Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies
Abstract
:1. Introduction
2. Results
2.1. Search Results
2.2. Effect of CD44 Expression on Chemotherapy Outcome
2.3. Effect of CD44 Expression on Outcome of Various Interventions
2.4. Effect of CD44 Expression on Chemotherapy Treatment Outcome in Different Types of Cancer
3. Discussion
3.1. Relationship between CD44 and Chemoresistance
3.2. Contradicting Studies
3.3. CD44 and Hyaluronic Acid
3.4. Limitations
3.5. Future Directions
4. Materials and Methods
4.1. Search Strategy
- Cancer patient;
- CD44 or HA;
- Chemotherapy treatment outcome.
4.2. Eligibility Criteria
- Studies investigating the relationship between CD44 or the HA–CD44 axis and chemotherapy treatment outcomes in cancer patients;
- Peer-reviewed full-text articles presenting primary data;
- Articles in the English language;
- Clinical studies, including all phases of clinical trials, randomized controlled trials, comparative studies, and pragmatic studies.
- Not related to CD44 or HA on cancer;
- Not specific to CD44 (even if HA is mentioned);
- CD44 or HA used as biomarker;
- No chemotherapy treatment outcome;
- No chemotherapy treatment (e.g., only surgical treatment or radiotherapy);
- Chemotherapy not first-line cancer treatment (e.g., surgery or radiotherapy prior to chemotherapy);
- Not clinical study (e.g., in vitro, in vivo animal studies);
- Articles with no primary data (e.g., review, meta-analysis);
- Articles not in the English language.
4.3. Data Selection and Collection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.S. Mechanisms of chemotherapeutic drug resistance in cancer therapy—A quick review. Taiwan J. Obstet. Gynecol. 2009, 48, 239–244. [Google Scholar] [CrossRef]
- Rieth, J.; Subramanian, S. Mechanisms of Intrinsic Tumor Resistance to Immunotherapy. Int. J. Mol. Sci. 2018, 19, 1340. [Google Scholar] [CrossRef]
- Gee, K.; Kryworuchko, M.; Kumar, A. Recent advances in the regulation of CD44 expression and its role in inflammation and autoimmune diseases. Arch. Immunol. Ther. Exp. 2004, 52, 13–26. [Google Scholar]
- Mackay, C.R.; Terpe, H.J.; Stauder, R.; Marston, W.L.; Stark, H.; Gunthert, U. Expression and modulation of CD44 variant isoforms in humans. J. Cell Biol. 1994, 124, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C.B.; Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Ponta, H.; Sherman, L.; Herrlich, P.A. CD44: From adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 2003, 4, 33–45. [Google Scholar] [CrossRef]
- Zöller, M. CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev. Cancer 2011, 11, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Fu, L. Targeting cancer stem cells: A new therapy to cure cancer patients. Am. J. Cancer Res. 2012, 2, 340–356. [Google Scholar]
- Yu, S.S.; Cirillo, N. The molecular markers of cancer stem cells in head and neck tumors. J. Cell. Physiol. 2020, 235, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18. [Google Scholar] [CrossRef]
- Cirillo, N.; Wu, C.; Prime, S.S. Heterogeneity of cancer stem cells in tumorigenesis, metastasis, and resistance to antineoplastic treatment of head and neck tumours. Cells 2021, 10, 3068. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.K.; Fritz, P.; McClellan, M.; Hauptvogel, P.; Athelogou, M.; Brauch, H. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res. 2005, 11, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, K.; Jiang, P.; Zhang, X.; Li, X.; Li, Z. CD44v/CD44s expression patterns are associated with the survival of pancreatic carcinoma patients. Diagn. Pathol. 2014, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Cozzi, P.J.; Hao, J.L.; Beretov, J.; Chang, L.; Duan, W.; Shigdar, S.; Delprado, W.J.; Graham, P.H.; Bucci, J.; et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate 2014, 74, 602–617. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Ichikawa, Y.; Zheng, Y.W.; Oshima, T.; Miyata, H.; Nakazawa, K.; Guan, H.B.; Shiozawa, M.; Akaike, M.; Watanabe, K.; et al. Prognostic significance of CD44 variant 2 upregulation in colorectal cancer. Br. J. Cancer 2014, 111, 365–374. [Google Scholar] [CrossRef]
- Toole, B.P. Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities. Clin. Cancer Res. 2009, 15, 7462–7468. [Google Scholar] [CrossRef]
- Xu, H.; Tian, Y.; Yuan, X.; Wu, H.; Liu, Q.; Pestell, R.G.; Wu, K. The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther. 2015, 8, 3783–3792. [Google Scholar]
- Hoofd, C.; Wang, X.; Lam, S.; Jenkins, C.; Wood, B.; Giambra, V.; Weng, A.P. CD44 promotes chemoresistance in T-ALL by increased drug efflux. Exp. Hematol. 2016, 44, 166–171.e17. [Google Scholar] [CrossRef]
- Bourguignon, L.Y.; Peyrollier, K.; Xia, W.; Gilad, E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem. 2008, 283, 17635–17651. [Google Scholar] [CrossRef]
- Cirillo, N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int. J. Mol. Sci. 2023, 24, 15812. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, K.; Li, W.-Y. Retraction: IL-6 Promotes Cancer Stemness and Oncogenicity in U2OS and MG-63 Osteosarcoma Cells by Upregulating the OPN-STAT3 Pathway. J. Cancer 2019, 12, 6948. [Google Scholar]
- Beukinga, R.J.; Wang, D.; Karrenbeld, A.; Dijksterhuis, W.P.M.; Faber, H.; Burgerhof, J.G.M.; Mul, V.E.M.; Slart, R.; Coppes, R.P.; Plukker, J.T.M. Addition of HER2 and CD44 to (18)F-FDG PET-based clinico-radiomic models enhances prediction of neoadjuvant chemoradiotherapy response in esophageal cancer. Eur. Radiol. 2021, 31, 3306–3314. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Deodhar, K.; Pai, V.; Pant, S.; Rathod, N.; Goda, J.S.; Sudhalkar, N.; Pandey, P.; Waghmare, S.; Engineer, R.; et al. Cancer Stem Cells, CD44, and Outcomes Following Chemoradiation in Locally Advanced Cervical Cancer: Results from a Prospective Study. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 161–168. [Google Scholar] [CrossRef]
- Pinel, B.; Duchesne, M.; Godet, J.; Milin, S.; Berger, A.; Wager, M.; Karayan-Tapon, L. Mesenchymal subtype of glioblastomas with high DNA-PKcs expression is associated with better response to radiotherapy and temozolomide. J. Neurooncol. 2017, 132, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Akay, E.; Eren, S.K.; Ozhan, N.; Arslan, A.; Karaman, H. The value of potential immunohistochemical biomarkers and clinicopathological findings in predicting response to neoadjuvant chemotherapy in breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7070–7083. [Google Scholar]
- Baek, J.M.; Jin, Q.; Ensor, J.; Boulbes, D.R.; Esteva, F.J. Serum CD44 levels and overall survival in patients with HER2-positive breast cancer. Breast Cancer Res. Treat. 2011, 130, 1029–1036. [Google Scholar] [CrossRef]
- Boldrini, E.; Peres, S.V.; Morini, S.; de Camargo, B. Immunoexpression of Ezrin and CD44 in patients with osteosarcoma. J. Pediatr. Hematol. Oncol. 2010, 32, e213–e217. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, J.; Fang, L.; Cai, Y.; Ke, J.; Xie, X.; Huang, Y.; Huang, M.; Wang, J. ALDH1 is an independent prognostic factor for patients with stages II-III rectal cancer after receiving radiochemotherapy. Br. J. Cancer 2014, 110, 430–434. [Google Scholar] [CrossRef]
- Grau, J.J.; Mesia, R.; de la Iglesia-Vicente, M.; Williams, E.S.; Taberna, M.; Caballero, M.; Larque, A.B.; de la Oliva, J.; Cordon-Cardo, C.; Domingo-Domenech, J. Enrichment of Cells with Cancer Stem Cell-Like Markers in Relapses of Chemoresistant Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma. Oncology 2016, 90, 267–272. [Google Scholar] [CrossRef]
- Hu, W.; Chen, A.; Guo, F.; Li, F. The expression and clinical significance of KAI1 and CD44v6 protein in human osteosarcoma. Chin.-Ger. J. Clin. Oncol. 2009, 8, 232–236. [Google Scholar] [CrossRef]
- Kawamoto, A.; Tanaka, K.; Saigusa, S.; Toiyama, Y.; Morimoto, Y.; Fujikawa, H.; Iwata, T.; Matsushita, K.; Yokoe, T.; Yasuda, H.; et al. Clinical significance of radiation-induced CD133 expression in residual rectal cancer cells after chemoradiotherapy. Exp. Ther. Med. 2012, 3, 403–409. [Google Scholar] [CrossRef]
- Kojima, M.; Ishii, G.; Atsumi, N.; Nishizawa, Y.; Saito, N.; Ochiai, A. CD133 expression in rectal cancer after preoperative chemoradiotherapy. Cancer Sci. 2010, 101, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Minato, T.; Yamamoto, Y.; Seike, J.; Yoshida, T.; Yamai, H.; Takechi, H.; Yuasa, Y.; Furukita, Y.; Goto, M.; Bando, Y.; et al. Aldehyde dehydrogenase 1 expression is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2013, 20, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Leone, J.; Perez, J.E.; Dominguez, M.E.; Iturbe, J.; Leone, J.P.; Mac Donnell, M.C.; Grosman, G.; Vallejo, C.T.; Leone, B.A.; Zwenger, A.O. Role of difucosylated Lewis Y antigen in outcome of locally advanced cervical squamous cell carcinoma treated with cisplatin regimen. Int. J. Biol. Markers 2016, 31, e300–e308. [Google Scholar] [CrossRef] [PubMed]
- Tanei, T.; Morimoto, K.; Shimazu, K.; Kim, S.J.; Tanji, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin. Cancer Res. 2009, 15, 4234–4241. [Google Scholar] [CrossRef] [PubMed]
- Yokota, A.; Ishii, G.; Sugaya, Y.; Nishimura, M.; Saito, Y.; Harigaya, K. Potential use of serum CD44 as an indicator of tumour progression in acute leukemia. Hematol. Oncol. 1999, 17, 161–168. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, S.M.; Kim, H.J.; Seo, A.N. Clinical influence of cancer stem cells on residual disease after preoperative chemoradiotherapy for rectal cancer. Tumour Biol. 2016, 37, 3571–3580. [Google Scholar] [CrossRef]
- Baschnagel, A.M.; Tonlaar, N.; Eskandari, M.; Kumar, T.; Williams, L.; Hanna, A.; Pruetz, B.L.; Wilson, G.D. Combined CD44, c-MET, and EGFR expression in p16-positive and p16-negative head and neck squamous cell carcinomas. J. Oral. Pathol. Med. 2017, 46, 208–213. [Google Scholar] [CrossRef]
- Costa, S.; Terzano, P.; Bovicelli, A.; Martoni, A.; Angelelli, B.; Santini, D.; Ceccarelli, C.; Lipponen, P.; Erzen, M.; Syrjanen, S.; et al. CD44 isoform 6 (CD44v6) is a prognostic indicator of the response to neoadjuvant chemotherapy in cervical carcinoma. Gynecol. Oncol. 2001, 80, 67–73. [Google Scholar] [CrossRef]
- Elbaiomy, M.A.; Akl, T.; Atwan, N.; Elsayed, A.A.; Elzaafarany, M.; Shamaa, S. Clinical Impact of Breast Cancer Stem Cells in Metastatic Breast Cancer Patients. J. Oncol. 2020, 2020, 2561726. [Google Scholar] [CrossRef]
- Gerger, A.; Zhang, W.; Yang, D.; Bohanes, P.; Ning, Y.; Winder, T.; LaBonte, M.J.; Wilson, P.M.; Benhaim, L.; Paez, D.; et al. Common cancer stem cell gene variants predict colon cancer recurrence. Clin. Cancer Res. 2011, 17, 6934–6943. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Van Steenbrugge, G.J.; Van Der Kwast, T.H.; Sudaryo, M.K.; Noordzij, M.A.; Nijman, R.J. Expression and prognostic value Of CD44 isoforms in nephroblastoma (Wilms tumor). J. Urol. 2002, 168, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Yao, H.; Liu, Q.; Chen, J.; Shi, J.; Su, F.; Song, E. Markers of tumor-initiating cells predict chemoresistance in breast cancer. PLoS ONE 2010, 5, e15630. [Google Scholar] [CrossRef]
- Gvozdenovic, A.; Arlt, M.J.; Campanile, C.; Brennecke, P.; Husmann, K.; Li, Y.; Born, W.; Muff, R.; Fuchs, B. CD44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J. Bone Miner. Res. 2013, 28, 838–847. [Google Scholar] [CrossRef]
- Han, K.; Kahng, J.; Kim, M.; Lim, J.; Kim, Y.; Cho, B.; Kim, H.K.; Min, W.S.; Kim, C.C.; Lee, K.Y.; et al. Expression of functional markers in acute nonlymphoblastic leukemia. Acta Haematol. 2000, 104, 174–180. [Google Scholar] [CrossRef]
- Hara, T.; Makino, T.; Yamasaki, M.; Tanaka, K.; Miyazaki, Y.; Takahashi, T.; Kurokawa, Y.; Nakajima, K.; Matsuura, N.; Mori, M.; et al. Effect of c-Met and CD44v6 Expression in Resistance to Chemotherapy in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2019, 26, 899–906. [Google Scholar] [CrossRef]
- Huh, J.W.; Lee, J.H.; Kim, H.R. Pretreatment expression of 13 molecular markers as a predictor of tumor responses after neoadjuvant chemoradiation in rectal cancer. Ann. Surg. 2014, 259, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Klose, J.; Schmitt, A.; Pernthaler, J.; Warschkow, R.; Buchler, M.W.; Schneider, M.; Lasitschka, F.; Tarantino, I. Still proliferating CD44(+)/Ki67(+) tumor cells after neoadjuvant radiochemotherapy identify rectal cancer patients with poor survival. Eur. J. Surg. Oncol. 2021, 47, 2078–2086. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I.; Giatromanolaki, A.; Tsakmaki, V.; Danielidis, V.; Sivridis, E. Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head-neck cancer. Br. J. Cancer 2012, 106, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.E.; Kim, J.H.; Kim, Y.J.; Choi, S.Y.; Kim, S.W.; Kang, E.; Chung, I.Y.; Kim, I.A.; Kim, E.J.; Choi, Y.; et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br. J. Cancer 2011, 104, 1730–1738. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Chang, T.H.; Chang, C.S.; Wang, W.H.; Su, B.W.; Lee, K.D.; Chang, P.J. Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer. Oral. Oncol. 2010, 46, e29–e33. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, Y.; Liu, X.; Lu, P.; Zhao, Z. Clinical implications of CD44+/CD24− tumor cell ratio in breast cancer. Cancer Biother. Radiopharm. 2012, 27, 324–328. [Google Scholar] [CrossRef]
- Lin, Y.; Zhong, Y.; Guan, H.; Zhang, X.; Sun, Q. CD44+/CD24− phenotype contributes to malignant relapse following surgical resection and chemotherapy in patients with invasive ductal carcinoma. J. Exp. Clin. Cancer Res. 2012, 31, 59. [Google Scholar] [CrossRef]
- Mikami, S.; Mizuno, R.; Kosaka, T.; Saya, H.; Oya, M.; Okada, Y. Expression of TNF-alpha and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int. J. Cancer 2015, 136, 1504–1514. [Google Scholar] [CrossRef]
- Negri, F.; Bozzetti, C.; Pedrazzi, G.; Azzoni, C.; Bottarelli, L.; Squadrilli, A.; Lagrasta, C.; Tamagnini, I.; Bisagni, A.; Ragazzi, M.; et al. High levels of Notch intracellular cleaved domain are associated with stemness and reduced bevacizumab efficacy in patients with advanced colon cancer. Oncol. Rep. 2019, 42, 2750–2758. [Google Scholar] [CrossRef]
- Ristamaki, R.; Joensuu, H.; Lappalainen, K.; Teerenhovi, L.; Jalkanen, S. Elevated serum CD44 level is associated with unfavorable outcome in non-Hodgkin’s lymphoma. Blood 1997, 90, 4039–4045. [Google Scholar] [CrossRef]
- Tokunaga, E.; Fujita, A.; Takizawa, K.; Baba, K.; Akiyoshi, S.; Nakamura, Y.; Ijichi, H.; Masuda, T.; Koga, C.; Tajiri, W.; et al. CD44v9 as a poor prognostic factor of triple-negative breast cancer treated with neoadjuvant chemotherapy. Breast Cancer 2019, 26, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ong, C.W.; Shi, J.; Srivastava, S.; Yan, B.; Cheng, C.L.; Yong, W.P.; Chan, S.L.; Yeoh, K.G.; Iacopetta, B.; et al. Sequential expression of putative stem cell markers in gastric carcinogenesis. Br. J. Cancer 2011, 105, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Espinosa Fernandez, J.R.; Imamura, C.K.; Yamauchi, H.; Jinno, H.; Takahashi, M.; Kitagawa, Y.; Nakamura, S.; Lim, B.; Krishnamurthy, S.; et al. Dynamic changes in CD44v-positive cells after preoperative anti-HER2 therapy and its correlation with pathologic complete response in HER2-positive breast cancer. Oncotarget 2018, 9, 6872–6882. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, S.; Inoue, Y.; Tanaka, K.; Toiyama, Y.; Matsushita, K.; Kawamura, M.; Okugawa, Y.; Hiro, J.; Uchida, K.; Mohri, Y.; et al. Clinical significance of LGR5 and CD44 expression in locally advanced rectal cancer after preoperative chemoradiotherapy. Int. J. Oncol. 2012, 41, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, Z.; Hu, X.; Zhang, L.; Liu, Y.; Wang, Y.; Guo, Y.; Zhang, T.; Li, W.; Li, B. Hyaluronic Acid Correlates With Bone Metastasis and Predicts Poor Prognosis in Small-Cell Lung Cancer Patients. Front. Endocrinol. 2021, 12, 785192. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Foster, R.; Yang, X.; Feng, Y.; Shen, J.K.; Mankin, H.J.; Hornicek, F.J.; Amiji, M.M.; Duan, Z. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget 2015, 6, 9313. [Google Scholar] [CrossRef]
- Mayr, L.; Pirker, C.; Lötsch, D.; Van Schoonhoven, S.; Windhager, R.; Englinger, B.; Berger, W.; Kubista, B. CD44 drives aggressiveness and chemoresistance of a metastatic human osteosarcoma xenograft model. Oncotarget 2017, 8, 114095. [Google Scholar] [CrossRef] [PubMed]
- Colella, G.; Vicidomini, A.; Soro, V.; Lanza, A.; Cirillo, N. Molecular insights into the effects of sodium hyaluronate preparations in keratinocytes. Clin. Exp. Dermatol. 2012, 37, 516–520. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef]
- Yaghobi, Z.; Movassaghpour, A.; Talebi, M.; Shadbad, M.A.; Hajiasgharzadeh, K.; Pourvahdani, S.; Baradaran, B. The role of CD44 in cancer chemoresistance: A concise review. Eur. J. Pharmacol. 2021, 903, 174147. [Google Scholar] [CrossRef]
- Orian-Rousseau, V.; Morrison, H.; Matzke, A.; Kastilan, T.; Pace, G.; Herrlich, P.; Ponta, H. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol. Biol. Cell 2007, 18, 76–83. [Google Scholar] [CrossRef]
- Tremmel, M.; Matzke, A.; Albrecht, I.; Laib, A.M.; Olaku, V.; Ballmer-Hofer, K.; Christofori, G.; Héroult, M.; Augustin, H.G.; Ponta, H. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood J. Am. Soc. Hematol. 2009, 114, 5236–5244. [Google Scholar]
- Nam, K.; Oh, S.; Shin, I. Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src–Akt–LKB1–AMPKα pathway. Biochem. J. 2016, 473, 3013–3030. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, L.Y.; Xia, W.; Wong, G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates β-catenin signaling and NFκB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J. Biol. Chem. 2009, 284, 2657–2671. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.J.; Lin, C.Y.; Liao, W.Y.; Hour, T.C.; Wang, H.D.; Chuu, C.P. CD44 Promotes Migration and Invasion of Docetaxel-Resistant Prostate Cancer Cells Likely via Induction of Hippo-Yap Signaling. Cells 2019, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef]
- Shahrabi, M.; Solduzian, M.; Babaie, M.H.; Mousavi, S.A.; Goodarzi, N.; Ravari, N.S.; Sadeghi, K. The effects of a combination oral spray (Mucosamin®) for the prevention of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation: A double blind randomized clinical trial. Support. Care Cancer 2022, 30, 7963–7972. [Google Scholar] [CrossRef]
- Mohammed, A.I.; Colella, C.; Vitagliano, R.; Boschetti, C.E.; Fasano, M.; Colella, G. A commercial hyaluronic acid-based spray protects from oxidative stress in vitro and reduces mucositis in cancer patients. STEMS 2023, 1, 23–27. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
Author, Year | Population | Intervention | Outcome/Effect Observed |
---|---|---|---|
Beukinga et al., 2021 [22] | Esophageal cancer (n = 43) | CRT (carboplatin and paclitaxel) + Surgery | CD44 associated with higher probability of achieving no residual cancer cells |
Chopra et al., 2019 [23] | Cervical cancer (n = 148) | CRT (cisplatin) | Low levels of CD44 associated with locoregional relapse |
Pinel et al., 2017 [24] | Glioblastoma (n = 122) | CRT (temozolomide) | CD44 associated with better progression-free survival |
Author, Year | Population | Intervention | Outcome/Effect Observed |
---|---|---|---|
Akay et al., 2022 [25] | Breast cancer (n = 91) | NACT + Surgery | No effect of C44 on survival or tumor regression |
Baek et al., 2011 [26] | Breast cancer (n = 56) | NACT + Surgery | CD44 not associated with pathological complete response |
Boldrini et al., 2010 [27] | Osteosarcoma (n = 52) | CT + Surgery | CD44 has no effect on survival rate |
Deng et al., 2014 [28] | Rectal adenocarcinoma (n = 64) | NACT (5-FU) + RT + Surgery | CD44 not correlated to clinicopathological parameters |
Grau et al., 2016 [29] | Head and neck SCC (n = 45) | CT (DDP or cetuximab) + RT | No significant differences in survival between CD44+ and CD44- |
Hu et al., 2009 [30] | Osteosarcoma (n = 87) | CT (MTX + IFO + ADM + DDP) + Surgery | CD44 has no correlation to prognosis or differentiation |
Kawamoto et al., 2012 [31] | Rectal cancer (n = 52) | CRT (5-FU + UFT) | No association between CD44 and clinical outcome or distant recurrence |
Kojima et al., 2010 [32] | Rectal cancer (n = 102) | CRT (5-FU) + Surgery | No association between CD44 with overall survival or disease-free survival |
Leone et al., 2016 [34] | Cervical SCC (n = 26) | NACT (NVB + DTX + IFO-NVB-DDP)/CRT (DDP) | CD44 not associated with worse outcome or treatment resistance |
Minato et al., 2013 [33] | Esophageal SCC (n = 40) | NACT (5-FU + DDP) + Surgery | CD44 not related to pathological response rate |
Tanei et al., 2009 [35] | Breast cancer (n = 108) | CT (PTX + 5-FU + epirubicin + CP) | CD44 is not associated with pathological complete response |
Yokota et al., 1999 [36] | Leukaemia (n = 25) | CT | CD44 levels have no correlation to therapy response |
Yoon et al., 2016 [37] | Rectal cancer (n = 145) | CRT (5-FU + leucovorin) + Surgery | No association between CD44 and recurrence-free survival or cancer specific survival |
Author, Year | Population | Intervention | Outcome/Effect Observed |
---|---|---|---|
Baschnagel et al., 2017 [38] | Head and neck SCC (n = 105) | CRT (DDP/carboplatin/cetuximab or DCF + DDP + 5-FU) | High CD44 predicts poor loco-regional control and prognosis |
Costa et al., 2001 [39] | Cervical carcinoma (n = 21) | NACT (DDP + epirubicin + VP-16 + bleomycin) + Surgery + RT | Reduced CD44 associated with increased recurrence-free survival and overall survival |
Elbaiomy et al., 2020 [40] | Breast cancer (n = 76) | CT + Hormonal therapy | High CD44 predicts poor response to treatment and shorter progression-free and overall survival |
Gerger et al., 2011 [41] | Colon cancer (n = 234) | Adjuvant CT (5-FU-based) + Surgery | CD44 is associated with increased tumor recurrence |
Ghanem et al., 2002 [42] | Nephroblastoma (n = 61) | NACT + Surgery | Increased expression of CD44 correlated with clinical progression and tumor-related death |
Gong et al., 2010 [43] | Breast cancer (n = 192) | NACT (5-FU + epirubicin + cyclophosphamide) + Surgery + RT | High CD44 correlates with poor clinical response and resistance to chemotherapy |
Gvozdenovic et al., 2013 [44] | Osteosarcoma (n = 53) | NACT + Surgery | CD44-positive patients had shorter overall mean survival and mean metastasis-free survival |
Han et al., 2000 [45] | Leukemia (n = 145) | CT (idarubicin, VP-16, Ara-C, or 6-TG) | CD44-high group associated with more frequently expressed in relapsed or refractory cases |
Hara et al., 2019 [46] | Esophageal SCC (n = 146) | CT (DDP + 5-FU/ACF or DCF) + Surgery | CD44-high group associated with poorer clinical response to treatment |
Huh et al., 2014 [47] | Rectal cancer (n = 123) | Preoperative CT (5-FU + leucovorin) + Surgery | Elevated pretreatment CD44 predictive of poor tumor regression |
Klose et al., 2021 [48] | Rectal cancer (n = 218) | Neoadjuvant RCT (5-FU) + Surgery | Presence of CD44 cells associated with impaired overall survival |
Koukourakis et al., 2012 [49] | Head and neck SCC (n = 74) | CRT (DDP, amifostine, or cetuximab) | High presence of CD44+ cells associated with incomplete response after therapy |
Lee et al., 2011 [50] | Breast cancer (n = 92) | Primary systemic CT (AD/AC) | CD44+ populations showed higher Ki-67 proliferation index and shorter disease-free survival |
Lin et al., 2010 [51] | Head and neck SCC (n = 54) | CT/RT | High pretreatment CD44 mRNA levels associated with poor prognosis |
Lin et al., 2012 [53] | Breast cancer (n = 147) | Surgery + CT | CD44+ phenotype associated with shorter disease-free survival and overall survival |
Liu et al., 2012 [52] | Breast cancer (n = 135) | NACT + Surgery | High ratio of CD44+ cells less sensitive to chemotherapy |
Mikami et al., 2015 [54] | Kidney carcinoma (n = 25) | CT (sunitinib) | Patients with CD44-high cells had shorter time to treatment failure and overall survival |
Negri et al., 2019 [55] | Colon cancer (n = 51) | CT (bevacizumab) | High expression of CD44 predicted reduced progression-free survival and overall survival |
Ristamäki et al., 1997 [56] | Lymphoma (n = 194) | CRT (bleo-CHOP or M-BACOD) or another anthracycline containing combination) | Patients with high s-CD44 concentrations had poorer survival |
Tokunaga et al., 2019 [57] | Breast cancer (n = 48) | NACT (anthracycline/taxanes) + Surgery | High pretreatment CD44 expression associated with poor prognosis |
Wang et al., 2011 [58] | Gastric carcinoma (n = 8) | NACT (DCF + DDP + capecitabine) + Surgery | High CD44 expression associated with worse patient survival |
Yamauchi et al., 2018 [59] | Breast Cancer (n = 18) | CT (trastuzumab + lapatinib + paclitaxel) | Persistent expression of CD44 associated with poor response to chemotherapy |
Saigusa et al., 2012 [60] | Rectal cancer (n = 52) | Preoperative CRT (5-FU + UFT) + Surgery | Positive CD44 gene expression is correlated with disease recurrence and poor overall survival |
Zhao et al., 2022 [61] | Lung cancer (n = 72) | CT (DCF + DDP + capecitabine) ± RT | High baseline HA or CD44 associated with bone metastasis |
Intervention | Number of Articles Showing the Effect of CD44 Expression Has on Different Types of Intervention | ||
---|---|---|---|
Negative Effect | No Effect | Positive Effect | |
Only Chemotherapy | 7 [45,50,51,54,55,59,61] | 2 [35,36] | 0 |
Chemotherapy + Radiotherapy | 3 [38,49,56] | 3 [29,31,34] | 2 [23,24] |
Chemotherapy + Surgery | 10 [39,41,42,44,46,47,52,53,57,58] | 5 [25,26,27,30,33] | 0 |
Chemotherapy + Radiotherapy + Surgery | 4 [39,43,48,60] | 2 [28,37] | 1 [22] |
Drug Used | Type of Chemotherapy | Effect of CD44 Expression on Chemotherapy Outcome | ||
---|---|---|---|---|
Negative Effect | No Effect | Positive Effect | ||
5-Fluorouracil | Single | [28,41] | [32,48] | |
Combination | [31,38,43,46,47] | [33,35,37,60] | ||
Cisplatin | Single | [38] | [29,34] | [23] |
Combination | [38,39,46,49,58,61] | [30,33,34] | ||
Docetaxel | Single | [46] | ||
Combination | [38,50,58,61] | [34] | ||
Other drugs | Single | [54,55] | [24] | |
Combination | [45,46,49,50,56,57,58,60,61] | [30,31,34,35,37] |
Cancer Type | Number of Articles | Number of Articles Showing Effect of CD44 Expression on Chemotherapy Treatment Outcome | ||
---|---|---|---|---|
Negative | No Effect | Positive Effect | ||
Breast | 11 | 8 [40,43,50,51,52,53,57,59] | 3 [25,26,35] | 0 |
Rectal | 7 | 3 [47,48,60] | 4 [28,31,32,37] | 0 |
Head and Neck | 4 | 3 [38,49,51] | 1 [29] | 0 |
Cervical | 3 | 1 [39] | 1 [34] | 1 [23] |
Esophageal | 3 | 1 [46] | 1 [33] | 1 [22] |
Leukemia | 2 | 1 [45] | 1 [36] | 0 |
Osteosarcoma | 3 | 1 [44] | 2 [27,30] | 0 |
Colon | 2 | 2 [41,55] | 0 | 0 |
Kidney | 2 | 2 [42,54] | 0 | 0 |
Gastric | 1 | 1 [58] | 0 | 0 |
Glioblastoma | 1 | 0 | 0 | 1 [24] |
Lung | 1 | 1 [61] | 0 | 0 |
Lymphoma | 1 | 1 [56] | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Lu, J.; Loo, A.; Ho, N.; Nguyen, D.; Cheng, P.Y.; Mohammed, A.I.; Cirillo, N. Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies. Int. J. Mol. Sci. 2024, 25, 3141. https://doi.org/10.3390/ijms25063141
Wu Z, Lu J, Loo A, Ho N, Nguyen D, Cheng PY, Mohammed AI, Cirillo N. Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies. International Journal of Molecular Sciences. 2024; 25(6):3141. https://doi.org/10.3390/ijms25063141
Chicago/Turabian StyleWu, Zihao, Jillian Lu, Andrew Loo, Nathan Ho, Danny Nguyen, Po Yueh Cheng, Ali I. Mohammed, and Nicola Cirillo. 2024. "Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies" International Journal of Molecular Sciences 25, no. 6: 3141. https://doi.org/10.3390/ijms25063141
APA StyleWu, Z., Lu, J., Loo, A., Ho, N., Nguyen, D., Cheng, P. Y., Mohammed, A. I., & Cirillo, N. (2024). Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies. International Journal of Molecular Sciences, 25(6), 3141. https://doi.org/10.3390/ijms25063141