Cell-Based Therapies for Rotator Cuff Injuries: An Updated Review of the Literature
Abstract
:1. Introduction
2. Methods
3. Basic Science of Mesenchymal Stem Cells
3.1. Mesenchymal Stem Cell Subtypes
3.1.1. Bone-Marrow-Derived MSCs
3.1.2. Adipose Tissue MSCs
3.1.3. Umbilical Cord Blood MSCs
3.1.4. Muscle-Derived MSCs
3.1.5. Peripheral Blood MSCs
4. MSCs for Rotator Cuff Injury
4.1. In Vitro Data
4.2. Clinical Applications of Mesenchymal Stem Cells in Rotator Cuff Disease
4.2.1. In Vivo Studies
4.2.2. Human Trials
4.2.3. Human Randomized Control Trials
5. Future Directions with MFAT
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colvin, A.C.; Egorova, N.; Harrison, A.K.; Moskowitz, A.; Flatow, E.L. National trends in rotator cuff repair. J. Bone Jt. Surg. Am. 2012, 94, 227–233. [Google Scholar] [CrossRef]
- Urwin, M.; Symmons, D.; Allison, T.; Brammah, T.; Busby, H.; Roxby, M.; Simmons, A.; Williams, G. Estimating the burden of musculoskeletal disorders in the community: The comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann. Rheum. Dis. 1998, 57, 649–655. [Google Scholar] [CrossRef]
- Bergenudd, H.; Lindgärde, F.; Nilsson, B.; Petersson, C.J. Shoulder pain in middle age. A study of prevalence and relation to occupational work load and psychosocial factors. Clin. Orthop. Relat. Res. 1988, 231, 234–238. [Google Scholar] [CrossRef]
- Andersson, H.I.; Ejlertsson, G.; Leden, I.; Rosenberg, C. Chronic pain in a geographically defined general population: Studies of differences in age, gender, social class, and pain localization. Clin. J. Pain 1993, 9, 174–182. [Google Scholar] [CrossRef]
- Mitchell, C.; Adebajo, A.; Hay, E.; Carr, A. Shoulder pain: Diagnosis and management in primary care. BMJ 2005, 331, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Pope, D.P.; Croft, P.R.; Pritchard, C.M.; Macfarlane, G.J.; Silman, A.J. The frequency of restricted range of movement in individuals with self-reported shoulder pain: Results from a population-based survey. Br. J. Rheumatol. 1996, 35, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Speed, C. Shoulder pain. Clin. Evid. 2005, 14, 1543–1560. [Google Scholar]
- Chen, A.L.; Shapiro, J.A.; Ahn, A.K.; Zuckerman, J.D.; Cuomo, F. Rotator cuff repair in patients with type I diabetes mellitus. J. Shoulder Elb. Surg. 2003, 12, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Crossley, K.L.; O’Neil, M.; Al-Zakwani, I. Estimates of Direct Healthcare Expenditures among Individuals with Shoulder Dysfunction in the United States; American Society of Shoulder and Elbow Therapists: Warrenville, IL, USA, 2004. [Google Scholar]
- John, M.; Pap, G.; Angst, F.; Flury, M.P.; Lieske, S.; Schwyzer, H.K.; Simmen, B.R. Short-term results after reversed shoulder arthroplasty (Delta III) in patients with rheumatoid arthritis and irreparable rotator cuff tear. Int. Orthop. 2010, 34, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ostör, A.J.K.; Richards, C.A.; Prevost, A.T.; Speed, C.A.; Hazleman, B.L. Diagnosis and relation to general health of shoulder disorders presenting to primary care. Rheumatology 2005, 44, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Millar, N.L.; Silbernagel, K.G.; Thorborg, K.; Kirwan, P.D.; Galatz, L.M.; Abrams, G.D.; Murrell, G.A.; McInnes, I.B.; Rodeo, S.A. Tendinopathy. Nat. Rev. Dis. Primers 2021, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Moosmayer, S.; Lund, G.; Seljom, U.S.; Haldorsen, B.; Svege, I.C.; Hennig, T.; Pripp, A.H.; Smith, H.J. At a 10-Year Follow-up, Tendon Repair Is Superior to Physiotherapy in the Treatment of Small and Medium-Sized Rotator Cuff Tears. J. Bone Jt. Surg. Am. 2019, 101, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Chahal, J. Management of Rotator Cuff Injuries. J. Am. Acad. Orthop. Surg. 2020, 28, e193–e201. [Google Scholar] [CrossRef] [PubMed]
- Shenaq, D.S.; Rastegar, F.; Petkovic, D.; Zhang, B.Q.; He, B.C.; Chen, L.; Zuo, G.W.; Luo, Q.; Shi, Q.; Wagner, E.R.; et al. Mesenchymal Progenitor Cells and Their Orthopedic Applications: Forging a Path towards Clinical Trials. Stem Cells Int. 2010, 2010, 519028. [Google Scholar] [CrossRef]
- Jovic, D.; Yu, Y.; Wang, D.; Wang, K.; Li, H.; Xu, F.; Liu, C.; Liu, J.; Luo, Y. A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Rev. Rep. 2022, 18, 1525–1545. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.L.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.C.; Yeo, R.W.; Lim, S.K. Mesenchymal stem cell exosomes. Semin. Cell Dev. Biol. 2015, 40, 82–88. [Google Scholar] [CrossRef]
- Han, C.; Sun, X.; Liu, L.; Jiang, H.; Shen, Y.; Xu, X.; Li, J.; Zhang, G.; Huang, J.; Lin, Z.; et al. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int. 2016, 2016, 7653489. [Google Scholar] [CrossRef]
- Caplan, A.I.; Correa, D. The MSC: An injury drugstore. Cell Stem Cell 2011, 9, 11–15. [Google Scholar] [CrossRef]
- Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21, 2724–2752. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Why are MSCs therapeutic? New data: New insight. J. Pathol. 2009, 217, 318–324. [Google Scholar] [CrossRef]
- Chen, L.; Tredget, E.E.; Wu, P.Y.; Wu, Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 2008, 3, e1886. [Google Scholar] [CrossRef] [PubMed]
- Valle-Prieto, A.; Conget, P.A. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010, 19, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Dezawa, M.; Ishikawa, H.; Itokazu, Y.; Yoshihara, T.; Hoshino, M.; Takeda, S.I.; Ide, C.; Nabeshima, Y.I. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005, 309, 314–317. [Google Scholar] [CrossRef]
- Shim, W.S.; Jiang, S.; Wong, P.; Tan, J.; Chua, Y.L.; Tan, Y.S.; Sin, Y.K.; Lim, C.H.; Chua, T.; Teh, M.; et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem. Biophys. Res. Commun. 2004, 324, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.Z.; Lin, Y.H.; Su, L.J.; Wu, M.S.; Jeng, H.Y.; Chang, H.C.; Huang, Y.H.; Ling, T.Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci. 2021, 28, 28. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Gartner, S.; Kaplan, H.S. Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci. USA 1980, 77, 4756–4759. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.I.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Petrakova, K.P.; Kurolesova, A.I.; Frolova, G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968, 6, 230–247. [Google Scholar] [CrossRef]
- Friedenstein, A.J. Precursor cells of mechanocytes. Int. Rev. Cytol. 1976, 47, 327–359. [Google Scholar] [CrossRef]
- Bernardo, M.E.; Locatelli, F.; Fibbe, W.E. Mesenchymal stromal cells. Ann. N. Y. Acad. Sci. 2009, 1176, 101–117. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Ghetu, N.; Wallace, C.G.; Wei, F.C.; Liao, S.K. The impact of mesenchymal stem cell source on proliferation, differentiation, immunomodulation and therapeutic efficacy. J. Stem Cell Res. Ther. 2014, 4, 237. [Google Scholar] [CrossRef]
- Noël, D.; Caton, D.; Roche, S.; Bony, C.; Lehmann, S.; Casteilla, L.; Jorgensen, C.; Cousin, B. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp. Cell Res. 2008, 314, 1575–1584. [Google Scholar] [CrossRef]
- De Ugarte, D.A.; Morizono, K.; Elbarbary, A.; Alfonso, Z.; Zuk, P.A.; Zhu, M.; Dragoo, J.L.; Ashjian, P.; Thomas, B.; Benhaim, P.; et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003, 174, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Bochev, I.; Elmadjian, G.; Kyurkchiev, D.; Tzvetanov, L.; Altankova, I.; Tivchev, P.; Kyurkchiev, S. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol. Int. 2008, 32, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018, 18, e264–e277. [Google Scholar] [CrossRef]
- Choudhery, M.S.; Badowski, M.; Muise, A.; Pierce, J.; Harris, D.T. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J. Transl. Med. 2014, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Hass, R.; Kasper, C.; Böhm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, V.; Clausen, P.; Matuska, A.M. Micro-fragmented adipose tissue cellular composition varies by processing device and analytical method. Sci. Rep. 2022, 12, 16107. [Google Scholar] [CrossRef] [PubMed]
- Carelli, S.; Messaggio, F.; Canazza, A.; Hebda, D.M.; Caremoli, F.; Latorre, E.; Grimoldi, M.G.; Colli, M.; Bulfamante, G.; Tremolada, C.; et al. Characteristics and Properties of Mesenchymal Stem Cells Derived From Microfragmented Adipose Tissue. Cell Transplant. 2015, 24, 1233–1252. [Google Scholar] [CrossRef]
- Zhu, M.; Kohan, E.; Bradley, J.; Hedrick, M.; Benhaim, P.; Zuk, P. The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J. Tissue Eng. Regen. Med. 2009, 3, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, B.; Suuronen, R.; Miettinen, S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. 2011, 7, 269–291. [Google Scholar] [CrossRef]
- Gang, E.J.; Hong, S.H.; Jeong, J.A.; Hwang, S.H.; Kim, S.W.; Yang, I.H.; Ahn, C.; Han, H.; Kim, H. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2004, 321, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Divya, M.S.; Roshin, G.E.; Divya, T.S.; Rasheed, V.A.; Santhoshkumar, T.R.; Elizabeth, K.E.; James, J.; Pillai, R.M. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res. Ther. 2012, 3, 57. [Google Scholar] [CrossRef]
- Berebichez-Fridman, R.; Gómez-García, R.; Granados-Montiel, J.; Berebichez-Fastlicht, E.; Olivos-Meza, A.; Granados, J.; Velasquillo, C.; Ibarra, C. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem Cells Int. 2017, 2017, 2638305. [Google Scholar] [CrossRef]
- Abou-Khalil, R.; Yang, F.; Lieu, S.; Julien, A.; Perry, J.; Pereira, C.; Relaix, F.; Miclau, T.; Marcucio, R.; Colnot, C. Role of muscle stem cells during skeletal regeneration. Stem Cells 2015, 33, 1501–1511. [Google Scholar] [CrossRef]
- Jackson, W.M.; Nesti, L.J.; Tuan, R.S. Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert. Opin. Biol. Ther. 2010, 10, 505–517. [Google Scholar] [CrossRef]
- Peng, H.; Huard, J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl. Immunol. 2004, 12, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Chao, N.J.; Schriber, J.R.; Grimes, K.; Long, G.D.; Negrin, R.S.; Raimondi, C.M.; Horning, S.J.; Brown, S.L.; Miller, L.; Blume, K.G. Granulocyte colony-stimulating factor “mobilized” peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 1993, 81, 2031–2035. [Google Scholar] [CrossRef]
- Tondreau, T.; Meuleman, N.; Delforge, A.; Dejeneffe, M.; Leroy, R.; Massy, M.; Mortier, C.; Bron, D.; Lagneaux, L. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: Proliferation, expression, and plasticity. Stem Cells 2005, 23, 1105–1112. [Google Scholar] [CrossRef]
- Kang, J.R.; Gupta, R. Mechanisms of fatty degeneration in massive rotator cuff tears. J. Shoulder Elb. Surg. 2012, 21, 175–180. [Google Scholar] [CrossRef]
- Gupta, R.; Rao, R.; Johnston, T.R.; Uong, J.; Yang, D.S.; Lee, T.Q. Muscle stem cells and rotator cuff injury. JSES Rev. Rep. Tech. 2021, 1, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Somerson, J.S.; Hsu, J.E.; Gorbaty, J.D.; Gee, A.O. Classifications in Brief: Goutallier Classification of Fatty Infiltration of the Rotator Cuff Musculature. Clin. Orthop. Relat. Res. 2016, 474, 1328–1332. [Google Scholar] [CrossRef]
- Gerber, C.; Wirth, S.H.; Farshad, M. Treatment options for massive rotator cuff tears. J. Shoulder Elb. Surg. 2011, 20, S20–S29. [Google Scholar] [CrossRef] [PubMed]
- Nichols, A.E.C.; Best, K.T.; Loiselle, A.E. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl. Res. 2019, 209, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Costa-Almeida, R.; Calejo, I.; Gomes, M.E. Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies. Int. J. Mol. Sci. 2019, 20, 3002. [Google Scholar] [CrossRef]
- Luo, Q.; Song, G.; Song, Y.; Xu, B.; Qin, J.; Shi, Y. Indirect co-culture with tenocytes promotes proliferation and mRNA expression of tendon/ligament related genes in rat bone marrow mesenchymal stem cells. Cytotechnology 2009, 61, 1–10. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Wang, B.; Sun, Y.; Xu, J.; Yuk-Wai, L.W.; Xu, L.; Zhang, J.; Li, G. The Use of Cocultured Mesenchymal Stem Cells with Tendon-Derived Stem Cells as a Better Cell Source for Tendon Repair. Tissue Eng. Part A 2016, 22, 1229–1240. [Google Scholar] [CrossRef]
- Sevivas, N.; Teixeira, F.G.; Portugal, R.; Direito-Santos, B.; Espregueira-Mendes, J.; Oliveira, F.J.; Silva, R.F.; Sousa, N.; Sow, W.T.; Nguyen, L.T.; et al. Mesenchymal Stem Cell Secretome Improves Tendon Cell Viability In Vitro and Tendon-Bone Healing In Vivo When a Tissue Engineering Strategy Is Used in a Rat Model of Chronic Massive Rotator Cuff Tear. Am. J. Sports Med. 2018, 46, 449–459. [Google Scholar] [CrossRef]
- Kapacee, Z.; Yeung, C.Y.; Lu, Y.; Crabtree, D.; Holmes, D.F.; Kadler, K.E. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3. Matrix Biol. 2010, 29, 668–677. [Google Scholar] [CrossRef]
- Veronesi, F.; Torricelli, P.; Della Bella, E.; Pagani, S.; Fini, M. In vitro mutual interaction between tenocytes and adipose-derived mesenchymal stromal cells. Cytotherapy 2015, 17, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Costa-Almeida, R.; Calejo, I.; Reis, R.L.; Gomes, M.E. Crosstalk between adipose stem cells and tendon cells reveals a temporal regulation of tenogenesis by matrix deposition and remodeling. J. Cell Physiol. 2018, 233, 5383–5395. [Google Scholar] [CrossRef]
- Costa-Almeida, R.; Berdecka, D.; Rodrigues, M.; Reis, R.; Gomes, M. Tendon explant cultures to study the communication between adipose stem cells and native tendon niche. J. Cell. Biochem. 2018, 119, 3653–3662. [Google Scholar] [CrossRef]
- Mora, M.V.; Antuña, S.A.; Arranz, M.G.; Carrascal, M.T.; Barco, R. Application of Adipose tissue-derived Stem Cells in a Rat Rotator Cuff Repair Model. Injury 2014, 45, S22–S27. [Google Scholar] [CrossRef]
- Chen, H.S.; Su, Y.T.; Chan, T.M.; Su, Y.J.; Syu, W.S.; Harn, H.J.; Lin, S.Z.; Chiu, S.C. Human adipose-derived stem cells accelerate the restoration of tensile strength of tendon and alleviate the progression of rotator cuff injury in a rat model. Cell Transplant. 2015, 24, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Gumucio, J.P.; Flood, M.D.; Roche, S.M.; Sugg, K.B.; Momoh, A.O.; Kosnik, P.E.; Bedi, A.; Mendias, C.L. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear. Int. Orthop. 2016, 40, 759–764. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Q.; Song, W.; Yu, W.; He, Y. Adipose Stem Cell-Derived Exosomes Decrease Fatty Infiltration and Enhance Rotator Cuff Healing in a Rabbit Model of Chronic Tears. Am. J. Sports Med. 2020, 48, 1456–1464. [Google Scholar] [CrossRef]
- Shin, M.J.; Shim, I.K.; Kim, D.M.; Choi, J.H.; Lee, Y.N.; Jeon, I.H.; Kim, H.; Park, D.; Kholinne, E.; Yang, H.S.; et al. Engineered Cell Sheets for the Effective Delivery of Adipose-Derived Stem Cells for Tendon-to-Bone Healing. Am. J. Sports Med. 2020, 48, 3347–3358. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, Y.; Reisdorf, R.L.; Qi, J.; Lu, C.K.; Berglund, L.J.; Amadio, P.C.; Moran, S.L.; Steinmann, S.P.; An, K.N.; et al. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials 2019, 192, 189–198. [Google Scholar] [CrossRef]
- Chen, P.; Cui, L.; Fu, S.C.; Shen, L.; Zhang, W.; You, T.; Ong, T.Y.; Liu, Y.; Yung, S.H.; Jiang, C. The 3D-Printed PLGA Scaffolds Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Augment the Healing of Rotator Cuff Repair in the Rabbits. Cell Transplant. 2020, 29, 963689720973647. [Google Scholar] [CrossRef]
- Huang, Y.; He, B.; Wang, L.; Yuan, B.; Shu, H.; Zhang, F.; Sun, L. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res. Ther. 2020, 11, 496. [Google Scholar] [CrossRef]
- Centeno, C.J.; Al-Sayegh, H.; Bashir, J.; Goodyear, S.; Freeman, M.D. A prospective multi-site registry study of a specific protocol of autologous bone marrow concentrate for the treatment of shoulder rotator cuff tears and osteoarthritis. J. Pain. Res. 2015, 8, 269–276. [Google Scholar] [CrossRef]
- Centeno, C.; Fausel, Z.; Stemper, I.; Azuike, U.; Dodson, E. A Randomized Controlled Trial of the Treatment of Rotator Cuff Tears with Bone Marrow Concentrate and Platelet Products Compared to Exercise Therapy: A Midterm Analysis. Stem Cells Int. 2020, 2020, 5962354. [Google Scholar] [CrossRef]
- Cherian, C.; Malanga, G.A.; Hogaboom, N.; Pollack, M.A.; Dyson-Hudson, T.A. Autologous, micro-fragmented adipose tissue as a treatment for chronic shoulder pain in a wheelchair using individual with spinal cord injury: A case report. Spinal Cord. Ser. Cases 2019, 5, 46. [Google Scholar] [CrossRef]
- Chun, S.W.; Kim, W.; Lee, S.Y.; Lim, C.Y.; Kim, K.; Kim, J.G.; Park, C.H.; Hong, S.H.; Yoo, H.J.; Chung, S.G. A randomized controlled trial of stem cell injection for tendon tear. Sci. Rep. 2022, 12, 818. [Google Scholar] [CrossRef] [PubMed]
- Cole, B.J.; Kaiser, J.T.; Wagner, K.R.; Sivasundaram, L.; Otte, R.S.; Tauro, T.M.; White, G.M.; Ralls, M.L.; Yanke, A.B.; Forsythe, B.; et al. Prospective Randomized Trial of Biologic Augmentation with Bone Marrow Aspirate Concentrate in Patients Undergoing Arthroscopic Rotator Cuff Repair. Am. J. Sports Med. 2023, 51, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Ellera Gomes, J.L.; da Silva, R.C.; Silla, L.M.; Abreu, M.R.; Pellanda, R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, J.L.; Dodson, A.; Martin, J. Microfragmented adipose tissue in the treatment of a full-thickness supraspinatus tear: A case report. Regen. Med. 2023, 18, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Hernigou, P.; Flouzat Lachaniette, C.H.; Delambre, J.; Zilber, S.; Duffiet, P.; Chevallier, N.; Rouard, H. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: A case-controlled study. Int. Orthop. 2014, 38, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Hogaboom, N.; Malanga, G.; Cherian, C.; Dyson-Hudson, T. A pilot study to evaluate micro-fragmented adipose tissue injection under ultrasound guidance for the treatment of refractory rotator cuff disease in wheelchair users with spinal cord injury. J. Spinal Cord. Med. 2021, 44, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Hurd, J.L.; Facile, T.R.; Weiss, J.; Hayes, M.; Hayes, M.; Furia, J.P.; Maffulli, N.; Winnier, G.E.; Alt, C.; Schmitz, C.; et al. Safety and efficacy of treating symptomatic, partial-thickness rotator cuff tears with fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) isolated at the point of care: A prospective, randomized, controlled first-in-human pilot study. J. Orthop. Surg. Res. 2020, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Chai, J.W.; Jeong, E.C.; Oh, S.; Kim, P.S.; Yoon, J.Y.; Yoon, K.S. Intratendinous Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Rotator Cuff Disease: A First-In-Human Trial. Stem Cells 2018, 36, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Chai, J.W.; Jeong, E.C.; Oh, S.; Yoon, K.S. Intratendinous Injection of Mesenchymal Stem Cells for the Treatment of Rotator Cuff Disease: A 2-Year Follow-Up Study. Arthroscopy 2020, 36, 971–980. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sung, C.H.; Chung, S.H.; Kwak, S.J.; Koh, Y.G. Does an Injection of Adipose-Derived Mesenchymal Stem Cells Loaded in Fibrin Glue Influence Rotator Cuff Repair Outcomes? A Clinical and Magnetic Resonance Imaging Study. Am. J. Sports Med. 2017, 45, 2010–2018. [Google Scholar] [CrossRef]
- Kim, S.J.; Song, D.H.; Park, J.W.; Park, S.; Kim, S.J. Effect of Bone Marrow Aspirate Concentrate-Platelet-Rich Plasma on Tendon-Derived Stem Cells and Rotator Cuff Tendon Tear. Cell Transplant. 2017, 26, 867–878. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, E.K.; Kim, S.J.; Song, D.H. Effects of bone marrow aspirate concentrate and platelet-rich plasma on patients with partial tear of the rotator cuff tendon. J. Orthop. Surg. Res. 2018, 13, 1. [Google Scholar] [CrossRef]
- Marathe, A.; Song, B.; Jayaram, P. Microfragmented Adipose Tissue With Adjuvant Platelet-Rich Plasma Combination Therapy for Partial-Thickness Supraspinatus Tear. Cureus 2021, 13, e15583. [Google Scholar] [CrossRef] [PubMed]
- Striano, R.D.; Malanga, G.A.; Bilbool, N.; Azatullah, K. Refractory Shoulder Pain with Osteoarthritis, and Rotator Cuff Tear, Treated with Micro-Fragmented Adipose Tissue. Orthop. Spine Sports Med. 2018, 2, 014. [Google Scholar]
- Randelli, P.S.; Cucchi, D.; Fossati, C.; Boerci, L.; Nocerino, E.; Ambrogi, F.; Menon, A. Arthroscopic Rotator Cuff Repair Augmentation With Autologous Microfragmented Lipoaspirate Tissue Is Safe and Effectively Improves Short-term Clinical and Functional Results: A Prospective Randomized Controlled Trial With 24-Month Follow-up. Am. J. Sports Med. 2022, 50, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Viganò, M.; Lugano, G.; Perucca Orfei, C.; Menon, A.; Ragni, E.; Colombini, A.; De Luca, P.; Randelli, P.; de Girolamo, L. Autologous microfragmented adipose tissue reduces inflammatory and catabolic markers in supraspinatus tendon cells derived from patients affected by rotator cuff tears. Int. Orthop. 2021, 45, 419–426. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Pathology | Number of Patients | Type of MSCs | Adjunctive Treatment Modalities | Outcome | Follow-Up | Results |
---|---|---|---|---|---|---|---|---|
Centeno, et al., 2015 [75] | Case Series | GH OA and/or partial/full rotator cuff tears | 115 (81 RCT and 34 OA) | Bone Marrow Concentrate (BMAC) | NA | DASH and NPS | 3 months | Significant improvement of DASH and NPS scores |
Centeno, et al., 2020 [76] | Randomized Controlled Crossover trial | Chronic partial or full thickness non-retracted rotator cuff tears | 25 | Bone Marrow Concentrate (BMAC) | Control-Exercise Therapy | Primary-DASH Secondary-NPS, SANE | 1, 3, 6, 12, 24 months | Significant differences for BMAC over exercise group at 3 and 6 months for pain, and for function and reported improvement |
Cherian et al., 2019 [77] | Case Report | Chronic rotator Cuff Tear | 1 | Microfragmented adipose tissues (MFAT) | NA | NRS, WUSPI, BPI-17, PGIC | 1, 2, 3, 6, 12 months | Complete pain relief in all outcome measure from 1–12 months |
Chun et al., 2022 [78] | Randomized control trial | Partial tear of supraspinatus tendon | 24 across 3 groups | Microfragmented adipose tissues (MFAT) | Control-Normal Saline (NS) Group 2-Fibrin glue and NS | Primary: VAS at 3 months Other: VAS, ASES, MRI Imaging | 6 weeks, 3, 6,12 months | No significant difference found in pain scores 3 months post injection |
Cole et al., 2023 [79] | Randomized control trial | Supraspinatus tendon tears undergoing rotator cuff repair (RCR) | 91 | Bone Marrow Concentrate (BMAC) | BMAC + RCR versus NS + RCR | PROMs, ASES, SANE, Veterans RAND, MRI | 6, 12,24 months | Functional outcomes significantly improved in both groups. The control group had significantly greater evidence of rotator cuff retear at 1 year MRI |
Ellera Gomes et al., 2011 [80] | Case series | Full thickness rotator cuff tear | 14 | Bone Marrow Concentrate (BMAC) | Rotator Cuff Repair Surgery | UCLA, MRI | 12 months | Improved functional score. Tendon integrity in all cases at 12 months |
Ferrell, JL et al., 2023 [81] | Case Report | Full thickness Supraspinatus tear | 1 | Microfragmented adipose tissues (MFAT) | NA | DASH, MRI | 1, 6, 8 months | Improved DASH Scores |
Hernigou, et al., 2014 [82] | Case Control Study | Full thickness supraspinatus tears | 90 | Bone Marrow Concentrate (BMAC) | BMAC + RCR versus RCR | Imaging findings on US (monthly) or MRI | US (monthly) or MRI at 3, 6, 12, 24 months as well as MRI At 10 years | BMAC improved the rate of healing at 6 months and decreases retear rate at 10 years |
Hogaboom et al., 2021 [83] | Pre-post clinical trial | Chronic Rotator cuff Tear | 10 | Microfragmented adipose tissues (MFAT) | NA | NRS, WUSPI, BPI-17, PGIC | 6 and 12 months | WUSPI, NRS, and BPI-I7 scores were significantly lower 6 and 12 months post-procedure |
Hurd, et al., 2023 [84] | Randomized Control Trial | Partial thickness rotator cuff tears | 20 | adipose tissue-derived mesenchymal stem cells (AT-MSCs) | Control- Corticosteroids | Primary- Adverse outcomes Secondary-ASES, RAND, VAS, MRI | Assessments at 3, 6, 9, 12, 24, 32, 40, and 52 weeks. MRI at 24 and 52 weeks | No adverse outcomes were reported 12 months post treatments. Those in intervention group showed significantly higher mean ASES total scores at W24 and W52 post treatment |
Jo et al., 2018 (and follow up paper in 2020) [85,86] | Case Series | Partial Thickness tears | 18 | adipose tissue-derived mesenchymal stem cells (AT-MSCs) | NA | SPADI, Adverse events, Constant score, VAS, and MRI | 1, 3, 6 months and 2 year study follow up | No serious adverse events through 2 years. SPADI and CS significantly improved in mid- and high-dose groups. Shoulder pain recuded by 90% at 2 years by the mid and high dose groups. |
Kim, et al., 2017 [87] | Cohort Study | Full thickness rotator cuff tears | 70 | adipose tissue-derived mesenchymal stem cells (AT-MSCs) | AT-MSCs+ RCR versus RCR | VAS, ROM, UCLA, MRI | 12 months | No functional difference. MRI with significantly higher retear rate in just RCR group (28.5 vs. 14.3) |
Kim et al., 2017 [88] | Case Series | Partial Thickness rotator cuff tears | 12 | Bone Marrow Concentrate (BMAC) | BMAC + PRP | ASES, VAS, US | 3 weeks, 3 months | Significant improvement in pain (VAS) and ASES scores after 3 months. |
Kim et al., 2018 [89] | Case control study | Partial Thickness rotator cuff tears | 24 | Bone Marrow Concentrate (BMAC) | BMAC + PRP versus rehabilitation alone control | ASES, VAS, US | 3 weeks, 3 months | Significant improvement in pain at 3 months for experimental versus control group. The change in the tear size did not differ significantly between groups |
Marathe, et al., 2021 [90] | Case Study | Partial thickness Supraspinatus tear | 1 | Microfragmented adipose tissues (MFAT) | MFAT + PRP | VAS, ROM, US | 14 and 28 weeks | Significant improvement in pain and mobility at 28 weeks. Resolution of the tear on US |
Striano, et al., 2018 [91] | Case Series | Chronic Rotator Cuff Tear | 18 | Microfragmented adipose tissues (MFAT) | NA | NPS, ASES | 1 and 5 weeks, 3, 6, and 12 months | Significant improvement in pain and ASES scores at all timepoints |
Randelli, et al., 2022 [92] | Randomized control trial | Rotator Cuff Tears | 44 | Microfragmented adipose tissues (MFAT) | MFAT + RCR versus RCR | Constant Murley Score, ASES, VAS, Strength | 3, 6, 12, 18, 24 months | Significant difference favoring experimental group of CMS scores at 6 months. No significant differences in rerupture rate or adverse events between groups |
Indication | Study ID | Location | Intervention | Control | Number of Patients | Source of MSCs |
---|---|---|---|---|---|---|
MSCs in reconstruction Surgery of Supraspinatus Muscle Lesions | NCT03068988 | Hospital Znojmo, Czechia | Single Injection of BM-MSCs intra-op | Surgical Repair without MSCs | 50 | BM-MSCs |
Use of MSCs in patients with supraspinatus partial thickness tear | NCT02298023 | Seoul National University Hospital, South Korea | Single Injection of AT-MSCS | Saline Injection | 24 | AT-MSCs |
Use of MSCs in patients undergoing Arthroscopic Rotator Cuff Repair | NCT02484950 | Rush University Medical Center | Single Injection of BM-MSCs intra-op | Surgical Repair without MSCs | 100 | BM-MSCs |
AT-MSC for partial Thickness rotator cuff tear | NCT04077190 | Fargo, North Dakota | Single Ultrasound guided Injection of AT-MSCs | Cortisone Injection | 15 | AT-MSCs |
AT-MSCs for symptomatic partial thickness rotator cuff tears | NCT03752827 | Mutli-center | Single Ultrasound guided Injection of AT-MSCs | Corticosteroid | 246 | AT-MSCs |
BMAC for non-retracted supraspinatus tendon tear | NCT01788683 | Broomfield, Colorado | Single injection of BMAC under imaging guidance | Exercise Therapy | 51 | BM-MSCs |
Use of AT-MSCs on clinically diagnosed rotator cuff tear or lateral epicondylitis | NCT03279796 | Zhejiang University, China | Single Injection of AT-MSCs | Betamethasone | 200 | AT-MSCs |
Use of MSCs with reconstructive surgery in patient with complete supraspinatus tendon tears | NCT01687777 | Hospital San Carlos, Spain | MSCs included within collagen type 1 membrane | Surgical repair with collagen type 1 membrane | 10 | Not specified |
Use of MFAT in SCI patients with diagnosed rotator cuff disease | NCT03167138 | Kessler Institute for Rehabilitation, New Jersey | Single Injection of micro-fragmented adipose tissue | None | 10 | AT-MSCs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooper, N.; Marathe, A.; Jain, N.B.; Jayaram, P. Cell-Based Therapies for Rotator Cuff Injuries: An Updated Review of the Literature. Int. J. Mol. Sci. 2024, 25, 3139. https://doi.org/10.3390/ijms25063139
Hooper N, Marathe A, Jain NB, Jayaram P. Cell-Based Therapies for Rotator Cuff Injuries: An Updated Review of the Literature. International Journal of Molecular Sciences. 2024; 25(6):3139. https://doi.org/10.3390/ijms25063139
Chicago/Turabian StyleHooper, Nicholas, Anuj Marathe, Nitin B. Jain, and Prathap Jayaram. 2024. "Cell-Based Therapies for Rotator Cuff Injuries: An Updated Review of the Literature" International Journal of Molecular Sciences 25, no. 6: 3139. https://doi.org/10.3390/ijms25063139
APA StyleHooper, N., Marathe, A., Jain, N. B., & Jayaram, P. (2024). Cell-Based Therapies for Rotator Cuff Injuries: An Updated Review of the Literature. International Journal of Molecular Sciences, 25(6), 3139. https://doi.org/10.3390/ijms25063139