The Response of Growth and Transcriptome Profiles of Tea Grey Blight Disease Pathogen Pestalotiopsis theae to the Variation of Exogenous L-Theanine
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Analysis Revealing the Inhibitory Effects of L-Theanine
2.2. Differential Expression of Genes in the Three Comparisons
2.3. Gene Ontology Analysis of Differentially Expressed Genes
2.4. KEGG Analysis of Differentially Expressed Genes
2.5. KOG Analysis of Differentially Expressed Genes
3. Discussion
4. Materials and Methods
4.1. Fungal Materials and Treatments
4.2. RNA Extraction, Library Preparation, and Sequencing
4.3. Data Assessment and Quality Control
4.4. Assemble, Annotate, and Map Transcript
4.5. Expression Analysis
4.6. Functional Analysis of Differentially Expressed Genes
4.7. Quantitative Real-Time PCR (qRT-PCR) Validation
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, S.; Rai, M.; Das, D.; Chandra, S.; Charya, K. Blister blight a threatened problem in tea industry: A review. J. King Saud. Univ. Sci. 2020, 32, 3265–3272. [Google Scholar] [CrossRef]
- Fuchs, H.J. Tea environments and yield in Sri Lanka. Trop. Agric. 1989, 5, 320. [Google Scholar]
- Pallavi, R.V.; Nepolean, P.; Balamurugan, A.; Jayanthi, R.; Beulah, T.; Premkumar, R. In vitro studies of biocontrol agents and fungicides tolerance against grey blight disease in tea. Asian Pac. J. Trop. Biomed. 2012, 12, 435–438. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yang, X.R.; Li, K.K.; Li, C.G.; Li, L.L.; Li, J.X.; Huang, H.L.; He, Y.M.; Ye, C.X.; Song, X.H. Simultaneous determination of theanine, gallic acid, purine alkaloids, catechins, and theaflavins in black tea using HPLC. Int. J. Food Sci. Technol. 2010, 45, 1263–1269. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.K.; Zhao, X.H.; Wang, C.; Geng, Z.Y. Effect of L-theanine on the growth performance, immune function, and jejunum morphology and antioxidant status of ducks. Animal 2019, 13, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Zhang, B.; Zheng, W.; Chen, X.; Zhang, J.; Yan, R.; Zhang, T.; Yu, L.; Dong, Y.; Ma, B. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomed. Pharmacother. 2019, 118, 109262. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, C.; Wang, H.; Tao, X. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiol. 2018, 18, 53–63. [Google Scholar] [CrossRef]
- Ben, P.; Zhang, Z.; Xuan, C.; Sun, S.; Shen, L.; Gao, Y.; Cao, X.; Zhou, Y.; Lan, L.; Yin, Z.; et al. Protective effect of L-theanine on cadmium-induced apoptosis in PC12 cells by inhibiting the mitochondria-mediated pathway. Neurochem. Res. 2015, 40, 1661–1670. [Google Scholar] [CrossRef]
- Zukhurova, M.; Prosvirnina, M.; Daineko, A.; Simanenkova, A.; Petrishchev, N.; Sonin, D.; Galagudza, M.; Shamtsyan, M.; Juneja, L.R.; Vlasov, T. L-theanine administration results in neuroprotection and prevents glutamate receptor agonist-mediated injury in the rat model of cerebral ischemia-reperfusion. Phytother. Res. 2013, 27, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Peng, W.; Liu, Z.; Gao, T.; Tian, Y. Tea polyphenols inhibit the growth and virulence of ETEC K88. Microb. Pathog. 2020, 152, 104640. [Google Scholar] [CrossRef] [PubMed]
- Sattler, S.E.; Funnell-Harris, D.L. Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens. Front. Plant Sci. 2013, 5, 70. [Google Scholar] [CrossRef]
- Ashihara, H.; Sano, H.; Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 2008, 69, 841–856. [Google Scholar] [CrossRef]
- Liang, Y.R.; Liu, C.; Xiang, L.P.; Zheng, X.Q. Health benefits of theanine in green tea: A review. Trop. J. Pharm. Res. 2015, 14, 1943–1949. [Google Scholar] [CrossRef]
- Cheng, S.H.; Fu, X.M.; Wang, X.Q.; Liao, Y.Y.; Zeng, L.T.; Dong, F.; Yang, Z.Y. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. J. Agric. Food Chem. 2017, 65, 7210–7216. [Google Scholar] [CrossRef]
- Feng, L.; Gao, M.J.; Hou, R.Y.; Hu, X.Y.; Zhang, L.; Wan, X.C.; Wei, S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem. 2014, 155, 98–104. [Google Scholar] [CrossRef]
- Lu, K.; Gray, M.A.; Oliver, C.; Liley, D.T.; Harrison, B.J.; Bartholomeusz, C.F.; Nathan, P.J. The acute effects of L-theanine in comparison with alprazolam on anticipatory anxiety in humans. Hum. Psychopharm. Clin. 2004, 19, 457–465. [Google Scholar] [CrossRef]
- Sumathi, T.; Asha, D.; Nagarajan, G.; Sreenivas, A.; Nivedha, R. L-theanine alleviates the neuropathological changes induced by PCB (Aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain. Environ. Toxicol. Pharmacol. 2016, 42, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, L.; Jia, G.; Zhao, H.; Liu, G.; Huang, Z. L-theanine improves intestinal barrier functions by increasing tight junction protein expression and attenuating inflammatory reactions in weaned piglets. J. Funct. Foods 2023, 100, 105400. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Z.; Feng, X.; Wang, M.; Luo, Y.; Wang, Y.; Xu, P. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. Sci. Total Environ. 2022, 1, 155801. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Kato, T.; Xu, H.L. Transport of nitrogen assimilation in xylem vessels of green tea plants fed with NH4-N and NO3-N. Pedosphere 2008, 18, 222–226. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Li, X.H.; Ruan, J.Y. Characterization of ammonium and nitrate uptake and assimilation in roots of tea plants. Russ. J. Plant Physiol. 2013, 60, 91–99. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendas, J.; Hardter, R.; Sattelmacher, B. Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green tea. J. Sci. Food Agric. 2007, 87, 1505–1516. [Google Scholar] [CrossRef]
- Ruan, L.; Wei, K.; Wang, L.; Cheng, H.; Zhang, F.; Wu, L.; Bai, P.; Zhang, C. Characteristics of NH4+ and NO3− fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique. Sci. Rep. 2016, 6, 38370. [Google Scholar] [CrossRef]
- Zambom de Souza, A.Z.; Abboud, K.Y.; Reis, S.K.; Tannihão, F.; Guadagnini, D.; Saad, M.J.A.; Prada, P.O. Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition 2015, 31, 884–889. [Google Scholar] [CrossRef]
- Murakami, S.; Kurihara, S.; Titchenal, C.A.; Ohtani, M. Suppression of exercise-induced neutrophilia and lymphopenia in athletes by cystine/theanine intake: A randomized, double-blind, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2010, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Kurihara, S.; Koikawa, N.; Nakamura, A.; Aoki, K.; Yosigi, H.; Sawaki, K.; Ohtani, M. Effects of oral supplementation with cystine and theanine on the immune function of athletes in endurance exercise: Randomized, double-blind, placebo-controlled trial. Biosci. Biotechnol. Biochem. 2009, 73, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, T.; Tsuchiya, T.; Oyama, A.; Tsuchiya, T.; Abe, N.; Sato, A.; Chiba, Y.; Kurihara, S.; Shibakusa, T.; Mikami, T. Perioperative oral administration of cystine and theanine enhances recovery after distal gastrectomy. J. Parenter. Enteral Nutr. 2013, 37, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, M. Inhibition of phytopathogenic fungi on selected vegetable crops by catechins, caffeine, theanine and extracts of Camellia sinensis (L.) O. Kuntze. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2008. [Google Scholar]
- Cornejo, P.; Aponte, H. Visualization of arbuscular mycorrhizal fungal extraradical hyphae and spores’ vitality and activity. Methods Mol. Biol. 2020, 2146, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.C.; Yang, L.; Pandey, M.K.; Bajaj, P.; Alexander, D.; Chen, S.; Kemerait, R.C.; Varshney, R.K.; Guo, B. Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time. BMC Microbiol. 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed]
- Gubbens, J.; Janus, M.M.; Florea, B.I.; Overkleeft, H.S.; van-Wezel, G.P. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol. Microbiol. 2012, 86, 1490–1507. [Google Scholar] [CrossRef] [PubMed]
- Yakop, F.; Taha, H.; Shivanand, P. Isolation of fungi from various habitats and their possible bioremediation. Curr. Sci. India 2019, 116, 733–740. [Google Scholar] [CrossRef]
- Umer, S.; Tekewe, A.; Kebede, N. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complement. Altern. Med. 2013, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Miao, R.; Ma, K.; Zhang, Y.; Fang, X.; Wei, J.; Yin, R.; Zhao, J.; Tian, J. Effects and mechanistic role of mulberry leaves in treating diabetes and its complications. Am. J. Chin. Med. 2023, 51, 1711–1749. [Google Scholar] [CrossRef] [PubMed]
- Barboza-Corona, J.E.; Ortiz-Rodríguez, T.; Fuente-Salcido, N.; Bideshi, D.K.; Ibarra, J.E.; Salcedo-Hernández, R. Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Anton. Leeuw. 2009, 96, 31–42. [Google Scholar] [CrossRef]
- Tzelepis, G.; Dubey, M.; Jensen, D.F.; Karls-son, M. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology 2015, 161, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- West, C.M.; Nguyen, P.; Wel, H.; Metcalf, T.; Sweeney, K.R.; Blader, I.J.; Erdos, G.W. Dependence of stress resistance on a spore coat heteropolysaccharide in Dictyostelium. Eukaryot Cell 2009, 8, 27–36. [Google Scholar] [CrossRef]
- Cheng, X.X.; Zhao, L.H.; Klosterman, S.J.; Feng, H.J.; Feng, Z.L.; Wei, F.; Shi, Y.Q.; Li, Z.F.; Zhu, H.Q. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. Plant Sci. 2017, 259, 12–23. [Google Scholar] [CrossRef]
- Maulidah, N.; Tong, S.; Chen, G.H.; Hsieh, H.Y.; Chang, S.F.; Chuang, H.W. Transcriptome analysis revealed cellular pathways associated with abiotic stress tolerance and disease resistance induced by Pseudomonas aeruginosa in banana plants. Plant Gene 2021, 27, 100321. [Google Scholar] [CrossRef]
- Millet, N.; Moya-Nilges, M.; Sachse, M.; Krijnse, L.J.; Latgé, J.P.; Mouyna, I. Aspergillus fumigatus exo-β-(1-3)-glucanases family GH55 are essential for conidial cell wall morphogenesis. Cell. Microbiol. 2019, 21, e13102. [Google Scholar] [CrossRef]
- Gastebois, A.; Aimanianda, V.; Bachellier-Bassi, S.; Nesseir, A.; Firon, A.; Beauvais, A.; Schmitt, C.; England, P.; Beau, R.; Prevost, M.C.; et al. SUN proteins belong to a novel family of β-(1,3)-glucan-modifying enzymes involved in fungal morphogenesis. J. Biol. Chem. 2013, 288, 13387–13396. [Google Scholar] [CrossRef]
- Varas, J.; Graumann, K.; Osman, K.; Pradillo, M.; Evans, D.E.; Santos, J.L.; Armstrong, S.J. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J. 2015, 81, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Mouyna, I.; Aimanianda, V.; Hartl, L.; Prevost, M.C.; Sismeiro, O.; Dillies, M.A.; Jagla, B.; Legendre, R.; Coppee, J.Y.; Latgé, J.P. GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell. Microbiol. 2016, 18, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Bamford, N.C.; Snarr, B.D.; Gravelat, F.N.; Little, D.J.; Lee, M.J.; Zacharias, C.A.; Chabot, J.C.; Geller, A.M.; Baptista, S.D.; Baker, P. SPH3 is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J. Korean Soc. Appl. Biol. 2015, 290, 27438–27450. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Fernando, L.; Fang, W.; Widanage, M.D.; Wei, P.; Jin, C.; Fontaine, T.; Latgé, J.P.; Wang, T. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat. Commun. 2021, 12, 6346. [Google Scholar] [CrossRef] [PubMed]
- Muszkieta, L.; Aimanianda, V.; Mellado, E.; Gribaldo, S.; Alcàzar-Fuoli, L.; Szewczyk, E.; Prevost, M.C.; Latgé, J.P. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell. Microbiol. 2014, 16, 1784–1805. [Google Scholar] [CrossRef]
- Traverso, J.A.; López-Jaramillo, F.J.; Serrato, A.J.; Ortega-Mu-Oz, M.; Aguado-Llera, D.; Sahrawy, M.; Santoyo-Gonzalez, F.; Neira, J.L.; Chueca, A. Evidence of non-functional redundancy between two pea h-type thioredoxins by specificity and stability studies. J. Plant Physiol. 2010, 167, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Bakke, M.; Kamei, J.I.; Obata, A. Identification, characterization, and molecular cloning of a novel hyaluronidase, a member of glycosyl hydrolase family 16, from Penicillium spp. FEBS Lett. 2011, 585, 115–120. [Google Scholar] [CrossRef]
- Mavrides, C.; Orr, W. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J. Biol. Chem. 1975, 250, 4128–4133. [Google Scholar] [CrossRef]
- Guo, F.; Berglund, P. Transaminase biocatalysis: Optimization and application. Green Chem. 2017, 19, 333–360. [Google Scholar] [CrossRef]
- Slabu, I.; Galman, J.L.; Lloyd, R.C.; Turner, N.J. Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catal. 2017, 7, 8263–8284. [Google Scholar] [CrossRef]
- Paine, M.J.; Scrutton, N.S.; Munro, A.W.; Gutierrez, A.; Robert, G.C.K.; Wolf, C.R. Cytochrome P450, 3rd ed.; Ortiz de Montellano, P.R., Ed.; Kluwer Academic/Plenum Publishers: Dordrecht, The Netherlands, 2005; pp. 115–148. [Google Scholar]
- Chen, J.T.; Zhang, Y.W.; Zhang, H.; Zhang, M.Y.; Dong, H.; Qin, T.X.; Gao, S.J.; Wang, S.Q.W. IL-24 is the key effector of Th9 cell-mediated tumor immunotherapy. iScience 2023, 26, 107531. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, F.; Wang, L.; Zhang, L.; Espley, R.V.; Lin-Wang, K.; Cao, F. The Response of Growth and Transcriptome Profiles of Tea Grey Blight Disease Pathogen Pestalotiopsis theae to the Variation of Exogenous L-Theanine. Int. J. Mol. Sci. 2024, 25, 3493. https://doi.org/10.3390/ijms25063493
Zhang Y, Wang F, Wang L, Zhang L, Espley RV, Lin-Wang K, Cao F. The Response of Growth and Transcriptome Profiles of Tea Grey Blight Disease Pathogen Pestalotiopsis theae to the Variation of Exogenous L-Theanine. International Journal of Molecular Sciences. 2024; 25(6):3493. https://doi.org/10.3390/ijms25063493
Chicago/Turabian StyleZhang, Yuqian, Feiyan Wang, Lijie Wang, Lingyun Zhang, Richard V. Espley, Kui Lin-Wang, and Fanrong Cao. 2024. "The Response of Growth and Transcriptome Profiles of Tea Grey Blight Disease Pathogen Pestalotiopsis theae to the Variation of Exogenous L-Theanine" International Journal of Molecular Sciences 25, no. 6: 3493. https://doi.org/10.3390/ijms25063493
APA StyleZhang, Y., Wang, F., Wang, L., Zhang, L., Espley, R. V., Lin-Wang, K., & Cao, F. (2024). The Response of Growth and Transcriptome Profiles of Tea Grey Blight Disease Pathogen Pestalotiopsis theae to the Variation of Exogenous L-Theanine. International Journal of Molecular Sciences, 25(6), 3493. https://doi.org/10.3390/ijms25063493