Rationally Designed Novel Antimicrobial Peptides Targeting Chitin Synthase for Combating Soybean Phytophthora Blight
Abstract
:1. Introduction
2. Results
2.1. Virtual Screening Study
2.2. The Inhibitory Mechanism of AMP_04 on Chitin Synthase
2.3. Saturation Mutagenesis of AMP_04 In Silico
2.4. Evaluating Antimicrobial Activity and Toxicity
2.5. Frontier Molecular Orbitals (FMOs) Analysis
2.6. Investigation of the Dynamic Binding State of the Chitin Synthase–Antimicrobial Peptide TP Complex through Molecular Dynamics Simulations
2.7. The Transmembrane Mechanism of Antimicrobial Peptide TP
3. Discussion
4. Materials and Methods
4.1. Preparation of Protein Receptor and Ligands
4.2. Virtual Screening
4.3. Calculation of Mutation Energy (Binding) for Saturation Mutagenesis
4.4. Helical Analysis of Antimicrobial Peptides
4.5. 2D Interaction Graph Analysis
4.6. MM_GBSA Analysis
4.7. Prediction of the Activity and Toxicity of Antimicrobial Peptides
4.8. Quantum Chemical Analysis
4.9. Molecular Dynamics Simulations
4.10. Dynamic Simulation of Membrane Penetration Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kezar, S.; Ballagh, A.; Kankarla, V.; Sharma, S.; Sharry, R.; Lofton, J. Response of Soybean Yield and Certain Growth Parameters to Simulated Reproductive Structure Removal. Agronomy 2023, 13, 927. [Google Scholar] [CrossRef]
- Duan, Z.; Li, Q.; Wang, H.; He, X.; Zhang, M. Genetic regulatory networks of soybean seed size, oil and protein contents. Front. Plant Sci. 2023, 14, 1160418. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, F.; Zhu, X.; Lamlom, S.F.; Liu, X.; Wang, X.; Zhao, K.; Wang, J.; Sun, M.; Yuan, M.; et al. Cultivation model and deficit irrigation strategy for reducing leakage of bundle sheath cells to CO2, improve 13C carbon isotope, photosynthesis and soybean yield in semi-arid areas. J. Plant Physiol. 2023, 285, 153979. [Google Scholar] [CrossRef] [PubMed]
- Irshad, A.; Marshall, M.W.; Greene, J.K.; Farmaha, B.S. Soybean yield response to Bradyrhizobium inoculation on southeastern coastal plain soils. Agron. J. 2023, 115, 1015–1020. [Google Scholar] [CrossRef]
- Sepiol, C.J.; Yu, J.; Dhaubhadel, S. Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance. Front. Plant Sci. 2017, 8, 293040. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Z.; Guo, N.; Wang, H.; Zhao, J.; Xing, H. Comparative Proteomics Analysis Reveals That Lignin Biosynthesis Contributes to Brassinosteroid-Mediated Response to Phytophthora sojae in Soybeans. J. Agric. Food Chem. 2020, 68, 5496–5506. [Google Scholar] [CrossRef] [PubMed]
- Elsanhoty, R.M.; Al-Turki, A.I.; Ramadan, M.F. Prevalence of Genetically Modified Rice, Maize, and Soy in Saudi Food Products. Appl. Biochem. Biotechnol. 2013, 171, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.; Ghosh, R.; Hansson, E.; Basnet, S.; Lagerkvist, C.-J. Environmental consequences of introducing genetically modified soy feed in Sweden. J. Clean. Prod. 2018, 176, 46–53. [Google Scholar] [CrossRef]
- Leguizamón, A. Environmental Injustice in Argentina: Struggles against Genetically Modified Soy. J. Agrar. Change 2016, 16, 684–692. [Google Scholar] [CrossRef]
- Shen, C.; Yin, X.-C.; Jiao, B.-Y.; Li, J.; Jia, P.; Zhang, X.-W.; Cheng, X.-H.; Ren, J.-X.; Lan, H.-D.; Hou, W.-B.; et al. Evaluation of adverse effects/events of genetically modified food consumption: A systematic review of animal and human studies. Environ. Sci. Eur. 2022, 34, 8. [Google Scholar] [CrossRef]
- Tudisco, R.; Calabrò, S.; Cutrignelli, M.I.; Moniello, G.; Grossi, M.; Mastellone, V.; Lombardi, P.; Pero, M.E.; Infascelli, F. Genetically modified soybean in a goat diet: Influence on kid performance. Small Rumin. Res. 2015, 126, 67–74. [Google Scholar] [CrossRef]
- Tang, C.; Chen, Z.; Huang, Y.; Solyanikova, I.P.; Mohan, S.V.; Chen, H.; Wu, Y. Occurrence and potential harms of organochlorine pesticides (OCPs) in environment and their removal by periphyton. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1957–1981. [Google Scholar] [CrossRef]
- Caradus, J.R. Intended and unintended consequences of genetically modified crops—Myth, fact and/or manageable outcomes? N. Z. J. Agric. Res. 2022, 66, 519–619. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, L.; Han, L.; Zhang, H.; Shen, H.; Zhu, B.; Wang, B. Application of three prediction models in pesticide poisoning. Environ. Sci. Pollut. Res. 2022, 29, 30584–30593. [Google Scholar] [CrossRef]
- Bruno, R.; Maresca, M.; Canaan, S.; Cavalier, J.F.; Mabrouk, K.; Boidin-Wichlacz, C.; Olleik, H.; Zeppilli, D.; Brodin, P.; Massol, F.; et al. Worms’ Antimicrobial Peptides. Mar. Drugs 2019, 17, 512. [Google Scholar] [CrossRef]
- Ki, M.R.; Kim, S.H.; Park, T.I.; Pack, S.P. Self-Entrapment of Antimicrobial Peptides in Silica Particles for Stable and Effective Antimicrobial Peptide Delivery System. Int. J. Mol. Sci. 2023, 24, 16423. [Google Scholar] [CrossRef]
- Nazarian-Firouzabadi, F.; Torres, M.T.; de la Fuente-Nunez, C. Recombinant production of antimicrobial peptides in plants. Biotechnol. Adv. 2024, 71, 108296. [Google Scholar] [CrossRef]
- Skowron, K.J.; Baliga, C.; Johnson, T.; Kremiller, K.M.; Castroverde, A.; Dean, T.T.; Allen, A.C.; Lopez-Hernandez, A.M.; Aleksandrova, E.V.; Klepacki, D.; et al. Structure-Activity Relationships of the Antimicrobial Peptide Natural Product Apidaecin. J. Med. Chem. 2023, 66, 11831–11842. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Chen, Y.-N.; Cai, J.; Liao, T.; Zu, X.-Y. Identification, Screening and Antibacterial Mechanism Analysis of Novel Antimicrobial Peptides from Sturgeon (Acipenser ruthenus) Spermary. Mar. Drugs 2023, 21, 386. [Google Scholar] [CrossRef]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur. J. Med. Chem. 2023, 265, 116072. [Google Scholar] [CrossRef]
- Han, Q.; Feng, H.; Zhao, H.; Huang, L.; Wang, X.; Wang, X.; Kang, Z. Effect of a benzothiadiazole on inducing resistance of soybean to Phytophthora sojae. Protoplasma 2012, 250, 471–481. [Google Scholar] [CrossRef]
- Miao, S.; Dashtbozorg, S.S.; Callow, N.V.; Ju, L.-K. Rhamnolipids as Platform Molecules for Production of Potential Anti-zoospore Agrochemicals. J. Agric. Food Chem. 2015, 63, 3367–3376. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.; Gao, W.; Liang, C.; Han, C.; Wang, Y.; Xu, Q.; Wang, Q. 4-Ethylphenol, A Volatile Organic Compound Produced by Disease-Resistant Soybean, Is a Potential Botanical Agrochemical Against Oomycetes. Front. Plant Sci. 2021, 12, 717258. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Z.; Chen, P.; Zuo, C.; Chen, L.; Yan, W.; Jiao, R.; Ye, Y. Genome Mining and Heterologous Expression Guided the Discovery of Antimicrobial Naphthocyclinones from Streptomyces eurocidicus CGMCC 4.1086. J. Agric. Food Chem. 2023, 71, 2914–2923. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, X.; Liu, Z.; Hu, S.; Xue, Z.; Fu, Y.; Miao, J.; Liu, X. Resistance Risk and Novel Resistance-Related Point Mutations in Target Protein PiORP1 of Fluoxapiprolin in Phytophthora infestans. J. Agric. Food Chem. 2022, 70, 4881–4888. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Liu, X.; Du, X.; Li, G.; Li, C.; Zhao, D.; Liu, X. Sensitivity of Pythium spp. and Phytopythium spp. and tolerance mechanism of Pythium spp. to oxathiapiprolin. Pest. Manag. Sci. 2020, 76, 3975–3981. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Wang, Z.; Fang, Y.; Wang, W.; Cheng, X.; Liu, X. Point Mutations in the β-Tubulin of Phytophthora sojae Confer Resistance to Ethaboxam. Phytopathology 2019, 109, 2096–2106. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, X.; Wang, R.; He, Z.; Feng, W.; Liu, W.; Yang, C.; Wang, Z.; Ke, Q.; Tao, K.; et al. Use of oxathiapiprolin for controlling soybean root rot caused by Phytophthora sojae: Efficacy and mechanism of action. Pest. Manag. Sci. 2022, 79, 381–390. [Google Scholar] [CrossRef]
- Zhang, Z.; Sahoo, D.K.; Abeysekara, N.S.; Cianzio, S.R.; Robertson, A.E.; Bhattacharyya, M.K. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes. PLoS ONE 2017, 12, e0169950. [Google Scholar] [CrossRef]
- Ivanov, M.; Ćirić, A.; Stojković, D. Emerging Antifungal Targets and Strategies. Int. J. Mol. Sci. 2022, 23, 2756. [Google Scholar] [CrossRef]
- Beauvais, A.; Latgé, J.-P. Special Issue: Fungal Cell Wall. J. Fungi 2018, 4, 91. [Google Scholar] [CrossRef]
- Ramzan, A.; Padder, S.A.; Masoodi, K.Z.; Shafi, S.; Tahir, I.; Rehman, R.U.; Prasad, R.; Shah, A.H. β-Nitrostyrene derivatives as broad range potential antifungal agents targeting fungal cell wall. Eur. J. Med. Chem. 2022, 240, 114609. [Google Scholar] [CrossRef]
- Wu, S.; Song, R.; Liu, T.; Li, C. Antifungal therapy: Novel drug delivery strategies driven by new targets. Adv. Drug Deliv. Rev. 2023, 199, 114967. [Google Scholar] [CrossRef]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef]
- Chen, W.; Cao, P.; Liu, Y.; Yu, A.; Wang, D.; Chen, L.; Sundarraj, R.; Yuchi, Z.; Gong, Y.; Merzendorfer, H.; et al. Structural basis for directional chitin biosynthesis. Nature 2022, 610, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rogozhin, E.A.; Vasilchenko, A.S.; Barashkova, A.S.; Smirnov, A.N.; Zavriev, S.K.; Demushkin, V.P. Peptide Extracts from Seven Medicinal Plants Discovered to Inhibit Oomycete Phytophthora infestans, a Causative Agent of Potato Late Blight Disease. Plants 2020, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, M.; Tang, Q.; Wang, Y.; Zhang, X. Inhibitory effect of Xenorhabdusnematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Sci. Rep. 2014, 4, 4300. [Google Scholar] [CrossRef]
- Yang, K.; Dong, X.; Li, J.; Wang, Y.; Cheng, Y.; Zhai, Y.; Li, X.; Wei, L.; Jing, M.; Dou, D. Type 2 Nep1-Like Proteins from the Biocontrol Oomycete Pythium oligandrum Suppress Phytophthora capsici Infection in Solanaceous Plants. J. Fungi 2021, 7, 496. [Google Scholar] [CrossRef]
- Mangoni, M.L.; Fiocco, D.; Mignogna, G.; Barra, D.; Simmaco, M. Functional characterisation of the 1–18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides 2003, 24, 1771–1777. [Google Scholar] [CrossRef]
- Mulukutla, A.; Shreshtha, R.; Kumar Deb, V.; Chatterjee, P.; Jain, U.; Chauhan, N. Recent advances in antimicrobial peptide-based therapy. Bioorganic Chem. 2024, 145, 107151. [Google Scholar] [CrossRef] [PubMed]
- Cavallarin, L.; Andreu, D.; San Segundo, B. Cecropin A—Derived Peptides Are Potent Inhibitors of Fungal Plant Pathogens. Mol. Plant-Microbe Interact. 1998, 11, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.S.; Reddy, A.S.N. Inhibition of Fungal and Bacterial Plant Pathogens by Synthetic Peptides: In Vitro Growth Inhibition, Interaction between Peptides and Inhibition of Disease Progression. Mol. Plant-Microbe Interact. 2000, 13, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Meng, F.; Qiu, D.; Yang, X. Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10. Peptides 2012, 35, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lin, H.; Bai, R.; Duan, H. Deep learning for advancing peptide drug development: Tools and methods in structure prediction and design. Eur. J. Med. Chem. 2024, 268, 116262. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ye, X.; Sakurai, T.; Mu, Z.; Wei, L.; Martelli, P.L. ToxIBTL: Prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics 2022, 38, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Wu, C.-X.; Ma, R. Pressure-driven membrane inflation through nanopores on the cell wall. Chin. Phys. B 2023, 32, 088704. [Google Scholar] [CrossRef]
- Kuang, G.; Liang, L.; Brown, C.; Wang, Q.; Bulone, V.; Tu, Y. Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA and POPC membranes by molecular dynamics simulation studies. Phys. Chem. Chem. Phys. 2016, 18, 5281–5290. [Google Scholar] [CrossRef] [PubMed]
- Briolay, A.; Bouzenzana, J.; Guichardant, M.; Deshayes, C.; Sindt, N.; Bessueille, L.; Bulone, V. Cell Wall Polysaccharide Synthases Are Located in Detergent-Resistant Membrane Microdomains in Oomycetes. Appl. Environ. Microbiol. 2009, 75, 1938–1949. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, H.; Miao, Y.; Luo, S.-Z.; Xue, S. Virtual Evolution of HVEM Segment for Checkpoint Inhibitor Discovery. Int. J. Mol. Sci. 2021, 22, 6638. [Google Scholar] [CrossRef]
- Kauffman, W.B.; Fuselier, T.; He, J.; Wimley, W.C. Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. Trends Biochem. Sci. 2015, 40, 749–764. [Google Scholar] [CrossRef]
- Wang, K.; Shao, X.; Cai, W. Binding Models of Aβ42 Peptide with Membranes Explored by Molecular Simulations. J. Chem. Inf. Model. 2022, 62, 6482–6493. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ling, M.; Lin, Q.; Tang, S.; Wu, J.; Hu, H. Effectiveness Analysis of Multiple Initial States Simulated Annealing Algorithm, A Case Study on the Molecular Docking Tool AutoDock Vina. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3830–3841. [Google Scholar] [CrossRef]
- Lin, H.; Siu, S. A Hybrid Cuckoo Search and Differential Evolution Approach to Protein–Ligand Docking. Int. J. Mol. Sci. 2018, 19, 3181. [Google Scholar] [CrossRef] [PubMed]
- Boittier, E.D.; Burns, J.M.; Gandhi, N.S.; Ferro, V. GlycoTorch Vina: Docking Designed and Tested for Glycosaminoglycans. J. Chem. Inf. Model. 2020, 60, 6328–6343. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Ling, M.; Lin, Q.; Chen, R.; Qi, H.; Lin, M.; Zhu, Y.; Wu, J. Vina-FPGA: A Hardware-Accelerated Molecular Docking Tool with Fixed-Point Quantization and Low-Level Parallelism. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2023, 31, 484–497. [Google Scholar] [CrossRef]
- Macari, G.; Toti, D.; Pasquadibisceglie, A.; Polticelli, F. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina. Int. J. Mol. Sci. 2020, 21, 9548. [Google Scholar] [CrossRef]
- Rentzsch, R.; Renard, B.Y. Docking small peptides remains a great challenge: An assessment using AutoDock Vina. Brief. Bioinform. 2015, 16, 1045–1056. [Google Scholar] [CrossRef]
- Tang, S.; Chen, R.; Lin, M.; Lin, Q.; Zhu, Y.; Ding, J.; Hu, H.; Ling, M.; Wu, J. Accelerating AutoDock Vina with GPUs. Molecules 2022, 27, 3041. [Google Scholar] [CrossRef]
- Koebel, M.R.; Schmadeke, G.; Posner, R.G.; Sirimulla, S. AutoDock VinaXB: Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J. Cheminform. 2016, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Meng, J.; Jiang, K.; Lan, H.; Wang, Z.; Lin, M.; Li, W.; Guo, H.; Wei, Y.; Mu, Y. Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term. Brief. Bioinform. 2022, 23, bbac051. [Google Scholar] [CrossRef]
- Tai, H.K.; Jusoh, S.A.; Siu, S.W.I. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening. J. Cheminform. 2018, 10, 62. [Google Scholar] [CrossRef]
- Minibaeva, G.; Ivanova, A.; Polishchuk, P. EasyDock: Customizable and scalable docking tool. J. Cheminform. 2023, 15, 102. [Google Scholar] [CrossRef]
- Hinkel, L.; Ospina-Giraldo, M.D. Structural characterization of a putative chitin synthase gene in Phytophthora spp. and analysis of its transcriptional activity during pathogenesis on potato and soybean plants. Curr. Genet. 2017, 63, 909–921. [Google Scholar] [CrossRef]
- Chen, D.-D.; Wang, Z.-B.; Wang, L.-X.; Zhao, P.; Yun, C.-H.; Bai, L. Structure, catalysis, chitin transport, and selective inhibition of chitin synthase. Nat. Commun. 2023, 14, 4776. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Pan, Y.; Li, K.; Li, D.; Li, P.; Gao, Z. Proteomics Reveals the Mechanism Underlying the Inhibition of Phytophthora sojae by Propyl Gallate. J. Agric. Food Chem. 2020, 68, 8151–8162. [Google Scholar] [CrossRef] [PubMed]
- Hadda, T.B.; Deniz, F.S.S.; Orhan, I.E.; Zgou, H.; Rauf, A.; Mabkhot, Y.N.; Bennani, B.; Emam, D.R.; Kheder, N.A.; Asayari, A.; et al. Spiro Heterocyclic Compounds as Potential Anti-Alzheimer Agents (Part 2): Their Metal Chelation Capacity, POM Analyses and DFT Studies. Med. Chem. 2021, 17, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Kunduracioglu, A. A Computational (DFT) Study on the Anti-Malarial Drug: Lumefantrine. Appl. Sci. 2023, 13, 9219. [Google Scholar] [CrossRef]
- Zouaoui-Rabah, M.; Bekri, L.; Hedidi, M.; Elhorri, A.M.; Madaoui, Y. Characteristics of new pyrrolic derivatives and their oligomers using DFT and TD–DFT calculations. J. Mol. Model. 2023, 29, 364. [Google Scholar] [CrossRef]
- Serin, S. Computational insights into E/Z isomerism of fluoxastrobin, an antifungal agent: A DFT/TD-DFT study. J. Mol. Struct. 2023, 1287, 135713. [Google Scholar] [CrossRef]
- Singh, M.B.; Bhagat, P.; Jain, P.; Singh, P. Exploration of DFT and TD-DFT computation to investigate the interaction between paracetamol and lithium or its compounds. J. Mol. Liq. 2023, 383, 122114. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A.; Faizi, M.S.H.; Dege, N. Synthesis, Structural Characterization, DFT Calculations, and Molecular Docking of a Novel Quinoline Derivative. J. Mol. Struct. 2024, 1300, 137251. [Google Scholar] [CrossRef]
- Sánchez-Martínez, H.A.; Morán-Pinzón, J.A.; del Olmo Fernández, E.; Eguiluz, D.L.; Adserias Vistué, J.F.; López-Pérez, J.L.; De León, E.G. Synergistic Combination of NAPROC-13 and NMR 13C DFT Calculations: A Powerful Approach for Revising the Structure of Natural Products. J. Nat. Prod. 2023, 86, 2294–2303. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Kuznetsov, A.E.; Pirzada, A.S.; Alsharif, K.F.; Daglia, M.; Khan, H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front. Chem. 2023, 11, 1145974. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, L.; Wang, X.; Lu, Y.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr. Rev. Food Sci. Food Saf. 2020, 20, 863–899. [Google Scholar] [CrossRef] [PubMed]
- Pina, A.S.; Batalha, Í.L.; Fernandes, C.S.M.; Aoki, M.A.; Roque, A.C.A. Exploring the potential of magnetic antimicrobial agents for water disinfection. Water Res. 2014, 66, 160–168. [Google Scholar] [CrossRef]
- Houyvet, B.; Leduc, A.; Cornet, V.; Pontin, J.; Benoist, L.; Bernay, B.; Henry, J.; Vetois, E.; Zatylny-Gaudin, C. Behavior of Antimicrobial Peptide K4 in a Marine Environment. Probiotics Antimicrob. Proteins 2018, 11, 676–686. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Chen, H.; Cai, X.; Chen, X.; Wang, S. The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture. Engineering 2022, 27, 222–233. [Google Scholar] [CrossRef]
- Dong, T.; Yang, Z.; Zhou, J.; Chen, C.Y.-C. Equivariant Flexible Modeling of the Protein–Ligand Binding Pose with Geometric Deep Learning. J. Chem. Theory Comput. 2023, 19, 8446–8459. [Google Scholar] [CrossRef]
- Ross, G.A.; Lu, C.; Scarabelli, G.; Albanese, S.K.; Houang, E.; Abel, R.; Harder, E.D.; Wang, L. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations. Commun. Chem. 2023, 6, 222. [Google Scholar] [CrossRef]
- Oda, M. Analysis of the Structural Dynamics of Proteins in the Ligand-Unbound and -Bound States by Diffracted X-ray Tracking. Int. J. Mol. Sci. 2023, 24, 3717. [Google Scholar] [CrossRef]
- Pliushcheuskaya, P.; Künze, G. Recent Advances in Computer-Aided Structure-Based Drug Design on Ion Channels. Int. J. Mol. Sci. 2023, 24, 9226. [Google Scholar] [CrossRef]
- Bassani, D.; Moro, S. Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies. Molecules 2023, 28, 3906. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, K.; Kalusalingam, A.; Bharathidasan, A.R.; Sivaprakash, A.; Shanmugam, K.; Sundaramoorthy, M.; Byran, G. In Silico Drug Design of Anti-Breast Cancer Agents. Molecules 2023, 28, 4175. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Zhu, F.; Wassall, S.R. Binding of Vitamin E in Model Membranes Studied by Umbrella Sampling Simulations. Biophys. J. 2016, 110, 583a. [Google Scholar] [CrossRef]
- Sanusi, Z.K.; Lawal, M.M.; Gupta, P.L.; Govender, T.; Baijnath, S.; Naicker, T.; Maguire, G.E.M.; Honarparvar, B.; Roitberg, A.E.; Kruger, H.G. Exploring the concerted mechanistic pathway for HIV-1 PR—Substrate revealed by umbrella sampling simulation. J. Biomol. Struct. Dyn. 2020, 40, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid. Interface Sci. 2017, 247, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Rana, N.; Hussain, N.; Ogaly, H.A.; Dera, A.A.; Khan, I. Identification of Potential Inhibitors for the Treatment of Alkaptonuria Using an Integrated In Silico Computational Strategy. Molecules 2023, 28, 2623. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Abouzied, A.S.; Mohammed, S.A.A.; Khan, R.A. In Vivo and In Silico Analgesic Activity of Ficus populifolia Extract Containing 2-O-β-D-(3′,4′,6′-Tri-acetyl)-glucopyranosyl-3-methyl Pentanoic Acid. Int. J. Mol. Sci. 2023, 24, 2270. [Google Scholar] [CrossRef] [PubMed]
- Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, T.G.; Tadesse, M.G.; Bachheti, A.; Pandey, D.P.; Wabaidur, S.M.; Dahlous, K.A.; Širić, I.; et al. Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies. Molecules 2023, 28, 1111. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Öhlknecht, C.; Katz, S.; Kröß, C.; Sprenger, B.; Engele, P.; Schneider, R.; Oostenbrink, C. Efficient In Silico Saturation Mutagenesis of a Member of the Caspase Protease Family. J. Chem. Inf. Model. 2021, 61, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Stampelou, M.; Suchankova, A.; Tzortzini, E.; Dhingra, L.; Barkan, K.; Lougiakis, N.; Marakos, P.; Pouli, N.; Ladds, G.; Kolocouris, A. Dual A1/A3 Adenosine Receptor Antagonists: Binding Kinetics and Structure−Activity Relationship Studies Using Mutagenesis and Alchemical Binding Free Energy Calculations. J. Med. Chem. 2022, 65, 13305–13327. [Google Scholar] [CrossRef]
- Zou, J.; Yin, J.; Fang, L.; Yang, M.; Wang, T.; Wu, W.; Bellucci, M.A.; Zhang, P. Computational Prediction of Mutational Effects on SARS-CoV-2 Binding by Relative Free Energy Calculations. J. Chem. Inf. Model. 2020, 60, 5794–5802. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, R.; Henry, B.; Prichett, D.; Fang, Y.; Teng, S. Computational Saturation Mutagenesis to Investigate the Effects of Neurexin-1 Mutations on AlphaFold Structure. Genes 2022, 13, 789. [Google Scholar] [CrossRef] [PubMed]
- Shorthouse, D.; Hall, M.W.J.; Hall, B.A. Computational Saturation Screen Reveals the Landscape of Mutations in Human Fumarate Hydratase. J. Chem. Inf. Model. 2021, 61, 1970–1980. [Google Scholar] [CrossRef]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 2008, 24, 2101–2102. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Sun, H.; Pan, P.; Li, Y.; Li, D.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys. Chem. Chem. Phys. 2016, 18, 22129–22139. [Google Scholar] [CrossRef] [PubMed]
- Adasme-Carreno, F.; Munoz-Gutierrez, C.; Caballero, J.; Alzate-Morales, J.H. Performance of the MM/GBSA scoring using a binding site hydrogen bond network-based frame selection: The protein kinase case. Phys. Chem. Chem. Phys. 2014, 16, 14047–14058. [Google Scholar] [CrossRef]
- Ongaro, A.; Oselladore, E.; Memo, M.; Ribaudo, G.; Gianoncelli, A. Insight into the LFA-1/SARS-CoV-2 Orf7a Complex by Protein-Protein Docking, Molecular Dynamics, and MM-GBSA Calculations. J. Chem. Inf. Model. 2021, 61, 2780–2787. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Lv, H.; Guo, Y.; Peng, W.; Liu, B. sAMPpred-GAT: Prediction of antimicrobial peptide by graph attention network and predicted peptide structure. Bioinformatics 2023, 39, btac715. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Fox. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Marian, C.M.; Heil, A.; Kleinschmidt, M. The DFT/MRCI method. WIREs Comput. Mol. Sci. 2018, 9, e1394. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M. Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity”. Theor. Chem. Acc. Theory Comput. Model. Theor. Chim. Acta 2000, 103, 353–360. [Google Scholar] [CrossRef]
- Páll, S.; Zhmurov, A.; Bauer, P.; Abraham, M.; Lundborg, M.; Gray, A.; Hess, B.; Lindahl, E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, Y.; Li, Q.; Zhang, H. Atomistic Simulation of Lysozyme in Solutions Crowded by Tetraethylene Glycol: Force Field Dependence. Molecules 2022, 27, 2110. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.M. Parameterization and evaluation of a flexible water model. J. Comput. Chem. 1995, 16, 501–511. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUIMembrane Buildertoward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2019, 16, 528–552. [Google Scholar] [CrossRef]
- Alan, A.R.; Earle, E.D. Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. Mol. Plant Microbe Interact. 2002, 15, 701–708. [Google Scholar] [CrossRef]
- Bartova, V.; Barta, J.; Jarosova, M. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl. Microbiol. Biotechnol. 2019, 103, 5533–5547. [Google Scholar] [CrossRef]
Ligand | Amino Acid Sequence | Predicted Binding Energy (kcal/mol) | Reference |
---|---|---|---|
NikZ | - | −6.6 | [35] |
AMP_01 | NH2-KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL-COOH | −5.4 | [41] |
AMP_02 | NH2-GIFSKLAGKKLKNLLISGL-COOH | −5.5 | [39] |
AMP_03 | NH2-MASRAARLAARLARLALRAL-COOH | −4.7 | [42] |
AMP_04 | NH2-EGPVGLADPDGPASAPLGAP-COOH | −8.8 | [43] |
Antimicrobial Peptides | MM_GBSA Binding Energies (kcal/mol) |
---|---|
AMP_04 | −25.44 |
DP | −55.11 |
TP | −90.38 |
Name | Class | Probability |
---|---|---|
AMP_04 | AMP | 0.998 |
DP | AMP | 0.999 |
TP | AMP | 0.999 |
Name | Results | Score |
---|---|---|
AMP_04 | Non-toxic | |
DP | Non-toxic | |
TP | Non-toxic |
Parameter | AMP_04 | DP | TP |
---|---|---|---|
HOMO (eV) | −5.766 | −6.220 | −6.103 |
LUMO (eV) | −0.680 | −0.648 | −0.920 |
ΔEL-H (eV) | 5.086 | 5.572 | 5.183 |
η | 2.543 | 2.786 | 2.591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Y.; Shehzadi, K.; Liang, J.-H.; Yu, M.-J. Rationally Designed Novel Antimicrobial Peptides Targeting Chitin Synthase for Combating Soybean Phytophthora Blight. Int. J. Mol. Sci. 2024, 25, 3512. https://doi.org/10.3390/ijms25063512
Ran Y, Shehzadi K, Liang J-H, Yu M-J. Rationally Designed Novel Antimicrobial Peptides Targeting Chitin Synthase for Combating Soybean Phytophthora Blight. International Journal of Molecular Sciences. 2024; 25(6):3512. https://doi.org/10.3390/ijms25063512
Chicago/Turabian StyleRan, Yue, Kiran Shehzadi, Jian-Hua Liang, and Ming-Jia Yu. 2024. "Rationally Designed Novel Antimicrobial Peptides Targeting Chitin Synthase for Combating Soybean Phytophthora Blight" International Journal of Molecular Sciences 25, no. 6: 3512. https://doi.org/10.3390/ijms25063512
APA StyleRan, Y., Shehzadi, K., Liang, J. -H., & Yu, M. -J. (2024). Rationally Designed Novel Antimicrobial Peptides Targeting Chitin Synthase for Combating Soybean Phytophthora Blight. International Journal of Molecular Sciences, 25(6), 3512. https://doi.org/10.3390/ijms25063512