Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications
Abstract
:1. Introduction
2. Colorectal Cancer Risk Factors
3. Methylation
3.1. Mechanism of Methylation Modification
3.2. The Role of Methylation in CRC
4. Histone Modification
5. Non-Coding RNAs
5.1. MicroRNAs
Diagnostic Markers | Specimens | Epigenetic Changes | Sensibility (%) | Specificity (%) | Reference |
---|---|---|---|---|---|
miR-92a-1 | serum | up-regulated miRNAs | 81.8 | 95.6 | [143] |
miR-29a + miR-92a | plasma | up-regulated miRNAs | 83 | 84.7 | [144] |
miR-92 | plasma | up-regulated miRNAs | 89 | 70 | [145] |
miR-28-3p + miR-106a-5p + miR-542-5p + let-7e-5p | plasma | up-regulated miRNAs | 99.7 | 90.9 | [146] |
miR-135b-5p | serum | up-regulated miRNAs | 93.1 | 72.7 | [147] |
miR-21 | serum | up-regulated miRNAs | 86.05 | 72.97 | [127] |
miR-21 | serum | up-regulated miRNAs | 82.8 | 90.6 | [148] |
miR-21 | saliva | up-regulated miRNAs | 97 | 91 | [149] |
miR-1246+ miR-1268b + miR-4648 | serum | up-regulated miRNAs | 50.7 | 90.2 | [150] |
miR-106a | tissue | up-regulated miRNAs | 53 | 85 | [151] |
miR-106b | serum | up-regulated miRNAs | 85.2 | 78 | [152] |
miR-429 | tissue | up-regulated miRNAs | 71.79 | 62.82 | [153] |
miR-200c + miR-18a | plasma | up-regulated miRNAs | 84.6 | 75.6 | [154] |
miR-223 + miR-92a | plasma | up-regulated miRNAs | 76.3 | 68.8 | [155] |
miR-424-5p | serum | up-regulated miRNAs | 79 | 72.6 | [156] |
miR-375 | plasma | down-regulated miRNAs | 76.92 | 64.63 | [157] |
miR-145 | tissue | down-regulated miRNAs | 90 | 88 | [158] |
miR-23b | tissue | down-regulated miRNAs | 78 | 70 | [158] |
miR-195 | tissue | down-regulated miRNAs | 72 | 68 | [158] |
miR-24 | plasma | down-regulated miRNAs | 78.38 | 83.85 | [159] |
miR-320a | plasma | down-regulated miRNAs | 92.79 | 73.08 | [159] |
miR-423-5p | plasma | down-regulated miRNAs | 91.89 | 70.77 | [159] |
mi-24 + mi-320a + mi-423-5p | plasma | down-regulated miRNAs | 92.79 | 70.77 | [159] |
miR-143-3p | serum | down-regulated miRNAs | 61.3 | 74.2 | [156] |
miR-135b-5p | stool | up-regulated miRNAs | 96.5 | 74.1 | [147] |
miR-21 | stool | up-regulated miRNAs | 86.05 | 81.08 | [127] |
miR-92a | stool | up-regulated miRNAs | 89.7 | 51.7 | [12] |
miR-144 | stool | up-regulated miRNAs | 78.6 | 66.7 | [12] |
miR-92a + miR-144 | stool | up-regulated miRNAs | 96.6 | 37.9 | [12] |
miR-223 + miR-92a | stool | up-regulated miRNAs | 73.9 | 82.2 | [155] |
miR-20a | stool | up-regulated miRNAs | 55 | 82 | [160] |
miR-221 | stool | up-regulated miRNAs | 62 | 74 | [161] |
miR-18a | stool | up-regulated miRNAs | 61 | 69 | [161] |
miR-221 + miR-18a | stool | up-regulated miRNAs | 66 | 75 | [161] |
miR-29a | stool | down-regulated miRNAs | 85 | 61 | [162] |
miR-224 | stool | down-regulated miRNAs | 75 | 63 | [162] |
Prognostic Markers | Specimen | Epigenetic Changes | CRC Staging | Reference |
---|---|---|---|---|
miR-21 | tissues | up-regulated | adenomas/carcinomas | [163] |
miR-92a | tissues | up-regulated | adenomas/carcinomas | [164] |
miR-25 | tissues | up-regulated | advanced (III-IV)/lymph node metastasis/distant metastasis | [165] |
miR-1246, miR-1268b, miR-4648 | serum | up-regulated | stage II and III/recurrence | [150] |
miR-1260b | tissues | up-regulated | lymph node metastasis and venous invasion | [166] |
miR-141 | plasma | up-regulated | advanced colon cancer | [167] |
miR-429 | tissues | up-regulated | 5-FU treatment | [153] |
miR-29a | tissues | up-regulated | stage II CRC/recurrence | [168] |
miR-29a | serum | up-regulated | liver metastatic | [169] |
miR-34a | plasma | up-regulated | adenoma | [170] |
miR-106b | serum | up-regulated | lymph node metastasis and distant metastasis | [152] |
miR-135b-5p | serum, stool | up-regulated | stage III and IV | [147] |
miR-126 | serum | down-regulated | early-stage liver-metastatic | [171] |
miR-429 | tissues | down-regulated | stage III and IV/lymphatic metastasis | [172] |
miR-24, miR-320a, and miR-423-5p | plasma | down-regulated | postoperative metastasis | [159] |
5.2. LncRNA
LncRNAs Diagnostic Role | LncRNAs Prognostic Role | References |
---|---|---|
H19, MALAT1, CCAT1, LEF1-AS1, PVT1, LINC01410, RP11-296E3.2, HIF1A-AS1, NRIR | LINC01094, MALAT1, CACS15, CRART16, CBR3-AS1, FGD5-AS1, LEF1-AS1, LINC00460, HIF1A-AS2, LINC00114, HOTAIR, LINC00261, PVT1, LINC01410, RP11-296E3.2 | [178,179,180,181,182,185,187,190,193,200,201,202,203,204,205,206] |
6. Summary and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Blank, A.; Roberts, D.E.; Dawson, H.; Zlobec, I.; Lugli, A. Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front. Med. 2018, 5, 234. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Przegląd Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in china: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Li, Y. Modern epigenetics methods in biological research. Methods 2021, 187, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, Q.; Chang, C. Epigenetics in health and disease. Adv. Exp. Med. Biol. 2020, 1253, 3–55. [Google Scholar]
- Jing, C.; Ma, R.; Cao, H.; Wang, Z.; Liu, S.; Chen, D.; Wu, Y.; Zhang, J.; Wu, J. Long noncoding rna and mrna profiling in cetuximab-resistant colorectal cancer cells by rna sequencing analysis. Cancer Med. 2019, 8, 1641–1651. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Xiao, W.; Zhao, H.; Dong, W.; Li, Q.; Zhu, J.; Li, G.; Zhang, S.; Ye, M. Quantitative detection of methylated ndrg4 gene as a candidate biomarker for diagnosis of colorectal cancer. Oncol. Lett. 2015, 9, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Laugsand, E.A.; Brenne, S.S.; Skorpen, F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: A systematic review of paired samples. Int. J. Color. Dis. 2020, 36, 239–251. [Google Scholar] [CrossRef]
- He, Q.; Chen, H.-Y.; Bai, E.-Q.; Luo, Y.-X.; Fu, R.-J.; He, Y.-S.; Jiang, J.; Wang, H.-Q. Development of a multiplex methylight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet. Cytogenet. 2010, 202, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Cho, Y.-S.; Choi, J.H.; Kim, H.-K.; Kim, S.S.; Chae, H.-S. Stool-based mir-92a and mir-144* as noninvasive biomarkers for colorectal cancer screening. Oncology 2019, 97, 173–179. [Google Scholar] [CrossRef]
- Hirukawa, A.; Singh, S.; Wang, J.; Rennhack, J.P.; Swiatnicki, M.; Sanguin-Gendreau, V.; Zuo, D.; Daldoul, K.; Lavoie, C.; Park, M.; et al. Reduction of global h3k27me3 enhances her2/erbb2 targeted therapy. Cell Rep. 2019, 29, 249–257. [Google Scholar] [CrossRef]
- Clarke, T.L.; Tang, R.; Chakraborty, D.; Van Rechem, C.; Ji, F.; Mishra, S.; Ma, A.; Kaniskan, H.Ü.; Jin, J.; Lawrence, M.S.; et al. Histone lysine methylation dynamics controlegfrdna copy-number amplification. Cancer Discov. 2020, 10, 306–325. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Wang, F.; Moyer, M.P.; Wei, Q.; Zhang, P.; Yang, Z.; Liu, W.; Zhang, H.; Chen, N.; et al. Long non-coding rna ccal regulates colorectal cancer progression by activating wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 2016, 65, 1494–1504. [Google Scholar] [CrossRef]
- Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef]
- Conteduca, V.; Sansonno, D.; Russi, S.; Dammacco, F. Precancerous colorectal lesions. Int. J. Oncol. 2013, 43, 973–984. [Google Scholar] [CrossRef]
- Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; Bos, J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 1988, 319, 525–532. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Low, E.E.; Demb, J.; Liu, L.; Earles, A.; Bustamante, R.; Williams, C.D.; Provenzale, D.; Kaltenbach, T.; Gawron, A.J.; Martinez, M.E.; et al. Risk factors for early-onset colorectal cancer. Gastroenterology 2020, 159, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Samowitz, W.S.; Albertsen, H.; Sweeney, C.; Herrick, J.; Caan, B.J.; Anderson, K.E.; Wolff, R.K.; Slattery, M.L. Association of smoking, cpg island methylator phenotype, and v600e braf mutations in colon cancer. J. Natl. Cancer Inst. 2006, 98, 1731–1738. [Google Scholar] [CrossRef]
- Leowattana, W.; Leowattana, P.; Leowattana, T. Systemic treatment for metastatic colorectal cancer. World J. Gastroenterol. 2023, 29, 1569–1588. [Google Scholar] [CrossRef]
- Kryczka, J.; Sochacka, E.; Papiewska-Pająk, I.; Boncela, J. Implications of abcc4–mediated camp efflux for crc migration. Cancers 2020, 12, 3547. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Sanchis-Gomar, F.; Lippi, G. Concise update on colorectal cancer epidemiology. Ann. Transl. Med. 2019, 7, 609. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef]
- Bando, H.; Ohtsu, A.; Yoshino, T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 306–322. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, binimetinib, and cetuximab in braf v600e–mutated colorectal cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Overman, M.J.; Hartman, L.; Khoukaz, T.; Brutcher, E.; Lenz, H.-J.; Atasoy, A.; Shangguan, T.; Zhao, H.; El-Rayes, B. Safety of nivolumab plus low-dose ipilimumab in previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer. Oncologist 2019, 24, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem. 2017, 24, 1537–1557. [Google Scholar] [CrossRef]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef]
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004, 351, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al. Wild-type kras is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 1626–1634. [Google Scholar] [CrossRef] [PubMed]
- Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type kras exon 2 metastatic colorectal cancer (aspecct): A randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014, 15, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Trusolino, L.; Martino, C.; Bencardino, K.; Lonardi, S.; Bergamo, F.; Zagonel, V.; Leone, F.; Depetris, I.; Martinelli, E.; et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, kras codon 12/13 wild-type, her2-positive metastatic colorectal cancer (heracles): A proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Popplewell, L.; Boyiadzis, M.; Foran, J.; Platzbecker, U.; Vey, N.; Walter, R.B.; Olin, R.; Raza, A.; Giagounidis, A.; et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in ras-mutant relapsed or refractory myeloid malignancies. Cancer 2016, 122, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Boukouris, A.E.; Theochari, M.; Stefanou, D.; Papalambros, A.; Felekouras, E.; Gogas, H.; Ziogas, D.C. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit. Rev. Oncol. Hematol. 2022, 173, 103663. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (checkmate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. Pd-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Murai, J.; Pommier, Y. Brcaness, homologous recombination deficiencies, and synthetic lethality. Cancer Res. 2023, 83, 1173–1174. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Lang, I.; Marcuello, E.; Lorusso, V.; Ocvirk, J.; Shin, D.B.; Jonker, D.; Osborne, S.; Andre, N.; Waterkamp, D.; et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (avex): An open-label, randomised phase 3 trial. Lancet Oncol. 2013, 14, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Tabernero, J.; Lakomy, R.; Prenen, H.; Prausová, J.; Macarulla, T.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.; Ferry, D.; et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase iii randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 2012, 30, 3499–3506. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Cutsem, E.V.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (correct): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhao, B.S.; He, C. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol. 2016, 23, 74–85. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, H.; Liu, D.; Cheng, Y.; Liu, X.; Zhang, W.; Yin, R.; Zhang, D.; Zhang, P.; Liu, J.; et al. N6-methyladenine DNA modification in drosophila. Cell 2015, 161, 893–906. [Google Scholar] [CrossRef]
- Jones, P.A.; Takai, D. The role of DNA methylation in mammalian epigenetics. Science 2001, 293, 1068–1070. [Google Scholar] [CrossRef]
- Yamagata, Y.; Asada, H.; Tamura, I.; Lee, L.; Maekawa, R.; Taniguchi, K.; Taketani, T.; Matsuoka, A.; Tamura, H.; Sugino, N. DNA methyltransferase expression in the human endometrium: Down-regulation by progesterone and estrogen. Hum. Reprod. 2009, 24, 1126–1132. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.; Duan, S.; Perry, B.; Li, W.; He, Y. DNA methylation and hypertension: Emerging evidence and challenges. Brief. Funct. Genomics 2016, 15, 460–469. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Z.; Yung, S.; Lu, Q. Epigenetic dynamics in immunity and autoimmunity. Int. J. Biochem. Cell Biol. 2015, 67, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology 2015, 149, 1204–1225. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, J.; Sidransky, D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010, 29, 181–206. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, H.; Higashimoto, K.; Aoki, S.; Mishima, H.; Hayashida, C.; Maeda, T.; Koga, Y.; Yatsuki, H.; Joh, K.; Noshiro, H.; et al. Comprehensive methylation analysis of imprinting-associated differentially methylated regions in colorectal cancer. Clin. Epigenetics 2018, 10, 150. [Google Scholar] [CrossRef]
- Blewitt, M.; Angeloni, A.; Bogdanovic, O. Enhancer DNA methylation: Implications for gene regulation. Essays Biochem. 2019, 63, 707–715. [Google Scholar] [CrossRef]
- Song, Y.; van den Berg, P.R.; Markoulaki, S.; Soldner, F.; Dall’Agnese, A.; Henninger, J.E.; Drotar, J.; Rosenau, N.; Cohen, M.A.; Young, R.A.; et al. Dynamic enhancer DNA methylation as basis for transcriptional and cellular heterogeneity of escs. Mol. Cell 2019, 75, 905–920. [Google Scholar] [CrossRef]
- Bell, R.E.; Golan, T.; Sheinboim, D.; Malcov, H.; Amar, D.; Salamon, A.; Liron, T.; Gelfman, S.; Gabet, Y.; Shamir, R.; et al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 2016, 26, 601–611. [Google Scholar] [CrossRef]
- Schuebel, K.E.; Chen, W.; Cope, L.; Glöckner, S.C.; Suzuki, H.; Yi, J.M.; Chan, T.A.; Van Neste, L.; Van Criekinge, W.; van den Bosch, S.; et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 2007, 3, 1709–1723. [Google Scholar] [CrossRef]
- Ramesh, S.; Johnson, P.; Fadlalla, K.; Moore, A.; Huang, C.-H.; Berry, K.; Maxuitenko, Y.Y.; Chen, X.; Keeton, A.B.; Zhou, G.; et al. Novel sulindac derivatives for colorectal cancer chemoprevention that target cGMP phosphodiesterases to suppress Wnt/β-catenin transcriptional activity. Cancer Insight 2024, 3, 28. [Google Scholar]
- Liang, T.-J.; Wang, H.-X.; Zheng, Y.-Y.; Cao, Y.-Q.; Wu, X.; Zhou, X.; Dong, S.-X. APC hypermethylation for early diagnosis of colorectal cancer: A meta-analysis and literature review. Oncotarget 2017, 8, 46468–46479. [Google Scholar] [CrossRef]
- Peng, L.; Hu, J.; Li, S.; Wang, Z.; Xia, B.; Jiang, B.; Li, B.; Zhang, Y.; Wang, J.; Wang, X. Aberrant methylation of the ptch1 gene promoter region in aberrant crypt foci. Int. J. Cancer 2012, 132, e18–e25. [Google Scholar] [CrossRef] [PubMed]
- Yoshiura, K.; Kanai, Y.; Ochiai, A.; Shimoyama, Y.; Sugimura, T.; Hirohashi, S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA 1995, 92, 7416–7419. [Google Scholar] [CrossRef]
- de Vogel, S.; Weijenberg, M.P.; Herman, J.G.; Wouters, K.A.D.; de Goeij, A.F.P.M.; Brandt, P.A.v.D.; de Bruïne, A.P.; van Engeland, M. MGMT and MLH1 promoter methylation versus APC, KRAS and BRAF gene mutations in colorectal cancer: Indications for distinct pathways and sequence of events. Ann. Oncol. 2009, 20, 1216–1222. [Google Scholar] [CrossRef]
- Benard, A.; Zeestraten, E.C.M.; Goossens-Beumer, I.J.; Putter, H.; van de Velde, C.J.H.; Hoon, D.S.B.; Kuppen, P.J.K. DNA methylation of apoptosis genes in rectal cancer predicts patient survival and tumor recurrence. Apoptosis 2014, 19, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, Y.; Chen, L.; Liu, L.; Gao, X. E3 ubiquitin ligase-dependent regulatory mechanism of TRIM family in carcinogenesis. Cancer Insight 2023, 2, 21. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [PubMed]
- Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell Biol. 2023, 21, 1973–1985. [Google Scholar] [CrossRef]
- Jiang, A.C.; Buckingham, L.; Bishehsari, F.; Sutherland, S.; Ma, K.; Melson, J.E. Correlation of line-1 hypomethylation with size and pathologic extent of dysplasia in colorectal tubular adenomas. Clin. Transl. Gastroenterol. 2021, 12, e00369. [Google Scholar] [CrossRef]
- Boughanem, H.; Martin-Nuñez, G.M.; Torres, E.; Arranz-Salas, I.; Alcaide, J.; Morcillo, S.; Tinahones, F.J.; Crujeiras, A.B.; Macias-Gonzalez, M. Impact of tumor line-1 methylation level and neoadjuvant treatment and its association with colorectal cancer survival. J. Pers. Med. 2020, 10, 219. [Google Scholar] [CrossRef]
- Matsunoki, A.; Kawakami, K.; Kotake, M.; Kaneko, M.; Kitamura, H.; Ooi, A.; Watanabe, G.; Minamoto, T. LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer 2012, 12, 574. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.-N.; Wang, F.; Zhang, W.-M.; Geng, X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int. J. Biol. Sci. 2010, 6, 784–795. [Google Scholar] [CrossRef]
- Arnold, C.N.; Goel, A.; Boland, C.R. Role of hmlh1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer 2003, 106, 66–73. [Google Scholar] [CrossRef]
- Tejedor, J.R.; Peñarroya, A.; Gancedo-Verdejo, J.; Santamarina-Ojeda, P.; Pérez, R.F.; López-Tamargo, S.; Díez-Borge, A.; Alba-Linares, J.J.; González-Del-Rey, N.; Urdinguio, R.G.; et al. Crispr/dcas9-mediated DNA demethylation screen identifies functional epigenetic determinants of colorectal cancer. Clin. Epigenetics 2023, 15, 133. [Google Scholar] [CrossRef]
- Niu, F.; Wen, J.; Fu, X.; Li, C.; Zhao, R.; Wu, S.; Yu, H.; Liu, X.; Zhao, X.; Liu, S.; et al. Stool DNA test of methylated syndecan-2 for the early detection of colorectal neoplasia. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1411–1419. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, L.; Lu, C.; Huang, W.; Yang, C.; Wang, Q.; Wang, Q.; Lei, R.; Sun, R.; Wan, K.; et al. Methylation of sdc2/tfpi2 and its diagnostic value in colorectal tumorous lesions. Front. Mol. Biosci. 2021, 8, 706754. [Google Scholar] [CrossRef] [PubMed]
- Nian, J.; Sun, X.; Ming, S.; Yan, C.; Ma, Y.; Feng, Y.; Yang, L.; Yu, M.; Zhang, G.; Wang, X. Diagnostic accuracy of methylated sept9 for blood-based colorectal cancer detection: A systematic review and meta-analysis. Clin. Transl. Gastroenterol. 2017, 8, e216. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-D.; Han, Z.J.; Skoletsky, J.; Olson, J.; Sah, J.; Myeroff, L.; Platzer, P.; Lu, S.; Dawson, D.; Willis, J.; et al. Detection in fecal DNA of colon cancer–specific methylation of the nonexpressed vimentin gene. J. Natl. Cancer Inst. 2005, 97, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Herbst, A.; Rahmig, K.; Stieber, P.; Philipp, A.; Jung, A.; Ofner, A.; Crispin, A.; Neumann, J.; Lamerz, R.; Kolligs, F.T. Methylation of neurog1 in serum is a sensitive marker for the detection of early colorectal cancer. Am. J. Gastroenterol. 2011, 106, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-H.; Ida, H.; Lau, Q.-C.; Goh, B.-C.; Chieng, W.-S.; Loh, M.; Ito, Y. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol. Rep. 2007, 18, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Cassinotti, E.; Melson, J.; Liggett, T.; Melnikov, A.; Yi, Q.; Replogle, C.; Mobarhan, S.; Boni, L.; Segato, S.; Levenson, V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer 2011, 131, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Hibi, K.; Goto, T.; Shirahata, A.; Saito, M.; Kigawa, G.; Nemoto, H.; Sanada, Y. Detection of tfpi2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011, 311, 96–100. [Google Scholar] [CrossRef]
- Glöckner, S.C.; Dhir, M.; Yi, J.M.; McGarvey, K.E.; Van Neste, L.; Louwagie, J.; Chan, T.A.; Kleeberger, W.; de Bruïne, A.P.; Smits, K.M.; et al. Methylation oftfpi2in stool DNA: A potential novel biomarker for the detection of colorectal cancer. Cancer Res. 2009, 69, 4691–4699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Q.; Xu, L.; Wang, H.; Liu, X.; Li, S.; Hu, T.; Liu, Y.; Peng, Q.; Chen, Z.; et al. Sensitive detection of colorectal cancer in peripheral blood by a novel methylation assay. Clin. Epigenetics 2021, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Takane, K.; Midorikawa, Y.; Yagi, K.; Sakai, A.; Aburatani, H.; Takayama, T.; Kaneda, A. Aberrant promoter methylation of ppp1r3c and efhd1 in plasma of colorectal cancer patients. Cancer Med. 2014, 3, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wan, S.; Yu, Y.; Ruan, W.; Wang, H.; Xu, L.; Wang, C.; Chen, S.; Cao, T.; Peng, Q.; et al. Identifying potential DNA methylation markers in early-stage colorectal cancer. Genomics 2020, 112, 3365–3373. [Google Scholar] [CrossRef] [PubMed]
- Azuara, D.; Rodriguez-Moranta, F.; de Oca, J.; Soriano-Izquierdo, A.; Mora, J.; Guardiola, J.; Biondo, S.; Blanco, I.; Peinado, M.A.; Moreno, V.; et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin. Color. Cancer 2010, 9, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Carmona, F.J.; Azuara, D.; Berenguer-Llergo, A.; Fernández, A.F.; Biondo, S.; de Oca, J.; Rodriguez-Moranta, F.; Salazar, R.; Villanueva, A.; Fraga, M.F.; et al. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prev. Res. 2013, 6, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Kim, N.; Moon, Y.; Kim, M.S.; Hoehn, B.D.; Park, C.H.; Kim, T.S.; Kim, N.K.; Chung, H.C.; An, S. Genome-wide identification and validation of a novel methylation biomarker, sdc2, for blood-based detection of colorectal cancer. J. Mol. Diagn. 2013, 15, 498–507. [Google Scholar] [CrossRef]
- Xie, L.; Jiang, X.; Li, Q.; Sun, Z.; Quan, W.; Duan, Y.; Li, D.; Chen, T. Diagnostic value of methylated septin9 for colorectal cancer detection. Front. Oncol. 2018, 8, 247. [Google Scholar] [CrossRef]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castaños-Vélez, E.; Blumenstein, B.A.; Rösch, T.; Osborn, N.; et al. Prospective evaluation of methylatedsept9in plasma for detection of asymptomatic colorectal cancer. Gut 2014, 63, 317–325. [Google Scholar] [CrossRef]
- Jin, P.; Kang, Q.; Wang, X.; Yang, L.; Yu, Y.; Li, N.; He, Y.q.; Han, X.; Hang, J.; Zhang, J.; et al. Performance of a second-generation methylated sept9 test in detecting colorectal neoplasm. J. Gastroenterol. Hepatol. 2015, 30, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Melotte, V.; Lentjes, M.H.F.M.; van den Bosch, S.M.; Hellebrekers, D.M.E.I.; de Hoon, J.P.J.; Wouters, K.A.D.; Daenen, K.L.J.; Partouns-Hendriks, I.E.J.M.; Stessels, F.; Louwagie, J.; et al. N-myc downstream-regulated gene 4 (ndrg4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst. 2009, 101, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, J.; Kim, M.S.; Louwagie, J.; Carvalho, B.; Terhaar sive Droste, J.S.; Park, H.L.; Chae, Y.K.; Yamashita, K.; Liu, J.; Ostrow, K.L.; et al. Promoter DNA methylation of oncostatin m receptor-β as a novel diagnostic and therapeutic marker in colon cancer. PLoS ONE 2009, 4, e6555. [Google Scholar]
- Bedin, C.; Enzo, M.V.; Del Bianco, P.; Pucciarelli, S.; Nitti, D.; Agostini, M. Diagnostic and prognostic role of cell-free DNA testing for colorectal cancer patients. Int. J. Cancer 2017, 140, 1888–1898. [Google Scholar] [CrossRef]
- Bosch, L.J.W.; Oort, F.A.; Neerincx, M.; Khalid-de Bakker, C.A.J.; sive Droste, J.S.T.; Melotte, V.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Mongera, S.; Grooteclaes, M.; et al. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements fit. Cancer Prev. Res. 2012, 5, 464–472. [Google Scholar] [CrossRef]
- Tang, D.; Liu, J.; Wang, D.-R.; Yu, H.-F.; Li, Y.-K.; Zhang, J.-Q. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin. Investig. Med. 2011, 34, E88–E95. [Google Scholar] [CrossRef]
- Huang, Z.; Li, L.; Wang, J. Hypermethylation of sfrp2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci. 2007, 52, 2287–2291. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.-C.; Dang, C.-X. Detection of hypermethylated spastic paraplegia-20 in stool samples of patients with colorectal cancer. Int. J. Med. Sci. 2013, 10, 230–234. [Google Scholar] [CrossRef]
- Leung, W.K.; To, K.-F.; Man, E.P.S.; Chan, M.W.Y.; Bai, A.H.C.; Hui, A.J.; Chan, F.K.L.; Sung, J.J.Y. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am. J. Gastroenterol. 2005, 100, 2274–2279. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Li, L.H.; Yang, F.; Wang, J.F. Detection of aberrant methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. World J. Gastroenterol. 2007, 13, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Itzkowitz, S.H.; Jandorf, L.; Brand, R.; Rabeneck, L.; Schroy, P.C.; Sontag, S.; Johnson, D.; Skoletsky, J.; Durkee, K.; Markowitz, S.; et al. Improved fecal DNA test for colorectal cancer screening. Clin. Gastroenterol. Hepatol. 2007, 5, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Song, B.P.; Jain, S.; Lin, S.Y.; Chen, Q.; Block, T.M.; Song, W.; Brenner, D.E.; Su, Y.-H. Detection of hypermethylated vimentin in urine of patients with colorectal cancer. J. Mol. Diagn. 2012, 14, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.-K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.-H. Aberrant methylation of apc, mgmt, rassf2a, and wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res. 2009, 15, 6185–6191. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, T.; Tanaka, N.; Cullings, H.M.; Sun, D.-S.; Sasamoto, H.; Uchida, T.; Koi, M.; Nishida, N.; Naomoto, Y.; Boland, C.R.; et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl. Cancer Inst. 2009, 101, 1244–1258. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.H.; Chang, E.; Kim, Y.J.; Kim, B.K.; Sohn, J.H.; Park, D.I. Stool methylation-specific polymerase chain reaction assay for the detection of colorectal neoplasia in korean patients. Dis. Colon. Rectum 2009, 52, 1452–1459. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Huang, T.; Lin, C.; Zhong, L.L.D.; Zhao, L.; Zhang, G.; Lu, A.; Wu, J.; Bian, Z. Targeting histone methylation for colorectal cancer. Ther. Adv. Gastroenterol. 2017, 10, 114–131. [Google Scholar] [CrossRef]
- Nakazawa, T.; Kondo, T.; Ma, D.; Niu, D.; Mochizuki, K.; Kawasaki, T.; Yamane, T.; Iino, H.; Fujii, H.; Katoh, R. Global histone modification of histone h3 in colorectal cancer and its precursor lesions. Hum. Pathol. 2012, 43, 834–842. [Google Scholar] [CrossRef]
- Tamagawa, H.; Oshima, T.; Numata, M.; Yamamoto, N.; Shiozawa, M.; Morinaga, S.; Nakamura, Y.; Yoshihara, M.; Sakuma, Y.; Kameda, Y.; et al. Global histone modification of h3k27 correlates with the outcomes in patients with metachronous liver metastasis of colorectal cancer. Eur. J. Surg. Oncol. 2013, 39, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Hieda, M.; Nishioka, Y.; Matsumoto, A.; Higashi, S.; Kimura, H.; Yamamoto, H.; Mori, M.; Matsuura, S.; Matsuura, N. Cancer-associated upregulation of histone h3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci. 2013, 104, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Tegla, C.A.; Cudrici, C.D.; Nguyen, V.; Danoff, J.; Kruszewski, A.M.; Boodhoo, D.; Mekala, A.P.; Vlaicu, S.I.; Chen, C.; Rus, V.; et al. Rgc-32 is a novel regulator of the t-lymphocyte cell cycle. Exp. Mol. Pathol. 2015, 98, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, S.I.; Tegla, C.A.; Cudrici, C.D.; Fosbrink, M.; Nguyen, V.; Azimzadeh, P.; Rus, V.; Chen, H.; Mircea, P.A.; Shamsuddin, A.; et al. Epigenetic modifications induced by rgc-32 in colon cancer. Exp. Mol. Pathol. 2010, 88, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.D.; Zhang, W.; Zhao, K.; Cao, B.; Yuan, H.; Wei, L.Z.; Song, M.Q.; Liu, X.S. Microrna-455 suppresses the oncogenic function of hdac2 in human colorectal cancer. Braz. J. Med. Biol. Res. 2017, 50, e6103. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-T.; Xing, W.; Zhao, R.-S.; Tan, Y.; Wu, X.-F.; Ao, L.-Q.; Li, Z.; Yao, M.-W.; Yuan, M.; Guo, W.; et al. Hdac2 inhibits emt-mediated cancer metastasis by downregulating the long noncoding rna h19 in colorectal cancer. J. Exp. Clin. Cancer Res. 2020, 39, 270. [Google Scholar] [CrossRef]
- Carew, J.S.; Medina, E.C.; Esquivel Ii, J.A.; Mahalingam, D.; Swords, R.; Kelly, K.; Zhang, H.; Huang, P.; Mita, A.C.; Mita, M.M.; et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J. Cell Mol. Med. 2009, 14, 2448–2459. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Jiang, Y.; Li, C.Q.; Zhang, Y.; Dakle, P.; Kaur, H.; Deng, J.W.; Lin, R.Y.; Han, L.; Xie, J.J.; et al. Tp63, sox2, and klf5 establish a core regulatory circuitry that controls epigenetic and transcription patterns in esophageal squamous cell carcinoma cell lines. Gastroenterology 2020, 159, 1311–1327. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding rna networks in cancer. Nat. Rev. Cancer 2017, 18, 5–18. [Google Scholar] [CrossRef]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Chevillet, J.; Lee, I.; Briggs, H.; He, Y.; Wang, K. Issues and prospects of microrna-based biomarkers in blood and other body fluids. Molecules 2014, 19, 6080–6105. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of microrna expression in cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Jacks, T. MicroRNAs and cancer: Short RNAs go a long way. Cell 2009, 136, 586–591. [Google Scholar] [CrossRef]
- Almeida, M.I.; Reis, R.M.; Calin, G.A. Microrna history: Discovery, recent applications, and next frontiers. Mutat. Res. 2011, 717, 1–8. [Google Scholar] [CrossRef]
- Strubberg, A.M.; Madison, B.B. Micrornas in the etiology of colorectal cancer: Pathways and clinical implications. Dis. Model. Mech. 2017, 10, 197–214. [Google Scholar] [CrossRef]
- Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; et al. Role of mir-143 targeting kras in colorectal tumorigenesis. Oncogene 2009, 28, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yang, Y.; Xia, Y.; Okugawa, Y.; Yang, J.; Liang, Y.; Chen, H.; Zhang, P.; Wang, F.; Han, H.; et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut 2016, 65, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Y.; Yeh, K.-Y.; Liu, B.-F.; Chang, T.-M.; Chang, C.-H.; Liao, Y.-F.; Liu, Y.-W.; Her, G.M. Microrna-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the pi3k/akt, stat3, and pdcd4/tnf-α signaling pathways in zebrafish. Cancers 2021, 13, 5565. [Google Scholar] [CrossRef] [PubMed]
- Bastaminejad, S.; Taherikalani, M.; Ghanbari, R.; Akbari, A.; Shabab, N.; Saidijam, M. Investigation of microrna-21 expression levels in serum and stool as a potential non-invasive biomarker for diagnosis of colorectal cancer. Iran. Biomed. J. 2017, 21, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Fearnhead, N.S.; Britton, M.P.; Bodmer, W.F. The ABC of APC. Hum. Mol. Genet. 2001, 10, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; le Sage, C.; Diosdado, B.a.; van der Waal, M.; Oude Vrielink, J.A.F.; Bolijn, A.; Meijer, G.A.; Agami, R. Regulation of the adenomatous polyposis coli gene by the mir-135 family in colorectal cancer. Cancer Res. 2008, 68, 5795–5802. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.M.; Liu, S.Q.; Sun, M.Z. Mir-429 as biomarker for diagnosis, treatment and prognosis of cancers and its potential action mechanisms: A systematic literature review. Neoplasma 2020, 67, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, Q.; Zhou, J.; Shi, R. Mir-429 mediates tumor growth and metastasis in colorectal cancer. Am. J. Cancer Res. 2017, 7, 218–233. [Google Scholar]
- Liu, H.; Huang, C.; Wu, L.; Wen, B. Effect of evodiamine and berberine on mir-429 as an oncogene in human colorectal cancer. OncoTargets Ther. 2016, 9, 4121–4127. [Google Scholar]
- Karaayvaz, M.; Zhai, H.; Ju, J. Mir-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 2013, 4, e659. [Google Scholar] [CrossRef]
- Sun, C.; Wang, F.J.; Zhang, H.G.; Xu, X.Z.; Jia, R.C.; Yao, L.; Qiao, P.F. Mir-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/smad4 pathway. World J. Gastroenterol. 2017, 23, 1816–1827. [Google Scholar] [CrossRef]
- Kjersem, J.B.; Ikdahl, T.; Lingjaerde, O.C.; Guren, T.; Tveit, K.M.; Kure, E.H. Plasma micrornas predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol. Oncol. 2014, 8, 59–67. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Liu, Z.; Tian, X.; Huo, Z. Mir-106a reduces 5-fluorouracil (5-fu) sensitivity of colorectal cancer by targeting dual-specificity phosphatases 2 (dusp2). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 4944–4951. [Google Scholar] [CrossRef]
- Dong, W.; Li, N.; Pei, X.; Wu, X. Differential expression of dusp2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer. Oncol. Lett. 2018, 15, 4207–4214. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Witmer, P.D.; Casey, E.; Valle, D.; Sukumar, S. DNA methylation regulates microrna expression. Cancer Biol. Ther. 2007, 6, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liao, Y.; Tang, L. Microrna-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res. 2019, 38, 53. [Google Scholar] [CrossRef] [PubMed]
- Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sánchez-Céspedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; et al. A microrna DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13556–13561. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Levi, E.; Majumdar, A.P.; Sarkar, F.H. Expression of mir-34 is lost in colon cancer which can be re-expressed by a novel agent cdf. J. Hematol. Oncol. 2012, 5, 58. [Google Scholar] [CrossRef]
- Chen, M.; Li, D.; Gong, N.; Wu, H.; Su, C.; Xie, C.; Xiang, H.; Lin, C.; Li, X. Mir-133b down-regulates abcc1 and enhances the sensitivity of crc to anti-tumor drugs. Oncotarget 2017, 8, 52983–52994. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, Z. Serum mir-92a-1 is a novel diagnostic biomarker for colorectal cancer. J. Cell Mol. Med. 2020, 24, 8363–8367. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma micrornas are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.O.; Chong, W.W.S.; Jin, H.; Lam, E.K.Y.; Shin, V.Y.; Yu, J.; Poon, T.C.W.; Ng, S.S.M.; Sung, J.J.Y. Differential expression of micrornas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef]
- Silva, C.M.S.; Barros-Filho, M.C.; Wong, D.V.T.; Mello, J.B.H.; Nobre, L.M.S.; Wanderley, C.W.S.; Lucetti, L.T.; Muniz, H.A.; Paiva, I.K.D.; Kuasne, H.; et al. Circulating let-7e-5p, mir-106a-5p, mir-28-3p, and mir-542-5p as a promising microrna signature for the detection of colorectal cancer. Cancers 2021, 13, 1493. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, A.; Cai, M.; Tong, M.; Chen, F.; Huang, L. Identification of stool mir-135b-5p as a non-invasive diaognostic biomarker in later tumor stage of colorectal cancer. Life Sci. 2020, 260, 118417. [Google Scholar] [CrossRef] [PubMed]
- Toiyama, Y.; Takahashi, M.; Hur, K.; Nagasaka, T.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum mir-21 as a diagnostic and prognostic biomarker in colorectal cancer. J. Natl. Cancer Inst. 2013, 105, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and saliva mir-21 expression in colorectal cancer patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Fukunaga, M.; Takahashi, J.; Shimizu, D.; Masuda, T.; Mizushima, T.; Yamada, K.; Mori, M.; Eguchi, H.; Doki, Y.; et al. Identification of the minimum combination of serum micrornas to predict the recurrence of colorectal cancer cases. Ann. Surg. Oncol. 2022, 30, 233–243. [Google Scholar] [CrossRef]
- Hao, H.; Liu, L.; Zhang, D.; Wang, C.; Xia, G.; Zhong, F.; Hu, X. Diagnostic and prognostic value of mir-106a in colorectal cancer. Oncotarget 2017, 8, 5038–5047. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, Q.; Zhu, K. Serum mir-106b upregulation predicts poor prognosis in patients with colorectal cancer. Int. J. Clin. Exp. Pathol. 2018, 11, 4197–4204. [Google Scholar] [CrossRef]
- Dong, S.-j.; Cai, X.-j.; Li, S.-j. The clinical significance of mir-429 as a predictive biomarker in colorectal cancer patients receiving 5-fluorouracil treatment. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 3352–3361. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhou, T.; Liu, Z.-L.; Tian, H.-P.; Xia, S.-S. Plasma mir-200c and mir-18a as potential biomarkers for the detection of colorectal carcinoma. Mol. Clin. Oncol. 2013, 1, 379–384. [Google Scholar] [CrossRef]
- Chang, P.Y.; Chen, C.C.; Chang, Y.S.; Tsai, W.S.; You, J.F.; Lin, G.P.; Chen, T.W.; Chen, J.S.; Chan, E.C. Microrna-223 and microrna-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget 2016, 7, 10663–10675. [Google Scholar] [CrossRef]
- Sahami-Fard, M.H.; Kheirandish, S.; Sheikhha, M.H. Expression levels of mir-143-3p and -424-5p in colorectal cancer and their clinical significance. Cancer Biomark. 2019, 24, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, M.; Wang, M.; Yan, D.; Feng, G.; An, G. The expression of microrna-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer 2014, 14, 714. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, R.; Li, Z.; Luo, B. Diagnostic value of combining mirnas, cea measurement and the fobt in colorectal cancer screening. Cancer Manag. Res. 2020, 12, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Tang, J.; Bai, Y.; Lin, H.; You, H.; Jin, H.; Lin, L.; You, P.; Li, J.; Dai, Z.; et al. Plasma levels of microrna-24, microrna-320a, and microrna-423-5p are potential biomarkers for colorectal carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 86. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.O.; Wu, C.W.; Tang, C.M.; Chen, Y.; Fang, J.; Dong, Y.; Liang, Q.; Ng, S.S.; Chan, F.K.; Sung, J.J.; et al. Microrna-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget 2016, 7, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.O.; Wu, C.W.; Dong, Y.; Tang, C.M.; Ng, S.S.; Chan, F.K.; Sung, J.J.; Yu, J. Microrna-221 and microrna-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br. J. Cancer 2014, 111, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, A.; Li, J.; Fu, J.; Wang, G.; Yang, Y.; Cui, L.; Sun, J. Fecal mir-29a and mir-224 as the noninvasive biomarkers for colorectal cancer. Cancer Biomark. 2016, 16, 259–264. [Google Scholar] [CrossRef]
- Schetter, A.J.; Leung, S.Y.; Sohn, J.J.; Zanetti, K.A.; Bowman, E.D.; Yanaihara, N.; Yuen, S.T.; Chan, T.L.; Kwong, D.L.W.; Au, G.K.H.; et al. Microrna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008, 299, 425–436. [Google Scholar] [CrossRef]
- Ray, R.B.; Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; et al. Diagnostic potential of cell-free and exosomal micrornas in the identification of patients with high-risk colorectal adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar]
- Li, X.; Yang, C.; Wang, X.; Zhang, J.; Zhang, R.; Liu, R. The expression of mir-25 is increased in colorectal cancer and is associated with patient prognosis. Med. Oncol. 2013, 31, 781. [Google Scholar] [CrossRef]
- Liu, D.-R.; Guan, Q.-L.; Gao, M.-T.; Jiang, L.; Kang, H.-X. Mir-1260b is a potential prognostic biomarker in colorectal cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 2417–2423. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, L.; Cogdell, D.E.; Zheng, H.; Schetter, A.J.; Nykter, M.; Harris, C.C.; Chen, K.; Hamilton, S.R.; Zhang, W. Circulating plasma mir-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 2011, 6, e17745. [Google Scholar] [CrossRef] [PubMed]
- Weissmann-Brenner, A.; Kushnir, M.; Lithwick Yanai, G.; Aharonov, R.; Gibori, H.; Purim, O.; Kundel, Y.; Morgenstern, S.; Halperin, M.; Niv, Y.; et al. Tumor microrna-29a expression and the risk of recurrence in stage ii colon cancer. Int. J. Oncol. 2012, 40, 2097–2103. [Google Scholar]
- Wang, L.-g.; Gu, J. Serum microrna-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012, 36, e61–e67. [Google Scholar] [CrossRef]
- Aherne, S.T.; Madden, S.F.; Hughes, D.J.; Pardini, B.; Naccarati, A.; Levy, M.; Vodicka, P.; Neary, P.; Dowling, P.; Clynes, M. Circulating mirnas mir-34a and mir-150 associated with colorectal cancer progression. BMC Cancer 2015, 15, 329. [Google Scholar] [CrossRef]
- Yin, J.; Bai, Z.; Song, J.; Yang, Y.; Wang, J.; Han, W.; Zhang, J.; Meng, H.; Ma, X.; Yang, Y.; et al. Differential expression of serum mir-126, mir-141 and mir-21 as novel biomarkers for early detection of liver metastasis in colorectal cancer. Chin. J. Cancer Res. 2014, 26, 95–103. [Google Scholar]
- Sun, Y.; Shen, S.; Tang, H.; Xiang, J.; Peng, Y.; Tang, A.; Li, N.; Zhou, W.; Wang, Z.; Zhang, D.; et al. Mir-429 identified by dynamic transcriptome analysis is a new candidate biomarker for colorectal cancer prognosis. OMICS J. Integr. Biol. 2014, 18, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding rnas. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding rnas. Nat. Cell Biol. 2019, 21, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wang, M.; Ma, N.; Xu, Y.; Jiang, Y.; Gao, X. Long noncoding rnas: Novel players in colorectal cancer. Cancer Lett. 2015, 361, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Huarte, M. The emerging role of lncrnas in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Han, Z.; Li, H.; Zhu, Y.; Sun, Z.; Zhu, A. Lncrna dleu1 contributes to colorectal cancer progression via activation of kpna3. Mol. Cancer 2018, 17, 118. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, Y.; Yu, Z.; Su, H. Upregulated long intergenic non-protein coding rna 1094 (linc01094) is linked to poor prognosis and alteration of cell function in colorectal cancer. Bioengineered 2022, 13, 8526–8537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, W.; Yuan, Y.; Li, J.; Wu, J.; Yu, J.; He, Y.; Wei, Z.; Zhang, C. Correction to: Long non-coding rna h19 promotes colorectal cancer metastasis via binding to hnrnpa2b1. J. Exp. Clin. Cancer Res. 2021, 40, 111. [Google Scholar] [CrossRef]
- Shen, W.; Yu, Q.; Pu, Y.; Xing, C. Upregulation of long noncoding rna malat1 in colorectal cancer promotes radioresistance and aggressive malignance. Int. J. Gen. Med. 2022, 15, 8365–8380. [Google Scholar] [CrossRef]
- Gao, R.; Fang, C.; Xu, J.; Tan, H.; Li, P.; Ma, L. Lncrna cacs15 contributes to oxaliplatin resistance in colorectal cancer by positively regulating abcc1 through sponging mir-145. Arch. Biochem. Biophys. 2019, 663, 183–191. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhang, J.; Chen, S.; Zhu, J.; Wang, X. Long noncoding rna crart16 confers 5-fu resistance in colorectal cancer cells by sponging mir-193b-5p. Cancer Cell Int. 2021, 21, 638. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, L.; Chen, S.; Zhang, J.; Ma, Y.; Hu, J.; Yue, T.; Wang, J.; Zhu, J.; Bu, D.; et al. The novel long noncoding rna crart16 confers cetuximab resistance in colorectal cancer cells by enhancing erbb3 expression via mir-371a-5p. Cancer Cell Int. 2020, 20, 68. [Google Scholar] [CrossRef]
- Liu, K.; Yao, H.; Wen, Y.; Zhao, H.; Zhou, N.; Lei, S.; Xiong, L. Functional role of a long non-coding rna lifr-as1/mir-29a/tnfaip3 axis in colorectal cancer resistance to pohotodynamic therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2871–2880. [Google Scholar] [CrossRef]
- Yang, M.; Chen, W. Long non-coding rna cbr3 antisense rna 1 is downregulated in colorectal cancer and inhibits mir-29a-mediated cell migration and invasion. Mol. Biotechnol. 2022, 64, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhu, Y.; Gao, J.; Fu, J.; Liu, C.; Liu, Y.; Song, C.; Zhu, S.; Leng, Y.; Wang, G.; et al. Microrna-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and e-cadherin via klf4. Br. J. Cancer 2014, 110, 450–458. [Google Scholar] [CrossRef]
- He, N.; Xiang, L.; Chen, L.; Tong, H.; Wang, K.; Zhao, J.; Song, F.; Yang, H.; Wei, X.; Jiao, Z. The role of long non-coding rna fgd5-as1 in cancer. Bioengineered 2022, 13, 11026–11041. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jiang, X.; Zhang, X.; Cao, G.; Wang, D.; Chen, Z. Long noncoding rna fgd5-as1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating cdca7 via sponging mir-302e. In Vitro Cell Dev. Biol. Anim. 2019, 55, 577–585. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xu, B.; Wang, B.; Wang, Z.; Liang, Y.; Zhou, J.; Hu, J.; Jiang, B. Epigenetic silencing of mir-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol. Rep. 2013, 30, 1976–1984. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Wu, J.; Feng, J. Linc00460 hypomethylation promotes metastasis in colorectal carcinoma. Front. Genet. 2019, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Zou, P.; Tang, Q.; Zheng, F.; Wu, J.; Chen, Z.; Hann, S.S. Hotair-mediated reciprocal regulation of ezh2 and dnmt1 contribute to polyphyllin i-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 589–599. [Google Scholar] [CrossRef]
- Li, J.N.; Yuan, S.Y. Fecal occult blood test in colorectal cancer screening. J. Dig. Dis. 2019, 20, 62–64. [Google Scholar] [CrossRef]
- Lin, J.; Shi, Z.; Yu, Z.; He, Z. Lncrna hif1a-as2 positively affects the progression and emt formation of colorectal cancer through regulating mir-129-5p and dnmt3a. Biomed. Pharmacother. 2018, 98, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Guo, F.; Lu, S.Y.F. Nucleatum targets lncrna eno1-it1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021, 70, 2123–2137. [Google Scholar] [CrossRef] [PubMed]
- Alvandi, E.; Wong, W.K.M.; Joglekar, M.V.; Spring, K.J.; Hardikar, A.A. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: A systematic review and meta-analysis. BMC Med. 2022, 20, 323. [Google Scholar] [CrossRef] [PubMed]
- Mowat, C.; Dhatt, J.; Bhatti, I.; Hamie, A.; Baker, K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front. Immunol. 2023, 14, 1190810. [Google Scholar] [CrossRef]
- Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 2002, 132, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Hanus, M.; Parada-Venegas, D.; Landskron, G.; Wielandt, A.M.; Hurtado, C.; Alvarez, K.; Hermoso, M.A.; López-Köstner, F.; De la Fuente, M. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment. Front. Immunol. 2021, 12, 612826. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, X.; Wang, J. Small molecules in the big picture of gut microbiome-host cross-talk. EBioMedicine 2022, 81, 104085. [Google Scholar] [CrossRef]
- Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. Ccat1 and ccat2 long noncoding rnas, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol. 2017, 28, 1882–1888. [Google Scholar] [CrossRef]
- Shi, Q.; He, Y.; Zhang, X.; Li, J.; Cui, G.; Zhang, X.; Wang, X. Two novel long noncoding rnas—rp11-296e3.2 and lef1-as1can—Separately serve as diagnostic and prognostic bio-markers of metastasis in colorectal cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7042–7051. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, R.; Zhu, X.; Cai, F.; Zheng, G.; Li, J.; Gao, C. Prognostic significance and diagnostic value of overexpressed lncrna pvt1 in colorectal cancer. Clin. Lab. 2019, 65, 2279–2288. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Wang, Q. High expression of long noncoding rna 01410 serves as a potential diagnostic and prognostic marker in patients with colorectal cancer. Clin Lab. 2021, 67, 1145–1153. [Google Scholar] [CrossRef]
- Gong, W.; Tian, M.; Qiu, H.; Yang, Z. Elevated serum level of lncrna-hif1a-as1 as a novel diagnostic predictor for worse prognosis in colorectal carcinoma. Cancer Biomark. 2017, 20, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Song, X.G.; Zhao, Y.J.; Dong, X.H.; Niu, L.M.; Zhang, Z.J.; Shang, X.L.; Tang, Y.Y.; Song, X.R.; Xie, L. Circulating serum exosomal long non-coding rnas foxd2-as1, nrir, and xloc_009459 as diagnostic biomarkers for colorectal cancer. Front. Oncol. 2021, 11, 618967. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cao, Q.; An, G.; Yan, B.; Lei, L. Identification of the 3-lncrna signature as a prognostic biomarker for colorectal cancer. Int. J. Mol. Sci. 2020, 21, 9359. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Stock, C.; Hoffmeister, M. Colorectal cancer screening: The time to act is now. BMC Med. 2015, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, R.; Engarås, B.; Lindmark, G.; Hallmans, G.; Tavelin, B.; Nilsson, O.; Hammarström, S.; Hafström, L. Prediagnostic levels of carcinoembryonic antigen and ca 242 in colorectal cancer: A matched case-control study. Dis. Colon Rectum 2003, 46, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.S. Carcinoembryonic antigen screening: Pros and cons. Semin. Oncol. 1999, 26, 556–560. [Google Scholar] [PubMed]
- Shaukat, A.; Mongin, S.J.; Geisser, M.S.; Lederle, F.A.; Bond, J.H.; Mandel, J.S.; Church, T.R. Long-term mortality after screening for colorectal cancer. N. Engl. J. Med. 2013, 369, 1106–1114. [Google Scholar] [CrossRef]
- Larsen, M.B.; Njor, S.; Ingeholm, P.; Andersen, B. Effectiveness of colorectal cancer screening in detecting earlier-stage disease-a nationwide cohort study in Denmark. Gastroenterology 2018, 155, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Krause, F.; Rolny, V.; Strobl, M.; Morgenstern, D.; Datz, C.; Chen, H.; Brenner, H. Evaluation of a 5-marker blood test for colorectal cancer early detection in a colorectal cancer screening setting. Clin. Cancer Res. 2016, 22, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Ahlquist, D.A.; Sargent, D.J.; Loprinzi, C.L.; Levin, T.R.; Rex, D.K.; Ahnen, D.J.; Knigge, K.; Lance, M.P.; Burgart, L.J.; Hamilton, S.R.; et al. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann. Intern. Med. 2008, 149, 441–450. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Sadri, S.; Rejali, L.; Hadizadeh, M.; Aghdaei, H.A.; Young, C.; Nazemalhosseini-Mojarad, E.; Zali, M.R.; Bonab, M.A. ANRIL as a prognostic biomarker in colon pre-cancerous lesion detection via non-invasive sampling. Genes Genet. Syst. 2022, 96, 285–292. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Target Gene | Affected Colorectal Cancer Staging | Reference |
---|---|---|---|
Pertuzumab | HER2 | Metastatic | [26] |
Encorafenib | BRAF | Metastatic | [27] |
Ipilimumab | CTLA-4 | Metastatic, MSI-H/dMMR | [28] |
5-FU | DNA synthesis and repair | Metastatic | [29] |
Cetuximab | EGFR | Metastatic | [30,31] |
Panitumumab | EGFR | Metastatic | [32,33] |
Trastuzumab | HER2 | Metastatic | [26,34] |
Trametinib | MEK1, MEK2 | RAS and RAF mutation | [35] |
Dostarlimab | PD-1 | Metastatic, MSI-H/dMMR | [36] |
Nivolumab | PD-1 | Metastatic, MSI-H/dMMR | [37] |
Pembrolizumab | PD-1 | Metastatic, MSI-H/dMMR | [38,39] |
Olaparib | PARP1/2 | BRCA mutation | [40] |
Bevacizumab | VEGF-A | Metastatic | [41,42] |
Ziv-aflibercept | VEGF-A, VEGF-B, IGF-1 | Metastatic | [43] |
Regorafenib | VEGFR2, TIE2, PDGFR, FGFR, KIT, RET, BRAF, BRAFV600E | Metastatic | [44] |
Diagnostic Markers | Specimen | CRC Staging | Epigenetic Changes | Sensibility (%) | Specificity (%) | Reference |
---|---|---|---|---|---|---|
(1) | ||||||
ALX4 | serum | early-stage CRC | methylation | 46.6 (21/45) | 66.3 (11/16) | [78] |
ALX4 | plasma | early-stage CRC | methylation | 47.8 (87/182) | 93.5 (159/170) | [11] |
CDH1 | serum | early-stage CRC | hypermethylation | 18 (3/17) | 100 (10/10) | [79] |
NEUROG1 | serum | early-stage CRC | methylation | 55.5 (25/45) | 81.3 (13/16) | [78] |
P16 | serum | early-stage CRC | hypermethylation | 71 (12/17) | 100 (10/10) | [79] |
RASSF1A | serum | early-stage CRC | hypermethylation | 24 (4/17) | 100 (10/10) | [79] |
RASSF1A | plasma | early-stage CRC | methylation | 93 (28/30) | 53 (16/30) | [80] |
RUNX3 | serum | early-stage CRC | promoter hypermethylation | 65 (11/17) | 100 (10/10) | [79] |
TFPI2 | serum | early-stage CRC | methylation | 18 (39/215) | 100 (20/20) | [81] |
TFPI2 | stool | early-stage CRC | methylation | 76 (50/66) | 93 (28/30) | [82] |
TFPI2 | tissue | early-stage CRC | methylation | 99 (114/115) | 94 (45/48) | [82] |
SDC2, TFPI2 | stool | early-stage CRC | methylation | 82 (237/289) | 88.4 (192/217) | [75] |
SDC2 | tissue | early-stage CRC | methylation | 96.8 (120/124) | ns | [74] |
SDC2 | stool | early-stage CRC | methylation | 81.1 (159/196) | 93.3 (167/179) | [74] |
TMEFF2 | plasma | early-stage CRC | methylation | 70.9 (129/182) | 95.2 (162/170) | [11] |
c9orf50, twist1, kcnj12, znf132 | plasma | early-stage CRC | methylation | 80 (140/175) | 97 (54/56) | [83] |
EFHD1 | plasma | early-stage CRC | promoter methylation | 79 (19/24) | 78 (75/96) | [84] |
BMP3 | plasma | early-stage CRC | methylation | 75 (44/59) | 70 (26/37) | [10] |
BMP3 | tissue | early-stage CRC | methylation | 81 (24/30) | ns | [10] |
C9orf50 | tissue | early-stage CRC | methylation | 60 | 80.6 | [85] |
SFMBT2 | tissue | early-stage CRC | methylation | 85.7 | 87 | [85] |
ITGA4 | tissue | early-stage CRC | methylation | 85.7 | 87 | [85] |
THBD | tissue | early-stage CRC | methylation | 84.1 | 87 | [85] |
ZNF304 | tissue | early-stage CRC | methylation | 70 | 100 | [85] |
SFMBT2, ITGA4, THBD, ZNF304 | tissue | early-stage CRC | methylation | 96.1 | 87 | [85] |
RARB2, p16INK4a, MGMT, APC | tissue | early-stage CRC | promoter methylation | 77 (20/26) | 100 (20/20) | [86] |
RARB2, p16INK4a, MGMT, APC | stool | early-stage CRC | promoter methylation | 62 (16/26) | 100 (20/20) | [86] |
AGTR1, WNT2, SLIT2 | stool | early-stage CRC | methylation | 78.1 (50/64) | 89.5 (34/38) | [87] |
(2) | ||||||
SDC2 | serum | TNM I-IV | methylation | 87.0 (114/131) | 95.2 (119/125) | [88] |
SEPT9 | plasma | TNM I-IV | methylation | 61.8 (76/123) | 89.6 (112/125) | [89] |
SEPT9 | plasma | TNM I-IV | methylation | 74.7 (136/182) | 96.5 (164/170) | [11] |
SEPT9 | plasma | TNM I-IV | methylation | 50.9 (27/53) | 91.4 (1331/1457) | [90] |
SEPT9 | plasma | TNM I-IV | methylation | 74.8 (101/135) | 87.4 (298/341) | [91] |
SEPT9 | tissue | TNM I-IV | methylation | 78 (99/127) | 97 (116/120) | [11] |
NDRG4 | stool | TNM I-IV | promoter methylation | 61 (17/28) | 93.3 (42/45) | [92] |
NDRG4 | tissue | TNM I-IV | methylation | 81 (68/84) | 92 (77/84) | [9] |
NDRG4 | blood | TNM I-IV | methylation | 54.8 (46/84) | 78.1 (66/84) | [9] |
NDRG4 | urine | TNM I-IV | methylation | 72.6 (61/84) | 85 (71/84) | [9] |
NDRG4 | stool | TNM I-IV | methylation | 76.2 (64/84) | 89.1 (75/84) | [9] |
OSMR | tissue | TNM I-IV | promoter methylation | 80 (80/100) | 4 (4/100) | [93] |
OSMR | stool | TNM I-IV | promoter methylation | 38 (26/69) | 95 (77/81) | [93] |
SFRP1 | plasma | TNM I-IV | promoter methylation | 80 (20/25) | 92 (33/36) | [94] |
PHACTR3 | stool | TNM I-IV | methylation | 66 (29/44) | 100 (30/30) | [95] |
NEUROG1 | serum | UICC I-II | methylation | 61 (59/97) | 91 | [78] |
SFRP2 | serum | TNM I-IV | methylation | 66.9 (113/169) | 93.7 (59/63) | [96] |
SFRP2 | stool | TNM I-IV | hypermethylation | 94.2 (49/52) | 95.2 (23/24) | [97] |
SFRP2 | stool | TNM I-IV | methylation | 84 (142/169) | 54 (34/63) | [96] |
SFRP2 | tissue | TNM I-IV | methylation | 88.2 (149/169) | 34.9 (22/63) | [96] |
SPG20 | stool | TNM I-IV | hypermethylation | 80.2 (77/96) | 100 (30/30) | [98] |
HLTF | serum | TNM I-IV | hypermethylation | 32.7 (16/49) | 92.7 (38/41) | [99] |
hMLH1 | serum | TNM I-IV | hypermethylation | 42.9 (21/49) | 97.6 (40/41) | [99] |
MGMT | stool | TNM I-IV | methylation | 48.1 (25/52) | 100 (24/24) | [100] |
vimentin | serum | TNM I-IV | methylation | 31.1 (14/45) | 62.5 (10/16) | [78] |
vimentin | stool | TNM I-IV | methylation | 45.7 (43/94) | 90.0 (178/198) | [77] |
vimentin | stool | TNM I-IV | methylation | 72.5 (29/40) | 86.9 (106/122) | [101] |
vimentin | urine | TNM I-IV | hypermethylation | 75 (15/20) | 90 (18/20) | [102] |
APC | serum | TNM I-IV | hypermethylation | 6.1 (3/49) | 100 (41/41) | [99] |
Wif-1 | plasma | TNM I-II | methylation | 36.7 (89/243) | 90.6 (250/276) | [103] |
APC, MLH1, HLTF | serum | TNM I-IV | promoter hypermethylation | 57.1 (28/49) | 90.2 (37/41) | [99] |
APC, MGMT, RASSF2A, Wif-1 | plasma | TNM I-II | methylation | 86.5 (210/243) | 92.1 (253/276) | [103] |
RASSF1A, SFRP2 | stool | TNM I-IV | promoter methylation | 75.0 (63/84) | 89.4 (101/113) | [104] |
MGMT, MLH1, VIM | stool | TNM I-IV | promoter methylation | 75.0 (45/60) | 86.5 (32/37) | [105] |
ALX4, SEPT9, TMEFF2 | plasma | TNM I-IV | promoter methylation | 81 (147/182) | 90 (153/170) | [11] |
ALX4, SEPT9, TMEFF2 | tissue | TNM I-IV | promoter methylation | 84 (107/127) | 87 (105/120) | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Tian, Y.; Deng, Z.; Yang, F.; Chen, E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int. J. Mol. Sci. 2024, 25, 3358. https://doi.org/10.3390/ijms25063358
Cao Q, Tian Y, Deng Z, Yang F, Chen E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. International Journal of Molecular Sciences. 2024; 25(6):3358. https://doi.org/10.3390/ijms25063358
Chicago/Turabian StyleCao, Qing, Ye Tian, Zhiyi Deng, Fangfang Yang, and Erfei Chen. 2024. "Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications" International Journal of Molecular Sciences 25, no. 6: 3358. https://doi.org/10.3390/ijms25063358
APA StyleCao, Q., Tian, Y., Deng, Z., Yang, F., & Chen, E. (2024). Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. International Journal of Molecular Sciences, 25(6), 3358. https://doi.org/10.3390/ijms25063358