Expression of Rejection-Associated Transcripts in Early Protocol Renal Transplant Biopsies Is Associated with Tacrolimus Exposure and Graft Outcome
Abstract
:1. Introduction
2. Results
2.1. Patients and Biopsies
2.2. Transcriptome Analysis by Microfluidics
2.3. Transcriptome Analysis and Clinical Variables
2.4. Renal Outcome and Protocol Biopsies
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. HLA Typing and HLA Antibodies
4.3. Immunosuppression
4.4. Biopsies
4.5. Analysis Using Fluidigm Microfluidics Dynamic Arrays
4.6. Statistics
4.7. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABMR | Antibody-mediated rejection. |
DSA | Donor-specific HLA antibodies. |
FC | Fold change. |
FDR | False discovery rate. |
eGFR | Estimated glomerular filtration rate by CKD-EPI formula. |
IF/TA | Interstitial fibrosis and tubular atrophy. |
IF/TA + i | Interstitial fibrosis and tubular atrophy with interstitial infiltrates. |
SCR | Subclinical rejection. |
TAC-C0 | Tacrolimus trough levels. |
TCMR | T cell-mediated rejection. |
References
- Rush, D.N.; Henry, S.H.; Jeffery, J.R.; Schroeder, T.J.; Gough, J. Histological finding in early routine protocol biopsies in renal transplantation. Transplantation 1994, 57, 208–211. [Google Scholar] [CrossRef]
- Rush, D.N.; Jeffery, J.R.; Gough, J. Sequential protocol biopsies in renal transplant patients. Clinico-pathological correlations using the Banff schema. Transplantation 1995, 59, 511–514. [Google Scholar] [CrossRef]
- Rush, D.N. Protocol transplant biopsies. An underutilized tool in kidney transplantation. Clin. J. Am. Soc. Nehrol. 2006, 1, 138–143. [Google Scholar] [CrossRef]
- Rush, D.; Nickerson, P.; Gough, J.; McKenna, R.; Grimm, P.; Cheang, M.; Trpkov, K.; Solez, K.; Jeffery, J. Beneficial effects of treatment of early subclinical rejection: A randomized study. J. Am. Soc. Nephrol. 1998, 9, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Rush, D.; Arlen, D.; Boucher, A.; Busque, S.; Cockfield, S.M.; Girardin, C.; Knoll, G.; Lachance, J.G.; Landsberg, D.; Shapiro, J.; et al. Lack of benefit of early protocol biopsies in renal transplant patients receiving TAC and MMF: A randomized study. Am. J. Transplant. 2007, 7, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, F.; Gelpi, R.; Helanterä, I.; Melilli, E.; Honkanen, E.; Bestard, O.; Grinyo, J.M.; Cruzado, J.M. Decreased Kidney Graft Survival in Low Immunological Risk Patients Showing Inflammation in Normal Protocol Biopsies. PLoS ONE 2016, 11, e0159717. [Google Scholar] [CrossRef] [PubMed]
- Sarwal, M.; Chua, M.-S.; Kambham, N.; Hsieh, S.-C.; Satterwhite, T.; Masek, M.; Salvatierra, O. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 2003, 349, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Einecke, G. Microarrays and transcriptome analysis in renal transplantation. Nat. Clin. Pract. Nephrol. 2006, 2, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Venner, J.M.; Madill-Thomsen, K.S.; Einecke, G.; Parkes, M.D.; Hidalgo, L.G.; Famulski, K.S. Review: The transcripts associated with organ allograft rejection. Am. J. Transplant. 2018, 18, 785–795. [Google Scholar] [CrossRef]
- Mueller, F.B.; Yang, H.; Lubetzky, M.; Verma, A.; Lee, J.R.; Dadhania, D.M.; Xiang, J.Z.; Salvatore, S.P.; Seshan, S.V.; Sharma, V.K.; et al. Landscape of innate immune system transcriptome and acute T cell-mediated rejection of human kidney allografts. JCI Insight 2019, 4, e128014. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, D.G.; Sellarés, J.; Mengel, M.; Chang, J.; Hidalgo, L.G.; Famulski, K.S.; Sis, B.; Einecke, G.; Halloran, P.F. The nature of biopsies with ‘borderline rejection’ and prospects for eliminating this category. Am. J. Transplant. 2012, 12, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, B.; Caraben, A.; Torres, I.B.; Sellares, J.; Jiménez, R.; Toapanta, N.; Cidraque, I.; Gabaldon, A.; Perelló, M.; Gonzalo, R.; et al. A Rejection Gene Expression Score in Indication and Surveillance Biopsies Is Associated with Graft Outcome. Int. J. Mol. Sci. 2020, 21, 8237. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.; Loupy, A.; Lefaucheur, C.; Roufosse, C.; Glotz, D.; Seron, D.; Nankivell, B.J.; Halloran, P.F.; Colvin, R.B.; Akalin, E.; et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 2018, 18, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Gatault, P.; Kamar, N.; Büchler, M.; Colosio, C.; Bertrand, D.; Durrbach, A.; Albano, L.; Rivalan, J.; Le Meur, Y.; Essig, M.; et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. Am. J. Transplant. 2017, 17, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.B.; Reisaeter, A.V.; Moreso, F.; Âsberg, A.; Vidal, M.; Garcia-Carro, C.; Midtvedt, K.; Reinholt, F.P.; Scott, H.; Castellà, E.; et al. Tacrolimus and mycophenolate regimen and subclinical tubulo-interstitial inflammation in low immunological risk renal transplants. Transpl. Int. 2017, 30, 1119–1131. [Google Scholar] [CrossRef]
- Hernández, D.; Vázquez, T.; Alonso-Titos, J.; León, M.; Caballero, A.; Cobo, M.A.; Sola, E.; López, V.; Ruiz-Esteban, P.; Cruzado, J.M.; et al. Impact of HLA Mismatching on Early Subclinical Inflammation in Low-Immunological-Risk Kidney Transplant Recipients. J. Clin. Med. 2021, 10, 1934. [Google Scholar] [CrossRef]
- Wiebe, C.; Rush, D.N.; Nevins, T.E.; Birk, P.E.; Blydt-Hansen, T.; Gibson, I.W.; Goldberg, A.; Ho, J.; Karpinski, M.; Pochinco, D.; et al. Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to Prevent Donor-Specific Antibody Development. J. Am. Soc. Nephrol. 2017, 28, 3353–3362. [Google Scholar] [CrossRef]
- Vionnet, J.; Miquel, R.; Abraldes, J.G.; Wall, J.; Kodela, E.; Lozano, J.J.; Ruiz, P.; Navasa, M.; Marshall, A.; Nevens, F.; et al. Non-invasive alloimmune risk stratification of long-term liver transplant recipients. J. Hepatol. 2021, 75, 1409–1419. [Google Scholar] [CrossRef]
- Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vítko, Š.; Nashan, B.; Gürkan, A.; Margreiter, R.; Hugo, C.; Grinyó, J.M.; Frei, U.; et al. Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation. N. Engl. J. Med. 2007, 357, 2562–2575. [Google Scholar] [CrossRef]
- Mehta, R.B.; Melgarejo, I.; Viswanathan, V.; Zhang, X.; Pittappilly, M.; Randhawa, P.; Sood, P.; Wu, C.; Sharma, A.; Molinari, M. Long-term immunological outcomes of early subclinical inflammation on surveillance kidney allograft biopsies. Kidney Int. 2022, 102, 1371–1381. [Google Scholar] [CrossRef]
- Mehta, R.B.; Tandukar, S.; Jorgensen, D.; Randhawa, P.; Sood, P.; Puttarajappa, C.; Zeevi, A.; Tevar, A.D.; Hariharan, S. Early subclinical tubulitis and interstitial inflammation in kidney transplantation have adverse clinical implications. Kidney Int. 2020, 98, 436–447. [Google Scholar] [CrossRef]
- Mengel, M.; Chang, J.; Kayser, D.; Gwinner, W.; Schwarz, A.; Einecke, G.; Broecker, V.; Famulski, K.; De Freitas, D.G.; Guembes-Hidalgo, L.; et al. The molecular phenotype of 6-week protocol biopsies from human renal allografts: Reflections of prior injury but not future course. Am. J. Transplant. 2011, 11, 708–718. [Google Scholar] [CrossRef]
- Olsen, S.; Hansen, E.S.; Jepsen, F.L. The prevalence of focal tubulo-interstitial lesions in various renal diseases. Acta Pathol. Microbiol. Scand. A. 1981, 89, 137–145. [Google Scholar] [CrossRef]
- Furness, P.N.; Taub, N. Convergence of European Renal Transplant Pathology Assessment Procedures (CERTPAP) Project. International variation in the interpretation of renal transplant biopsies: Report of the CERTPAP Project. Kidney Int. 2001, 60, 1998–2012. [Google Scholar] [CrossRef]
- Halloran, P.F.; Reeve, J.P.; Pereira, A.B.; Hidalgo, L.G.; Famulski, K.S. Antibody-mediated rejection, T cell–mediated rejection, and the injury-repair response: New insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int. 2014, 85, 258–264. [Google Scholar] [CrossRef]
- Mengel, M.; Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Akalin, E.; Clahsen-van Groningen, M.C.; Dagobert, J.; Demetris, A.J.; van Huyen, J.P.D.; et al. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation-Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am. J. Transplant. 2020, 20, 2305–2317. [Google Scholar] [CrossRef]
- Halloran, P.F.; Matas, A.; Kasiske, B.L.; Madill-Thomsen, K.S.; Mackova, M.; Famulski, K.S. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Am. J. Transplant. 2019, 19, 1356–1370. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H. Applications of Transcriptomics in the Research of Antibody-Mediated Rejection in Kidney Transplantation: Progress and Perspectives. Organogenesis 2022, 18, 2131357. [Google Scholar] [CrossRef] [PubMed]
- Dooley, B.J.; Verma, A.; Ding, R.; Yang, H.; Muthukumar, T.; Lubetzky, M.; Shankaranarayanan, D.; Elemento, O.; Suthanthiran, M. Urinary Cell Transcriptome Profiling and Identification of ITM2A, SLAMF6, and IKZF3 as Biomarkers of Acute Rejection in Human Kidney Allografts. Transpl. Direct 2020, 6, e588. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.L. T Cell Cosignaling Molecules in Transplantation. Immunity 2016, 44, 1020–1033. [Google Scholar] [CrossRef]
- Verma, A.; Muthukumar, T.; Yang, H.; Lubetzky, M.; Cassidy, M.F.; Lee, J.R.; Dadhania, D.M.; Snopkowski, C.; Shankaranarayanan, D.; Salvatore, S.P.; et al. Urinary cell transcriptomics and acute rejection in human kidney allografts. JCI Insight 2020, 5, e131552. [Google Scholar] [CrossRef]
- Binder, C.; Cvetkovski, F.; Sellberg, F.; Berg, S.; Paternina Visbal, H.; Sachs, D.H.; Berglund, E.; Berglund, D. CD2 Immunobiology. Front. Immunol. 2020, 11, 1090. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Reeve, J.; Akalin, E.; Aubert, O.; Bohmig, G.A.; Brennan, D.; Bromberg, J.; Einecke, G.; Eskandary, F.; Gosset, C.; et al. Real Time Central Assessment of Kidney Transplant Indication Biopsies by Microarrays: The INTERCOMEX Study. Am. J. Transplant. 2017, 17, 2851–2862. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Pereira, A.B.; Chang, J.; Matas, A.; Picton, M.; De Freitas, D.; Bromberg, J.; Serón, D.; Sellarés, J.; Einecke, G.; et al. Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: The INTERCOM study. Am. J. Transplant. 2013, 13, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Hrubá, P.; Brabcová, I.; Gueler, F.; Krejčík, Z.; Stránecký, V.; Svobodová, E.; Malušková, J.; Gwinner, W.; Honsová, E.; Lodererová, A.; et al. Molecular diagnostics identifies risks for graft dysfunction despite borderline histologic changes. Kidney Int. 2015, 88, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Geneugelijk, K.; Wissing, J.; Koppenaal, D.; Niemann, M.; Spierings, E. Computational Approaches to Facilitate Epitope-Based HLA Matching in Solid Organ Transplantation. J. Immunol. Res. 2017, 2017, 9130879. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, B.; Torres, I.B.; Gabaldón, A.; Sellarés, J.; Perelló, M.; Castellá, E.; Guri, X.; Salcedo, M.; Toapanta, N.G.; Cidraque, I.; et al. Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism. J. Clin. Med. 2021, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time. Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef]
Variable | Group I (n = 17) | Group II (n = 12) | Group III (n = 137) |
---|---|---|---|
Donor type (BDD/DCD/LD) | 10/4/3 | 7/2/3 | 85/34/18 |
Donor age (years) | 45 ± 18 | 59 ± 15 | 57 ± 14 |
Donor gender (m/f) | 10/7 | 4/8 | 77/60 |
Recipient age (years) | 46 ± 13 | 50 ± 16 | 55 ± 14 |
Recipient gender (m/f) | 10/7 | 6/6 | 91/46 |
First transplant/retransplant | 15/2 | 7/5 | 117/20 |
Primary renal disease (GN/ADPKD/diabetes/others/unknown) | 3/5/0/4/5 | 4/1/1/2/4 | 28/18/11/25/55 |
Class I HLA mismatch (A + B) | 2.5 ± 0.9 | 2.1 ± 0.9 | 2.8 ± 1.0 |
Class II HLA mismatch (DR) | 1.1 ± 0.5 | 1.3 ± 0.6 | 1.1 ± 0.6 |
Induction (basiliximab/thymoglobulin) | 8/9 | 4/8 | 77/60 |
Cold ischemia time | 14.3 ± 6.7 | 13.0 ± 7.0 | 13.4 ± 6.8 |
Delayed graft function (no/yes) | 16/1 | 10/2 | 123/19 |
Previous episodes of rejection (no/yes) | 17/0 | 9/3 | 134/7 |
DSA at the time of transplant (no/yes) | 15/2 | 11/1 | 130/7 |
CMV infection (no/viremia/disease) | 14/2/1 | 9/3/0 | 115/18/4 |
Variable | Group I (n = 17) | Group II (n = 12) | Group III (n = 137) |
---|---|---|---|
Time of biopsy (months) | 4.7 ± 1.7 | 43 ± 55 | 4.4 ± 1.4 |
Serum creatinine (mg/dL) | 1.22 ± 0.31 | 2.72 ± 1.95 | 1.44 ± 0.32 |
eGFR (mL/min/1.73 sqm) | 66.6 ± 23.0 | 35.1 ± 21.1 | 52.2 ± 14.6 |
Urine P/C ratio (mg/g) | 260 ± 190 | 1890 ± 1340 | 265 ± 192 |
DSA at the time of biopsy (no/yes) | 17/0 | 8/4 | 133/4 |
Tacrolimus dose (mg/day) | 6.8 ± 4.2 | 7.6 ± 5.9 | 6.5 ± 4.2 |
TAC-C0 (ng/mL) | 8.8 ± 2.0 | 7.9 ± 3.6 | 9.3 ± 2.7 |
MMF dose (g/day) | 1.0 ± 0.2 | 0.9 ± 0.2 | 0.9 ± 0.2 |
Variable | i-Score = 0 (n= 99) | i-Score ≥1 (n = 38) | p-Value |
---|---|---|---|
Donor type (BDD/DCD/LD) | 58/27/14 | 27/7/4 | 0.490 |
Donor age (years) | 57 ± 14 | 56 ± 15 | 0.837 |
Donor gender (m/f) | 56/43 | 21/17 | 0.793 |
Recipient age (years) | 55 ± 14 | 57 ± 14 | 0.453 |
Recipient gender (m/f) | 65/34 | 26/12 | 0.759 |
First transplant/retransplant | 85/14 | 32/6 | 0.807 |
Class I HLA mismatch (A + B) | 2.8 ± 0.9 | 2.9 ± 1.0 | 0.521 |
Class II HLA mismatch (DR) | 1.1 ± 0.6 | 1.2 ± 0.6 | 0.233 |
Class I Eplet mismatch | 14 ± 6 | 14 ± 8 | 0.845 |
Class II Eplet mismatch | 15 ± 10 | 17 ± 15 | 0.305 |
PIRCHE-II class I | 49 ± 27 | 49 ± 29 | 0.914 |
PIRCHE-II class II | 34 ± 25 | 34 ± 22 | 0.996 |
DSA at the time of transplant (no/yes) | 96/3 | 34/4 | 0.074 |
Induction (Basiliximab/ATG) | 53/46 | 24/14 | 0.367 |
Cold ischemia time | 12.6 ± 6.9 | 15.3 ± 6.2 | 0.040 |
DGF (no/yes) | 87/12 | 31/7 | 0.339 |
TCMR before protocol biopsy (no/yes) | 94/5 | 36/2 | 0.960 |
Variable | i-Score = 0 (n= 99) | i-Score ≥1 (n = 38) | p-Value |
---|---|---|---|
Time of biopsy (months) | 4.3 ± 1.4 | 4.6 ± 1.7 | 0.169 |
Serum creatinine (mg/dL) | 1.5 ± 0.3 | 1.4 ± 0.3 | 0.747 |
eGFR (mL/min/1.73 m2) | 52 ± 14 | 53 ± 16 | 0.790 |
Urine P/C ratio (mg/g) | 275 ± 206 | 239 ± 148 | 0.331 |
DSA at the time of biopsy (no/yes) | 96/3 | 37/1 | 0.901 |
Tacrolimus dose (mg/day) | 6.7 ± 4.5 | 6.0 ± 3.3 | 0.425 |
TAC-C0 (ng/mL) | 9.7 ± 2.7 | 8.2 ± 2.2 | 0.002 |
C/D tacrolimus (ng/mL/mg) | 1.72 (1.06–2.80) | 1.54 (1.05–1.98) | 0.220 |
CV TAC- C0 from day 7 to biopsy (%) | 36.5 ± 23.3 | 36.6 ± 14.3 | 0.990 |
Time in TR (%) | 67 ± 31 | 69 ± 33 | 0.738 |
Time above TR (%) | 24 ± 28 | 17± 26 | 0.184 |
Time below TR (%) | 7 ± 14 | 10 ± 18 | 0.303 |
MMF dose (g/day) | 0.9 ± 0.2 | 0.9 ± 0.2 | 0.735 |
eGFR decline (mL/min/1.73 m2/year) | −0.8 ± 4.3 | −1.1 ± 2.9 | 0.163 |
Variable | Cluster 1 (n = 77) | Cluster 2 (n = 60) | p-Value |
---|---|---|---|
Donor type (BDD/DACD/LD) | 47/17/13 | 38/17/5 | ns |
Donor age (y) | 54 ± 13 | 60 ± 15 | 0.0316 |
Patient age (y) | 54 ± 13 | 57 ± 15 | ns |
Patient sex (m/f) | 53/24 | 38/22 | ns |
First transplant/retransplant | 68/9 | 49/11 | ns |
Class I HLA mismatch (A + B) | 2.7 ± 1.0 | 3.0 ± 1.0 | 0.039 |
Class II HLA mismatch (DR) | 1.1 ± 0.7 | 1.2 ± 0.6 | 0.571 |
HLA eplet class I mismatch | 13 ± 6 | 15 ± 7 | 0.061 |
HLA eplet class II mismatch | 14 ± 11 | 16 ± 9 | 0.335 |
HLA AbV eplet DRB mismatch | 2.8 ± 2.4 | 3.6 ±2.4 | 0.059 |
HLA AbV eplet DQB mismatch | 2.6 ± 2.6 | 2.5 ± 2.3 | 0.757 |
PIRCHE-II class I | 48 ± 28 | 52 ± 28 | 0.446 |
PIRCHE-II class II | 34 ±28 | 34 ± 19 | 0.999 |
Induction (basiliximab/thymoglobulin) | 44/33 | 33/27 | ns |
DGF (n/y) | 67/10 | 51/9 | ns |
TCMR before protocol biopsy (n/y) | 72/5 | 68/2 | ns |
eGFR (mL/min/1.73 sqm) biopsy | 53 ± 13 | 51 ± 16 | ns |
Urinary protein/creatinine (g/g) biopsy | 0.24 ± 0.17 | 0.30 ± 0.24 | ns |
TAC-C0 (ng/mL) biopsy | 9.8 ± 2.6 | 8.6 ± 2.6 | 0.0133 |
CV of TAC-C0 from day 7 to biopsy (%) | 34.9 ± 22.4 | 39.2 ± 20.5 | 0.2483 |
Time in TR (%) | 68 ± 32 | 50 ± 30 | 0.430 |
Time above TR (%) | 25 ± 30 | 15 ± 25 | 0.304 |
Time below TR (%) | 5 ± 15 | 12 ± 18 | 0.070 |
MMF dose (g/day) | 0.9 ± 0.2 | 0.9 ± 0.2 | ns |
eGFR decline (mL/min/1.72 m2/year) | −0.2 ± 3.7 | −1.9 ± 4.1 | 0.0145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamoun, B.; Torres, I.B.; Gabaldón, A.; Jouvé, T.; Meneghini, M.; Zúñiga, J.M.; Sellarés, J.; Perelló, M.; Serón, D.; Bestard, O.; et al. Expression of Rejection-Associated Transcripts in Early Protocol Renal Transplant Biopsies Is Associated with Tacrolimus Exposure and Graft Outcome. Int. J. Mol. Sci. 2024, 25, 3189. https://doi.org/10.3390/ijms25063189
Chamoun B, Torres IB, Gabaldón A, Jouvé T, Meneghini M, Zúñiga JM, Sellarés J, Perelló M, Serón D, Bestard O, et al. Expression of Rejection-Associated Transcripts in Early Protocol Renal Transplant Biopsies Is Associated with Tacrolimus Exposure and Graft Outcome. International Journal of Molecular Sciences. 2024; 25(6):3189. https://doi.org/10.3390/ijms25063189
Chicago/Turabian StyleChamoun, Betty, Irina B. Torres, Alejandra Gabaldón, Thomas Jouvé, María Meneghini, José M. Zúñiga, Joana Sellarés, Manel Perelló, Daniel Serón, Oriol Bestard, and et al. 2024. "Expression of Rejection-Associated Transcripts in Early Protocol Renal Transplant Biopsies Is Associated with Tacrolimus Exposure and Graft Outcome" International Journal of Molecular Sciences 25, no. 6: 3189. https://doi.org/10.3390/ijms25063189
APA StyleChamoun, B., Torres, I. B., Gabaldón, A., Jouvé, T., Meneghini, M., Zúñiga, J. M., Sellarés, J., Perelló, M., Serón, D., Bestard, O., & Moreso, F. (2024). Expression of Rejection-Associated Transcripts in Early Protocol Renal Transplant Biopsies Is Associated with Tacrolimus Exposure and Graft Outcome. International Journal of Molecular Sciences, 25(6), 3189. https://doi.org/10.3390/ijms25063189