. ISBN 978-981-02-1313-8. [Google Scholar]
- Edwards, R.A.; Rohwer, F. Viral Metagenomics. Nat. Rev. Microbiol. 2005, 3, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Abrescia, N.G.A.; Bamford, D.H.; Grimes, J.M.; Stuart, D.I. Structure Unifies the Viral Universe. Annu. Rev. Biochem. 2012, 81, 795–822. [Google Scholar] [CrossRef] [PubMed]
- Williamson, K.E.; Wommack, K.E.; Radosevich, M. Sampling Natural Viral Communities from Soil for Culture-Independent Analyses. Appl. Environ. Microbiol. 2003, 69, 6628–6633. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, C.M.; Prajapati, B.; Lucas-Staat, S.; Sime-Ngando, T.; Forterre, P.; Bamford, D.H.; Prangishvili, D.; Krupovic, M.; Oksanen, H.M. Novel Haloarchaeal Viruses from Lake Retba Infecting Haloferax and Halorubrum Species. Environ. Microbiol. 2019, 21, 2129–2147. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Morono, Y.; Inagaki, F.; Takai, K. An Improved Method for Extracting Viruses from Sediment: Detection of Far more Viruses in the Subseafloor than Previously Reported. Front. Microbiol. 2019, 10, 878. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Y.; Gan, Q.; She, Z.; Zhu, K.; Wang, J.; Gao, Z.; Dong, Y.; Gong, Y. Structural and Functional Characterization of the Deep-Sea Thermophilic Bacteriophage GVE2 Tailspike Protein. Int. J. Biol. Macromol. 2020, 164, 4415–4422. [Google Scholar] [CrossRef]
- Snyder, J.C.; Spuhler, J.; Wiedenheft, B.; Roberto, F.F.; Douglas, T.; Young, M.J. Effects of Culturing on the Population Structure of a Hyperthermophilic Virus. Microb. Ecol. 2004, 48, 561–566. [Google Scholar] [CrossRef]
- Grant, W.D.; Jones, B.E. Bacteria, Archaea and Viruses of Soda Lakes. In Soda Lakes of East Africa; Schagerl, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 97–147. ISBN 978-3-319-28620-4. [Google Scholar]
- Corinaldesi, C.; Tangherlini, M.; Dell’Anno, A. From Virus Isolation to Metagenome Generation for Investigating Viral Diversity in Deep-Sea Sediments. Sci. Rep. 2017, 7, 8355. [Google Scholar] [CrossRef]
- Zablocki, O.; Zyl, L.J.V.; Kirby, B.; Trindade, M. Diversity of DsDNA Viruses in a South African Hot Spring Assessed by Metagenomics and Microscopy. Viruses 2017, 9, 348. [Google Scholar] [CrossRef]
- Munson-McGee, J.H.; Peng, S.; Dewerff, S.; Stepanauskas, R.; Whitaker, R.J.; Weitz, J.S.; Young, M.J. A Virus or More in (Nearly) Every Cell: Ubiquitous Networks of Virus–Host Interactions in Extreme Environments. ISME J. 2018, 12, 1706–1714. [Google Scholar] [CrossRef]
- Trubl, G.; Roux, S.; Solonenko, N.; Li, Y.-F.; Bolduc, B.; Rodríguez-Ramos, J.; Eloe-Fadrosh, E.A.; Rich, V.I.; Sullivan, M.B. Towards Optimized Viral Metagenomes for Double-Stranded and Single-Stranded DNA Viruses from Challenging Soils. PeerJ 2019, 7, e7265. [Google Scholar] [CrossRef] [PubMed]
- Truitt, C.; Deole, R. Viruses of Extremely Halophilic Prokaryotes. In Bacteriophages; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- David Kernow Vector: CodeOne—Own Work Based on: LocationWorld.png by David Kernow, Public Domain. Available online: https://commons.wikimedia.org/w/index.php?curid=5613849 (accessed on 15 February 2024).
- Munson-McGee, J.; Snyder, J.; Young, M. Archaeal Viruses from High-Temperature Environments. Genes 2018, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Thiroux, S.; Dupont, S.; Nesbø, C.L.; Bienvenu, N.; Krupovic, M.; L’Haridon, S.; Marie, D.; Forterre, P.; Godfroy, A.; Geslin, C. The First Head-Tailed Virus, MFTV1, Infecting Hyperthermophilic Methanogenic Deep-Sea Archaea. Environ. Microbiol. 2021, 23, 3614–3626. [Google Scholar] [CrossRef]
- Lossouarn, J.; Dupont, S.; Gorlas, A.; Mercier, C.; Bienvenu, N.; Marguet, E.; Forterre, P.; Geslin, C. An Abyssal Mobilome: Viruses, Plasmids and Vesicles from Deep-Sea Hydrothermal Vents. Res. Microbiol. 2015, 166, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sobolewski, I.; Skowron, P.M. Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Review. Microorganisms 2021, 9, 1522. [Google Scholar] [CrossRef] [PubMed]
- Zablocki, O.; van Zyl, L.; Trindade, M. Biogeography and Taxonomic Overview of Terrestrial Hot Spring Thermophilic Phages. Extremophiles 2018, 22, 827–837. [Google Scholar] [CrossRef]
- Stone, N.P.; Hilbert, B.J.; Hidalgo, D.; Halloran, K.T.; Lee, J.; Sontheimer, E.J.; Kelch, B.A. A Hyperthermophilic Phage Decoration Protein Suggests Common Evolutionary Origin with Herpesvirus Triplex Proteins and an Anti-CRISPR Protein. Structure 2018, 26, 936–947.e3. [Google Scholar] [CrossRef]
- Kathuria, S.V.; Chan, Y.H.; Nobrega, R.P.; Özen, A.; Matthews, C.R. Clusters of Isoleucine, Leucine, and Valine Side Chains Define Cores of Stability in High-Energy States of Globular Proteins: Sequence Determinants of Structure and Stability: BASiC Clusters-Stability Cores of Proteins. Protein Sci. 2016, 25, 662–675. [Google Scholar] [CrossRef]
- Stone, N.P.; Demo, G.; Agnello, E.; Kelch, B.A. Principles for Enhancing Virus Capsid Capacity and Stability from a Thermophilic Virus Capsid Structure. Nat. Commun. 2019, 10, 4471. [Google Scholar] [CrossRef]
- Bayfield, O.W.; Klimuk, E.; Winkler, D.C.; Hesketh, E.L.; Chechik, M.; Cheng, N.; Dykeman, E.C.; Minakhin, L.; Ranson, N.A.; Severinov, K.; et al. Cryo-EM Structure and in Vitro DNA Packaging of a Thermophilic Virus with Supersized T = 7 Capsids. Proc. Natl. Acad. Sci. USA 2019, 116, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, Y.; Su, Z.; Osinski, T.; de Oliveira, G.A.P.; Conway, J.F.; Schouten, S.; Krupovic, M.; Prangishvili, D.; Egelman, E.H. A Packing for A-Form DNA in an Icosahedral Virus. Proc. Natl. Acad. Sci. USA 2019, 116, 22591–22597. [Google Scholar] [CrossRef]
- DiMaio, F.; Yu, X.; Rensen, E.; Krupovic, M.; Prangishvili, D.; Egelman, E.H. A Virus That Infects a Hyperthermophile Encapsidates A-Form DNA. Science 2015, 348, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Kasson, P.; DiMaio, F.; Yu, X.; Lucas-Staat, S.; Krupovic, M.; Schouten, S.; Prangishvili, D.; Egelman, E.H. Model for a Novel Membrane Envelope in a Filamentous Hyperthermophilic Virus. eLife 2017, 6, e26268. [Google Scholar] [CrossRef]
- Wang, F.; Baquero, D.P.; Su, Z.; Osinski, T.; Prangishvili, D.; Egelman, E.H.; Krupovic, M. Structure of a Filamentous Virus Uncovers Familial Ties within the Archaeal Virosphere. Virus Evol. 2020, 6, veaa023. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Baquero, D.P.; Beltran, L.C.; Su, Z.; Osinski, T.; Zheng, W.; Prangishvili, D.; Krupovic, M.; Egelman, E.H. Structures of Filamentous Viruses Infecting Hyperthermophilic Archaea Explain DNA Stabilization in Extreme Environments. Proc. Natl. Acad. Sci. USA 2020, 117, 19643–19652. [Google Scholar] [CrossRef]
- Liu, Y.; Osinski, T.; Wang, F.; Krupovic, M.; Schouten, S.; Kasson, P.; Prangishvili, D.; Egelman, E.H. Structural Conservation in a Membrane-Enveloped Filamentous Virus Infecting a Hyperthermophilic Acidophile. Nat. Commun. 2018, 9, 3360. [Google Scholar] [CrossRef]
- Whelan, D.R.; Hiscox, T.J.; Rood, J.I.; Bambery, K.R.; McNaughton, D.; Wood, B.R. Detection of an En Masse and Reversible B- to A-DNA Conformational Transition in Prokaryotes in Response to Desiccation. J. R. Soc. Interface 2014, 11, 20140454. [Google Scholar] [CrossRef]
- Krupovic, M.; Kuhn, J.H.; Wang, F.; Baquero, D.P.; Dolja, V.V.; Egelman, E.H.; Prangishvili, D.; Koonin, E.V. Adnaviria a New Realm for Archaeal Filamentous Viruses with Linear A-Form Double-Stranded DNA Genomes. J. Virol. 2021, 95, e0067321. [Google Scholar] [CrossRef]
- Ptchelkine, D.; Gillum, A.; Mochizuki, T.; Lucas-Staat, S.; Liu, Y.; Krupovic, M.; Phillips, S.E.V.; Prangishvili, D.; Huiskonen, J.T. Unique Architecture of Thermophilic Archaeal Virus APBV1 and Its Genome Packaging. Nat. Commun. 2017, 8, 1436. [Google Scholar] [CrossRef]
- Hayes, J.A.; Hilbert, B.J.; Gaubitz, C.; Stone, N.P.; Kelch, B.A. A Thermophilic Phage Uses a Small Terminase Protein with a Fixed Helix–Turn–Helix Geometry. J. Biol. Chem. 2020, 295, 3783–3793. [Google Scholar] [CrossRef]
- Zhai, L.; Anderson, D.; Bruckner, E.; Tumban, E. Novel Expression of Coat Proteins from Thermophilic Bacteriophage ΦIN93 and Evaluation for Assembly into Virus-Like Particles. Protein Expr. Purif. 2021, 187, 105932. [Google Scholar] [CrossRef]
- Pauly, M.D.; Bautista, M.A.; Black, J.A.; Whitaker, R.J. Diversified Local CRISPR-Cas Immunity to Viruses of Sulfolobus islandicus. Philos. Trans. R. Soc. B 2019, 374, 20180093. [Google Scholar] [CrossRef]
- Baquero, D.P.; Gazi, A.D.; Sachse, M.; Liu, J.; Schmitt, C.; Moya-Nilges, M.; Schouten, S.; Prangishvili, D.; Krupovic, M. A Filamentous Archaeal Virus Is Enveloped inside the Cell and Released through Pyramidal Portals. Proc. Natl. Acad. Sci. USA 2021, 118, e2105540118. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, R.M.; Drummond, C.G.; Stacy, C.L.; Padilla-Crespo, E.; Stedman, K.M. Host-Dependent Differences in Replication Strategy of the Sulfolobus Spindle-Shaped Virus Strain SSV9 (a.k.a., SSVK1): Infection Profiles in Hosts of the Family Sulfolobaceae. Front. Microbiol. 2020, 11, 1218. [Google Scholar] [CrossRef] [PubMed]
- Peng, N.; Han, W.; Li, Y.; Liang, Y.; She, Q. Genetic Technologies for Extremely Thermophilic Microorganisms of Sulfolobus, the Only Genetically Tractable Genus of Crenarchaea. Sci. China Life Sci. 2017, 60, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, A.; Moilanen, A.M.; Rissanen, I.A.; Määttä, J.A.E.; Hytönen, V.P.; Ihalainen, J.A.; Bamford, J.K.H. The Minor Capsid Protein VP11 of Thermophilic Bacteriophage P23-77 Facilitates Virus Assembly by Using Lipid-Protein Interactions. J. Virol. 2015, 89, 7593–7603. [Google Scholar] [CrossRef] [PubMed]
- Brumfield, S.K.; Ortmann, A.C.; Ruigrok, V.; Suci, P.; Douglas, T.; Young, M.J. Particle Assembly and Ultrastructural Features Associated with Replication of the Lytic Archaeal Virus Sulfolobus Turreted Icosahedral Virus. J. Virol. 2009, 83, 5964–5970. [Google Scholar] [CrossRef] [PubMed]
- Bize, A.; Karlsson, E.A.; Ekefjärd, K.; Quax, T.E.F.; Pina, M.; Prevost, M.-C.; Forterre, P.; Tenaillon, O.; Bernander, R.; Prangishvili, D. A Unique Virus Release Mechanism in the Archaea. Proc. Natl. Acad. Sci. USA 2009, 106, 11306–11311. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.C.; Brumfield, S.K.; Peng, N.; She, Q.; Young, M.J. Sulfolobus Turreted Icosahedral Virus C92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures. J. Virol. 2011, 85, 6287–6292. [Google Scholar] [CrossRef]
- Quax, T.E.F.; Krupovič, M.; Lucas, S.; Forterre, P.; Prangishvili, D. The Sulfolobus Rod-Shaped Virus 2 Encodes a Prominent Structural Component of the Unique Virion Release System in Archaea. Virology 2010, 404, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.A.; Stedman, K.M. Comparative Genetic and Genomic Analysis of the Novel Fusellovirus Sulfolobus Spindle-Shaped Virus 10. Virus Evol. 2018, 4, vey022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, X.; Wang, H.; Jiang, H.; Dong, H.; Huang, L. Novel Sulfolobus Fuselloviruses with Extensive Genomic Variations. J. Virol. 2020, 94, e01624-19. [Google Scholar] [CrossRef] [PubMed]
- Baquero, D.P.; Contursi, P.; Piochi, M.; Bartolucci, S.; Liu, Y.; Cvirkaite-Krupovic, V.; Prangishvili, D.; Krupovic, M. New Virus Isolates from Italian Hydrothermal Environments Underscore the Biogeographic Pattern in Archaeal Virus Communities. ISME J. 2020, 14, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Hartman, R.; Biewenga, L.; Munson-McGee, J.; Refai, M.; Boyd, E.S.; Bothner, B.; Lawrence, C.M.; Young, M. Discovery and Characterization of Thermoproteus Spherical Piliferous Virus 1: A Spherical Archaeal Virus Decorated with Unusual Filaments. J. Virol. 2020, 94, e00036-20. [Google Scholar] [CrossRef]
- Palmer, M.; Hedlund, B.P.; Roux, S.; Tsourkas, P.K.; Doss, R.K.; Stamereilers, C.; Mehta, A.; Dodsworth, J.A.; Lodes, M.; Monsma, S.; et al. Diversity and Distribution of a Novel Genus of Hyperthermophilic Aquificae Viruses Encoding a Proof-Reading Family-A DNA Polymerase. Front. Microbiol. 2020, 11, 583361. [Google Scholar] [CrossRef]
- Skowron, P.M.; Kropinski, A.M.; Zebrowska, J.; Janus, L.; Szemiako, K.; Czajkowska, E.; Maciejewska, N.; Skowron, M.; Łoś, J.; Łoś, M.; et al. Sequence, Genome Organization, Annotation and Proteomics of the Thermophilic, 47.7-Kb Geobacillus Stearothermophilus Bacteriophage TP-84 and Its Classification in the New Tp84virus Genus. PLoS ONE 2018, 13, e0195449. [Google Scholar] [CrossRef]
- Das, S.; Kumari, A.; Sherpa, M.T.; Najar, I.N.; Thakur, N. Metavirome and Its Functional Diversity Analysis through Microbiome Study of the Sikkim Himalayan Hot Spring Solfataric Mud Sediments. Curr. Res. Microb. Sci. 2020, 1, 18–29. [Google Scholar] [CrossRef]
- Gudbergsdóttir, S.R.; Menzel, P.; Krogh, A.; Young, M.; Peng, X. Novel Viral Genomes Identified from Six Metagenomes Reveal Wide Distribution of Archaeal Viruses and High Viral Diversity in Terrestrial Hot Springs: Novel Viral Genomes from Acidic Hot Springs. Environ. Microbiol. 2016, 18, 863–874. [Google Scholar] [CrossRef]
- Atanasova, N.S.; Bamford, D.H.; Oksanen, H.M. Virus-Host Interplay in High Salt Environments: Virus-Host Interplay. Environ. Microbiol. Rep. 2016, 8, 431–444. [Google Scholar] [CrossRef]
- Svirskaitė, J.; Oksanen, H.; Daugelavičius, R.; Bamford, D. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release. Viruses 2016, 8, 59. [Google Scholar] [CrossRef]
- Selb, R.; Derntl, C.; Klein, R.; Alte, B.; Hofbauer, C.; Kaufmann, M.; Beraha, J.; Schöner, L.; Witte, A. The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1. J. Virol. 2017, 91, 14. [Google Scholar] [CrossRef]
- Wang, Y.; Sima, L.; Lv, J.; Huang, S.; Liu, Y.; Wang, J.; Krupovic, M.; Chen, X. Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1. J. Bacteriol. 2016, 198, 1952–1964. [Google Scholar] [CrossRef]
- Dyall-Smith, M.; Pfeiffer, F. The PL6-Family Plasmids of Haloquadratum Are Virus-Related. Front. Microbiol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Liu, Y.; Wang, Y.; Zhang, Z.; Oksanen, H.M.; Bamford, D.H.; Chen, X. Identification and Characterization of SNJ2, the First Temperate Pleolipovirus Integrating into the Genome of the SNJ1-Lysogenic Archaeal Strain: Haloarchaeal Temperate Pleolipovirus SNJ2. Mol. Microbiol. 2015, 98, 1002–1020. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, B.; Cao, M.; Sima, L.; Prangishvili, D.; Chen, X.; Krupovic, M. Rolling-Circle Replication Initiation Protein of Haloarchaeal Sphaerolipovirus SNJ1 Is Homologous to Bacterial Transposases of the IS91 Family Insertion Sequences. J. Gen. Virol. 2018, 99, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Eskelin, K.; Lampi, M.; Meier, F.; Moldenhauer, E.; Bamford, D.H.; Oksanen, H.M. Halophilic Viruses with Varying Biochemical and Biophysical Properties Are Amenable to Purification with Asymmetrical Flow Field-Flow Fractionation. Extremophiles 2017, 21, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Szermer-Olearnik, B.; Drab, M.; Mąkosa, M.; Zembala, M.; Barbasz, J.; Dąbrowska, K.; Boratyński, J. Aggregation/Dispersion Transitions of T4 Phage Triggered by Environmental Ion Availability. J. Nanobiotechnol. 2017, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Rodríguez, R.; Maupin-Furlow, J.A. Insights through Genetics of Halophilic Microorganisms and Their Viruses. Genes 2020, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, N.; Heiniö, C.; Demina, T.; Bamford, D.; Oksanen, H. The Unexplored Diversity of Pleolipoviruses: The Surprising Case of Two Viruses with Identical Major Structural Modules. Genes 2018, 9, 131. [Google Scholar] [CrossRef]
- Atanasova, N.S.; Demina, T.A.; Krishnam Rajan Shanthi, S.N.V.; Oksanen, H.M.; Bamford, D.H. Extremely Halophilic Pleomorphic Archaeal Virus HRPV9 Extends the Diversity of Pleolipoviruses with Integrases. Res. Microbiol. 2018, 169, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.A.; Oksanen, H.M. Pleomorphic Archaeal Viruses: The Family Pleolipoviridae Is Expanding by Seven New Species. Arch. Virol. 2020, 165, 2723–2731. [Google Scholar] [CrossRef] [PubMed]
- Dyall-Smith, M.; Palm, P.; Wanner, G.; Witte, A.; Oesterhelt, D.; Pfeiffer, F. Halobacterium Salinarum Virus ChaoS9, a Novel Halovirus Related to PhiH1 and PhiCh1. Genes 2019, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, N.S.; Pietilä, M.K.; Oksanen, H.M. Diverse Antimicrobial Interactions of Halophilic Archaea and Bacteria Extend over Geographical Distances and Cross the Domain Barrier. MicrobiologyOpen 2013, 2, 811–825. [Google Scholar] [CrossRef]
- Demina, T.A.; Pietilä, M.K.; Svirskaitė, J.; Ravantti, J.J.; Atanasova, N.S.; Bamford, D.H.; Oksanen, H.M. HCIV-1 and Other Tailless Icosahedral Internal Membrane-Containing Viruses of the Family Sphaerolipoviridae. Viruses 2017, 9, 32. [Google Scholar] [CrossRef]
- Santos-Pérez, I.; Charro, D.; Gil-Carton, D.; Azkargorta, M.; Elortza, F.; Bamford, D.H.; Oksanen, H.M.; Abrescia, N.G.A. Structural Basis for Assembly of Vertical Single β-Barrel Viruses. Nat. Commun. 2019, 10, 1184. [Google Scholar] [CrossRef]
- De Colibus, L.; Roine, E.; Walter, T.S.; Ilca, S.L.; Wang, X.; Wang, N.; Roseman, A.M.; Bamford, D.; Huiskonen, J.T.; Stuart, D.I. Assembly of Complex Viruses Exemplified by a Halophilic Euryarchaeal Virus. Nat. Commun. 2019, 10, 1456. [Google Scholar] [CrossRef]
- Roux, S.; Enault, F.; Ravet, V.; Colombet, J.; Bettarel, Y.; Auguet, J.-C.; Bouvier, T.; Lucas-Staat, S.; Vellet, A.; Prangishvili, D.; et al. Analysis of Metagenomic Data Reveals Common Features of Halophilic Viral Communities across Continents: Halovirus Genomes Are Homogeneous across Continents. Environ. Microbiol. 2016, 18, 889–903. [Google Scholar] [CrossRef]
- Castelán-Sánchez, H.G.; Elorrieta, P.; Romoacca, P.; Liñan-Torres, A.; Sierra, J.L.; Vera, I.; Batista-García, R.A.; Tenorio-Salgado, S.; Lizama-Uc, G.; Pérez-Rueda, E.; et al. Intermediate-Salinity Systems at High Altitudes in the Peruvian Andes Unveil a High Diversity and Abundance of Bacteria and Viruses. Genes 2019, 10, 891. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cvirkaite-Krupovic, V.; Vos, M.; Beltran, L.C.; Kreutzberger, M.A.B.; Winter, J.-M.; Su, Z.; Liu, J.; Schouten, S.; Krupovic, M.; et al. Spindle-Shaped Archaeal Viruses Evolved from Rod-Shaped Ancestors to Package a Larger Genome. Cell 2022, 185, 1297–1307.e11. [Google Scholar] [CrossRef] [PubMed]
- Uritskiy, G.; Tisza, M.J.; Gelsinger, D.R.; Munn, A.; Taylor, J.; DiRuggiero, J. Cellular Life from the Three Domains and Viruses Are Transcriptionally Active in a Hypersaline Desert Community. Environ. Microbiol. 2021, 23, 3401–3417. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.B.; Hermans, T.D.G.; Ahlstrand, J.; Becker, M.; Berggren, M.; Björk, R.G.; Björkman, M.P.; Blok, D.; Chaudhary, N.; Chisholm, C.; et al. Patchy Field Sampling Biases Understanding of Climate Change Impacts across the Arctic. Nat. Ecol. Evol. 2018, 2, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Yarzábal, L.A. Antarctic Psychrophilic Microorganisms and Biotechnology: History, Current Trends, Applications, and Challenges. In Microbial Models: From Environmental to Industrial Sustainability; Castro-Sowinski, S., Ed.; Springer: Singapore, 2016; pp. 83–118. ISBN 978-981-10-2554-9. [Google Scholar]
- Mangiagalli, M.; Brocca, S.; Orlando, M.; Lotti, M. The “Cold Revolution”. Present and Future Applications of Cold-Active Enzymes and Ice-Binding Proteins. New Biotechnol. 2020, 55, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S.M.; Siddiqui, K.S.; Williams, T.J. Biotechnological Uses of Enzymes from Psychrophiles: Enzymes from Psychrophiles. Microb. Biotechnol. 2011, 4, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.S. Some like It Hot, Some like It Cold: Temperature Dependent Biotechnological Applications and Improvements in Extremophilic Enzymes. Biotechnol. Adv. 2015, 33, 1912–1922. [Google Scholar] [CrossRef] [PubMed]
- Barroca, M.; Santos, G.; Gerday, C.; Collins, T. Biotechnological Aspects of Cold-Active Enzymes. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 461–475. ISBN 978-3-319-57056-3. [Google Scholar]
- Luhtanen, A.-M.; Eronen-Rasimus, E.; Oksanen, H.M.; Tison, J.-L.; Delille, B.; Dieckmann, G.S.; Rintala, J.-M.; Bamford, D.H. The First Known Virus Isolates from Antarctic Sea Ice Have Complex Infection Patterns. FEMS Microbiol. Ecol. 2018, 94, fiy028. [Google Scholar] [CrossRef]
- Yau, S.; Seth-Pasricha, M. Viruses of Polar Aquatic Environments. Viruses 2019, 11, 189. [Google Scholar] [CrossRef]
- Emerson, J.B.; Roux, S.; Brum, J.R.; Bolduc, B.; Woodcroft, B.J.; Jang, H.B.; Singleton, C.M.; Solden, L.M.; Naas, A.E.; Boyd, J.A.; et al. Host-Linked Soil Viral Ecology along a Permafrost Thaw Gradient. Nat. Microbiol. 2018, 3, 870–880. [Google Scholar] [CrossRef]
- Bellas, C.M.; Anesio, A.M.; Barker, G. Analysis of Virus Genomes from Glacial Environments Reveals Novel Virus Groups with Unusual Host Interactions. Front. Microbiol. 2015, 6, 656. [Google Scholar] [CrossRef]
- Zhong, Z.-P.; Rapp, J.Z.; Wainaina, J.M.; Solonenko, N.E.; Maughan, H.; Carpenter, S.D.; Cooper, Z.S.; Jang, H.B.; Bolduc, B.; Deming, J.W.; et al. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020, 5, e00246-20. [Google Scholar] [CrossRef] [PubMed]
- Davison, M.; Wu, R.; Danna, V.; Godinez, I. Uncovering Novel RNA Viruses in Permafrost; U.S. Department of Energy: Washington, DC, USA, 2020.
- Colangelo-Lillis, J.; Eicken, H.; Carpenter, S.D.; Deming, J.W. Evidence for Marine Origin and Microbial-Viral Habitability of Sub-Zero Hypersaline Aqueous Inclusions within Permafrost near Barrow, Alaska. FEMS Microbiol. Ecol. 2016, 92, fiw053. [Google Scholar] [CrossRef] [PubMed]
- Panwar, P.; Allen, M.A.; Williams, T.J.; Hancock, A.M.; Brazendale, S.; Bevington, J.; Roux, S.; Páez-Espino, D.; Nayfach, S.; Berg, M.; et al. Influence of the Polar Light Cycle on Seasonal Dynamics of an Antarctic Lake Microbial Community. Microbiome 2020, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Gao, C.; Jiang, Y.; Wang, M.; Zhou, X.; Shao, H.; Gong, Z.; McMinn, A. Metagenomic Characterization of the Viral Community of the South Scotia Ridge. Viruses 2019, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Legendre, M.; Bartoli, J.; Shmakova, L.; Jeudy, S.; Labadie, K.; Adrait, A.; Lescot, M.; Poirot, O.; Bertaux, L.; Bruley, C.; et al. Thirty-Thousand-Year-Old Distant Relative of Giant Icosahedral DNA Viruses with a Pandoravirus Morphology. Proc. Natl. Acad. Sci. USA 2014, 111, 4274–4279. [Google Scholar] [CrossRef]
- Legendre, M.; Lartigue, A.; Bertaux, L.; Jeudy, S.; Bartoli, J.; Lescot, M.; Alempic, J.-M.; Ramus, C.; Bruley, C.; Labadie, K.; et al. In-Depth Study of Mollivirus Sibericum, a New 30,000-y-Old Giant Virus Infecting Acanthamoeba. Proc. Natl. Acad. Sci. USA 2015, 112, E5327–E5335. [Google Scholar] [CrossRef]
- Ng, T.F.F.; Chen, L.-F.; Zhou, Y.; Shapiro, B.; Stiller, M.; Heintzman, P.D.; Varsani, A.; Kondov, N.O.; Wong, W.; Deng, X.; et al. Preservation of Viral Genomes in 700-y-Old Caribou Feces from a Subarctic Ice Patch. Proc. Natl. Acad. Sci. USA 2014, 111, 16842–16847. [Google Scholar] [CrossRef]
- Yong, E. Giant Virus Resurrected from 30,000-Year-Old Ice. Nature 2014. [Google Scholar] [CrossRef]
- Miner, K.R.; D’Andrilli, J.; Mackelprang, R.; Edwards, A.; Malaska, M.J.; Waldrop, M.P.; Miller, C.E. Emergent Biogeochemical Risks from Arctic Permafrost Degradation. Nat. Clim. Chang. 2021, 11, 809–819. [Google Scholar] [CrossRef]
- Christie, A. Blast from the Past: Pathogen Release from Thawing Permafrost Could Lead to Future Pandemics. Camb. J. Sci. Policy 2021, 2, 8. [Google Scholar]
- El-Sayed, A.; Kamel, M. Future Threat from the Past. Environ. Sci. Pollut. Res. 2021, 28, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, A.M.; Seckler, J.M.; Criss, G.M. Possible Roles of Permafrost Melting, Atmospheric Transport, and Solar Irradiance in the Development of Major Coronavirus and Influenza Pandemics. Int. J. Environ. Res. Public Health 2021, 18, 3055. [Google Scholar] [CrossRef]
- Abramov, A.; Vishnivetskaya, T.; Rivkina, E. Are Permafrost Microorganisms as Old as Permafrost? FEMS Microbiol. Ecol. 2021, 97, fiaa260. [Google Scholar] [CrossRef]
- Margesin, R.; Collins, T. Microbial Ecology of the Cryosphere (Glacial and Permafrost Habitats): Current Knowledge. Appl. Microbiol. Biotechnol. 2019, 103, 2537–2549. [Google Scholar] [CrossRef]
- Rassner, S.M.E. Viruses in Glacial Environments. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 111–131. ISBN 978-3-319-57056-3. [Google Scholar]
- Danovaro, R.; Snelgrove, P.V.R.; Tyler, P. Challenging the Paradigms of Deep-Sea Ecology. Trends Ecol. Evol. 2014, 29, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C. New Perspectives in Benthic Deep-Sea Microbial Ecology. Front. Mar. Sci. 2015, 2, 17. [Google Scholar] [CrossRef]
- Dell’Anno, A.; Corinaldesi, C.; Danovaro, R. Virus Decomposition Provides an Important Contribution to Benthic Deep-Sea Ecosystem Functioning. Proc. Natl. Acad. Sci. USA 2015, 112, E2014–E2019. [Google Scholar] [CrossRef] [PubMed]
- Manea, E.; Dell’Anno, A.; Rastelli, E.; Tangherlini, M.; Nunoura, T.; Nomaki, H.; Danovaro, R.; Corinaldesi, C. Viral Infections Boost Prokaryotic Biomass Production and Organic C Cycling in Hadal Trench Sediments. Front. Microbiol. 2019, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Schauberger, C.; Middelboe, M.; Larsen, M.; Peoples, L.M.; Bartlett, D.H.; Kirpekar, F.; Rowden, A.A.; Wenzhöfer, F.; Thamdrup, B.; Glud, R.N. Spatial Variability of Prokaryotic and Viral Abundances in the Kermadec and Atacama Trench Regions. Limnol. Oceanogr. 2021, 66, 2095–2109. [Google Scholar] [CrossRef] [PubMed]
- Rastelli, E.; Corinaldesi, C.; Dell’Anno, A.; Tangherlini, M.; Lo Martire, M.; Nishizawa, M.; Nomaki, H.; Nunoura, T.; Danovaro, R. Drivers of Bacterial α- and β-Diversity Patterns and Functioning in Subsurface Hadal Sediments. Front. Microbiol. 2019, 10, 2609. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, L.; Wei, Y.; Fang, J. The Hadal Biosphere: Recent Insights and New Directions. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 155, 11–18. [Google Scholar] [CrossRef]
- Danovaro, R.; Dell’Anno, A.; Corinaldesi, C.; Rastelli, E.; Cavicchioli, R.; Krupovic, M.; Noble, R.T.; Nunoura, T.; Prangishvili, D. Virus-Mediated Archaeal Hecatomb in the Deep Seafloor. Sci. Adv. 2016, 2, e1600492. [Google Scholar] [CrossRef] [PubMed]
- Dalmaso, G.; Ferreira, D.; Vermelho, A. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar. Drugs 2015, 13, 1925–1965. [Google Scholar] [CrossRef] [PubMed]
- Ichiye, T. Enzymes from Piezophiles. Semin. Cell Dev. Biol. 2018, 84, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D. Bioactive Molecules from Extreme Environments. Mar. Drugs 2020, 18, 640. [Google Scholar] [CrossRef] [PubMed]
- Mercier, C.; Lossouarn, J.; Nesbø, C.L.; Haverkamp, T.H.A.; Baudoux, A.C.; Jebbar, M.; Bienvenu, N.; Thiroux, S.; Dupont, S.; Geslin, C. Two Viruses, MCV1 and MCV2, Which Infect Marinitoga Bacteria Isolated from Deep-Sea Hydrothermal Vents: Functional and Genomic Analysis: Viruses in Thermotogae. Environ. Microbiol. 2018, 20, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Urayama, S.; Takaki, Y.; Nunoura, T.; Miyamoto, N. Complete Genome Sequence of a Novel RNA Virus Identified from a Deep-Sea Animal, Osedax japonicus. Microbes Environ. 2018, 33, 446–449. [Google Scholar] [CrossRef] [PubMed]
- L’Haridon, S.; Gouhier, L.; John, E.S.; Reysenbach, A.-L. Marinitoga Lauensis Sp. Nov., a Novel Deep-Sea Hydrothermal Vent Thermophilic Anaerobic Heterotroph with a Prophage. Syst. Appl. Microbiol. 2019, 42, 343–347. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X. Deep-Sea Thermophilic Geobacillus Bacteriophage GVE2 Transcriptional Profile and Proteomic Characterization of Virions. Appl. Microbiol. Biotechnol. 2008, 80, 697–707. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Xu, D.; Yang, L.; Qian, K.; Chang, G.; Gong, Y.; Zhou, X.; Ma, K. Biochemical Characterization of a Thermostable HNH Endonuclease from Deep-Sea Thermophilic Bacteriophage GVE2. Appl. Microbiol. Biotechnol. 2016, 100, 8003–8012. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, D.; Huang, Y.; Zhu, X.; Rui, M.; Wan, T.; Zheng, X.; Shen, Y.; Chen, X.; Ma, K.; et al. Structural and Functional Characterization of Deep-Sea Thermophilic Bacteriophage GVE2 HNH Endonuclease. Sci. Rep. 2017, 7, 42542. [Google Scholar] [CrossRef]
- Mizuno, C.M.; Ghai, R.; Saghaï, A.; López-García, P.; Rodriguez-Valera, F. Genomes of Abundant and Widespread Viruses from the Deep Ocean. mBio 2016, 7, e00805-16. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Takaki, Y.; Eitoku, M.; Nunoura, T.; Takai, K. Metagenomic Analysis of Viral Communities in (Hado)Pelagic Sediments. PLoS ONE 2013, 8, e57271. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, H.; Huang, Y.; Xie, Z.; Zhang, M.; Wei, Y.; Li, J.; Ma, Y.; Luo, M.; Ding, W.; et al. Revealing the Full Biosphere Structure and Versatile Metabolic Functions in the Deepest Ocean Sediment of the Challenger Deep. Genome Biol. 2021, 22, 207. [Google Scholar] [CrossRef]
- Nigro, O.D.; Jungbluth, S.P.; Lin, H.-T.; Hsieh, C.-C.; Miranda, J.A.; Schvarcz, C.R.; Rappé, M.S.; Steward, G.F. Viruses in the Oceanic Basement. mBio 2017, 8, e02129-16. [Google Scholar] [CrossRef]
- Jian, H.; Yi, Y.; Wang, J.; Hao, Y.; Zhang, M.; Wang, S.; Meng, C.; Zhang, Y.; Jing, H.; Wang, Y.; et al. Diversity and Distribution of Viruses Inhabiting the Deepest Ocean on Earth. ISME J. 2021, 15, 3094–3110. [Google Scholar] [CrossRef]
- Li, Z.; Pan, D.; Wei, G.; Pi, W.; Zhang, C.; Wang, J.-H.; Peng, Y.; Zhang, L.; Wang, Y.; Hubert, C.R.J.; et al. Deep Sea Sediments Associated with Cold Seeps Are a Subsurface Reservoir of Viral Diversity. ISME J. 2021, 15, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
Virus | Discovery | Source |
---|---|---|
P74-26 | Novel thermophilic system developed for studying the small terminase protein (TerS) structure and interactions with large small terminase protein (TerL). | [37] |
ΦIN93 | Viral coat proteins ORF13 and ORF14 have potential to be used as a VLP system to deliver medications. | [38] |
Sulfolobus spindle-shaped viruses (SSVs) | Utilized shortened genomes to truncate the accessory genes recognized by host CRISPR, thus evading host immunity. | [39] |
Sulfolobus islandicus rod-shaped viruses (SIRVs) | Contain mutations near protospacers to elude recognition by host CRISPR, again evading host immunity. | [39] |
Sulfolobus islandicus filamentous virus (SIFVs) | Infection causes the formation of unique six-sided pyramids on the surface of the host. These pyramids are the result of a single protein, gp43. | [40] |
Sulfolobus spindle-shaped virus 9 (SSV9) | Has a varying viral egress strategy depending on the host being allopatric or sympatric to the region SSV9 was discovered. | [41] |
Virus | Viral Family/Genus | Location Isolated | Source |
---|---|---|---|
Sulfolobus spindle-shaped virus 10 (SSV10) | Fuselloviridae | Devil’s Kitchen in Lassen Volcanic National Park, USA | [48] |
Sulfolobus spindle-shaped virus 19 (SSV19) | Alphafusellovirus | Naghaso, Philippines | [49] |
Sulfolobus spindle-shaped virus 20 (SSV20) | Betafusellovirus | Naghaso, Philippines | [49] |
Sulfolobus spindle-shaped virus 21 (SSV21) | Betafusellovirus | Naghaso, Philippines | [49] |
Sulfolobus spindle-shaped virus 22 (SSV22) | Betafusellovirus | Naghaso, Philippines | [49] |
Sulfolobus filamentous virus 1 (SFV1) | Unknown | Acidic hot spring Umi Jigoku in Beppu, Japan | [33] |
Metallosphaera rod-shaped virus 1 (MRV1) | Rudiviridae | Active Sulfurous Fields of the Campi Flegrei volcano in Pozzuoli, Italy | [50] |
Acidianus rod-shaped virus 3 (ARV3) | Rudiviridae | Active Sulfurous Fields of the Campi Flegrei volcano in Pozzuoli, Italy | [50] |
Saccharolobus solfataricus rod-shaped virus 1 (SSRV1) | Rudiviridae | Active Sulfurous Fields of the Campi Flegrei volcano in Pozzuoli, Italy | [50] |
Pyrobaculum filamentous virus 2 (PFV2) | Rudiviridae | Active Sulfurous Fields of the Campi Flegrei volcano in Pozzuoli, Italy | [50] |
Pyrobaculum spherical virus 2 (PSV2) | Rudiviridae | Active Sulfurous Fields of the Campi Flegrei volcano in Pozzuoli, Italy | [50] |
Thermoproteus spherical piliferous virus 1 (TSPV1) | Globuloviridae | Yellowstone National Park, USA | [51] |
Thermocrinis Octopus Spring virus (TOSV) * | Pyrovirus | Octopus Spring, WY | [52] |
Thermocrinis Great Boiling Spring virus (TGBSV) * | Pyrovirus | Great Boiling Spring, NV | [52] |
Aquificae Joseph’s Coat Spring virus (AJCSV) * | Pyrovirus | Joseph’s Coat Spring, WY | [52] |
Aquificae Conch Spring virus (ACSV) * | Pyrovirus | Conch Spring, WY | [52] |
Virus | Discovery | Source |
---|---|---|
SH1 | Induces lysis within host cell Haloarcula hispanica | [57] |
HHTV-1 | Induces lysis within host cell Haloarcula hispanica | [57] |
His1 | Non-lytic life cycle within host cell Haloarcula hispanica | [57] |
His2 | Non-lytic life cycle within host cell Haloarcula hispanica | [57] |
θCh1 | ORF79 is required for correctly timed viral lysis and protein expression | [58] |
SNJ1 | ORF4 and ORF11-12 are necessary for replication and regulation | [59] |
PL6 and PL6-like plasmids | Show significant relatedness to the halophilic viruses HRPV-3, HGPV-1, and SNJ1 | [60,61] |
Virus | Viral Family/Genus | Location Isolated | Source |
---|---|---|---|
Haloarcula hispanica pleomorphic virus 4 [HHPV4] | Pleolipoviridae | Unknown * | [66] |
Halorubrum pleomorphic virus 9 [HRPV9] | Pleolipoviridae | Samut Sakhon, Thailand | [67,70] |
HRPV10 | Pleolipoviridae | Lake Retba, Senegal | [8] |
HRPV11 | Pleolipoviridae | Lake Retba, Senegal | [8] |
HRPV12 | Pleolipoviridae | Lake Retba, Senegal | [8] |
Haloferax tailed virus 1 (HFTV1) | Caudovirales | Lake Retba, Senegal | [8] |
Caudovirus of haloarchaeal origin; S9 (ChaoS9) | Myohalovirus | Unknown ** | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manuel, R.D.; Snyder, J.C. The Expanding Diversity of Viruses from Extreme Environments. Int. J. Mol. Sci. 2024, 25, 3137. https://doi.org/10.3390/ijms25063137
Manuel RD, Snyder JC. The Expanding Diversity of Viruses from Extreme Environments. International Journal of Molecular Sciences. 2024; 25(6):3137. https://doi.org/10.3390/ijms25063137
Chicago/Turabian StyleManuel, Robert D., and Jamie C. Snyder. 2024. "The Expanding Diversity of Viruses from Extreme Environments" International Journal of Molecular Sciences 25, no. 6: 3137. https://doi.org/10.3390/ijms25063137
APA StyleManuel, R. D., & Snyder, J. C. (2024). The Expanding Diversity of Viruses from Extreme Environments. International Journal of Molecular Sciences, 25(6), 3137. https://doi.org/10.3390/ijms25063137