Design of Protease-Responsive Antifungal Liposomal Formulation Decorated with a Lipid-Modified Chitin-Binding Domain
Abstract
:1. Introduction
2. Results
2.1. Conjugation of LysM with Different Types of Lipid Substrates
2.2. Dynamic Light Scattering (DLS) Analysis of LysM–Lipid–AmBisome
2.3. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.4. Evaluation of the Antifungal Activity of LysM–Lipid–AmBisome against C. albicans
2.5. Design of LysM–TD Linker–Lipid and DLS Analysis with AmBisome
2.6. Antifungal Activity of AmBisome with a New LysM Mutant
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Expression and Purification of Recombinant Proteins
4.3. Fmoc Solid Phase Peptide Synthesis
4.4. MTG-Catalyzed Lipid Conjugation Reaction
4.5. Particle Size Analysis Using DLS and Zeta Potential
4.6. Chitinase–AmBisome Formulation Antifungal Activity Testing
4.7. Estimation of the Number of LysM–Lipid or LysM–(Lipid)2 Conjugates on Lipid Membrane of AmBisome
4.8. Confocal Laser Scanning Microscopy (CLSM) Analysis
4.9. Antifungal Activity Testing for New LysM with Thrombin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanreppelen, G.; Wuyts, J.; Van Dijck, P.; Vandecruys, P. Sources of Antifungal Drugs. J. Fungi 2023, 9, 171. [Google Scholar] [CrossRef]
- Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals 2020, 13, 248. [Google Scholar] [CrossRef]
- Baginski, M.; Sternal, K.; Czub, J.; Borowski, E. Molecular Modelling of Membrane Activity of Amphotericin B, a Polyene Macrolide Antifungal Antibiotic. Acta Biochim. Pol. 2005, 52, 655–658. [Google Scholar] [CrossRef]
- Delhom, R.; Nelson, A.; Laux, V.; Haertlein, M.; Knecht, W.; Fragneto, G.; Wacklin-Knecht, H.P. The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. Nanomaterials 2020, 10, 2439. [Google Scholar] [CrossRef] [PubMed]
- Tevyashova, A.; Efimova, S.; Alexandrov, A.; Omelchuk, O.; Ghazy, E.; Bychkova, E.; Zatonsky, G.; Grammatikova, N.; Dezhenkova, L.; Solovieva, S.; et al. Semisynthetic Amides of Amphotericin B and Nystatin A1: A Comparative Study of In Vitro Activity/Toxicity Ratio in Relation to Selectivity to Ergosterol Membranes. Antibiotics 2023, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.; Ballesteros, M.; Schätzlein, A.; Torrado, J.; Uchegbu, I. Amphotericin B Formulations—The Possibility of Generic Competition. Pharm. Nanotechnol. 2013, 1, 250–258. [Google Scholar] [CrossRef]
- Dézsi, L.; Fülöp, T.; Mészáros, T.; Szénási, G.; Urbanics, R.; Vázsonyi, C.; Őrfi, E.; Rosivall, L.; Nemes, R.; Kok, R.J.; et al. Features of Complement Activation-Related Pseudoallergy to Liposomes with Different Surface Charge and PEGylation: Comparison of the Porcine and Rat Responses. J. Control. Release 2014, 195, 2–10. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Tiwari, R.K.; Ravidas, V.; Pandey, K.; Kumar, A. Amphotericin B: A Drug of Choice for Visceral Leishmaniasis. Acta Trop. 2022, 235, 106661. [Google Scholar] [CrossRef]
- Liu, Y.; Mei, Z.; Mei, L.; Tang, J.; Yuan, W.; Srinivasan, S.; Ackermann, R.; Schwendeman, A.S. Analytical Method Development and Comparability Study for AmBisome® and Generic Amphotericin B Liposomal Products. Eur. J. Pharm. Biopharm. 2020, 157, 241–249. [Google Scholar] [CrossRef]
- Fujimoto, K.; Takemoto, K. Efficacy of Liposomal Amphotericin B against Four Species of Candida Biofilms in an Experimental Mouse Model of Intravascular Catheter Infection. J. Infect. Chemother. 2018, 24, 958–964. [Google Scholar] [CrossRef]
- Li, L.; Wei, M.; Yu, H.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Antifungal Activity of Sapindus Saponins against Candida Albicans: Interruption of Biofilm Formation. J. Herb. Med. 2023, 42, 100776. [Google Scholar] [CrossRef]
- Bojang, E.; Ghuman, H.; Kumwenda, P.; Hall, R.A. Immune Sensing of Candida albicans. J. Fungi 2021, 7, 119. [Google Scholar] [CrossRef]
- Brahma, P.; Aggarwal, R.; Sanyal, K. Biased Eviction of Variant Histone H3 Nucleosomes Triggers Biofilm Growth in Candida albicans. mBio 2023, 14, e02063-23. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Zhang, Y.; Sui, Y.; Du, Y.; Yang, L.; Yin, Y. Antifungal and Anti-Biofilm Activities of Patchouli Alcohol against Candida Albicans. Int. J. Med. Microbiol. 2024, 314, 151596. [Google Scholar] [CrossRef]
- Hu, L.; Bai, G.; Xu, Q.; Zhao, G.; Jiang, N.; Yao, H.; Liu, X.; Du, Z. Candidalysin Amplifies the Immune Inflammatory Response in Candida albicans Keratitis through the TREM-1/DAP12 Pathway. Int. Immunopharmacol. 2023, 119, 110195. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, A.; Zheng, Y.; Li, D.; Wei, Y.; Gan, M.; Li, Y.; Si, S. Anti-Biofilm Activity of Cocultimycin A against Candida Albicans. Int. J. Mol. Sci. 2023, 24, 17026. [Google Scholar] [CrossRef]
- Zaongo, S.D.; Ouyang, J.; Isnard, S.; Zhou, X.; Harypursat, V.; Cui, H.; Routy, J.-P.; Chen, Y. Candida albicans Can Foster Gut Dysbiosis and Systemic Inflammation during HIV Infection. Gut Microbes 2023, 15, 2167171. [Google Scholar] [CrossRef]
- Talapko, J.; Meštrović, T.; Dmitrović, B.; Juzbašić, M.; Matijević, T.; Bekić, S.; Erić, S.; Flam, J.; Belić, D.; Petek Erić, A.; et al. A Putative Role of Candida albicans in Promoting Cancer Development: A Current State of Evidence and Proposed Mechanisms. Microorganisms 2023, 11, 1476. [Google Scholar] [CrossRef]
- Patel, M. Oral Cavity and Candida Albicans: Colonisation to the Development of Infection. Pathogens 2022, 11, 335. [Google Scholar] [CrossRef]
- Shokohi, T.; Badali, H.; Amirrajab, N.; Ataollahi, M.R.; Kouhpayeh, S.A.; Afsarian, M.H. In Vitro Activity of Five Antifungal Drugs against Candida albicans Isolates in Sari, Iran. Curr. Med. Mycol. 2016, 2, 34. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Sinha, M.; Singh, H.; Patel, R.S.; Ghosh, S.; Sardana, K.; Ghosh, S.; Sengupta, S. Mechanistic Insight Into the Antifungal Effects of a Fatty Acid Derivative Against Drug-Resistant Fungal Infections. Front. Microbiol. 2020, 11, 2116. [Google Scholar] [CrossRef]
- Lee, Y.; Robbins, N.; Cowen, L.E. Molecular Mechanisms Governing Antifungal Drug Resistance. Npj Antimicrob. Resist. 2023, 1, 5. [Google Scholar] [CrossRef]
- Chowdhary, A.; Tarai, B.; Singh, A.; Sharma, A. Multidrug-Resistant Candida Auris Infections in Critically Ill Coronavirus Disease Patients, India, April–July 2020. Emerg. Infect. Dis. 2020, 26, 2694–2696. [Google Scholar] [CrossRef]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida Auris: Epidemiology, Biology, Antifungal Resistance, and Virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- WHO. Who Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization (WHO): Geneva, Switzerland, 2022.
- Grela, E.; Zdybicka-Barabas, A.; Pawlikowska-Pawlega, B.; Cytrynska, M.; Wlodarczyk, M.; Grudzinski, W.; Luchowski, R.; Gruszecki, W.I. Modes of the Antibiotic Activity of Amphotericin B against Candida albicans. Sci. Rep. 2019, 9, 17029. [Google Scholar] [CrossRef]
- Herculano, R.D.; Dos Reis, C.E.; De Souza, S.M.B.; Pegorin Brasil, G.S.; Scontri, M.; Kawakita, S.; Carvalho, B.G.; Bebber, C.C.; Su, Y.; De Sousa Abreu, A.P.; et al. Amphotericin B-Loaded Natural Latex Dressing for Treating Candida albicans Wound Infections Using Galleria Mellonella Model. J. Control. Release 2024, 365, 744–758. [Google Scholar] [CrossRef]
- Hartmann, D.O.; Shimizu, K.; Rothkegel, M.; Petkovic, M.; Ferraz, R.; Petrovski, Ž.; Branco, L.C.; Canongia Lopes, J.N.; Silva Pereira, C. Tailoring Amphotericin B as an Ionic Liquid: An Upfront Strategy to Potentiate the Biological Activity of Antifungal Drugs. RSC Adv. 2021, 11, 14441–14452. [Google Scholar] [CrossRef]
- De Oliveira Viana, J.; Silva E Souza, E.; Sbaraini, N.; Vainstein, M.H.; Gomes, J.N.S.; De Moura, R.O.; Barbosa, E.G. Scaffold Repositioning of Spiro-Acridine Derivatives as Fungi Chitinase Inhibitor by Target Fishing and in Vitro Studies. Sci. Rep. 2023, 13, 7320. [Google Scholar] [CrossRef]
- Onaga, S.; Taira, T. A New Type of Plant Chitinase Containing LysM Domains from a Fern (Pteris Ryukyuensis): Roles of LysM Domains in Chitin Binding and Antifungal Activity. Glycobiology 2008, 18, 414–423. [Google Scholar] [CrossRef]
- Hazen, K.C.; Lay, J.G.; Hazen, B.W.; Fu, R.C.; Murthy, S. Partial Biochemical Characterization of Cell Surface Hydrophobicity and Hydrophilicity of Candida Albicans. Infect. Immun. 1990, 58, 3469–3476. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, S.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Comparative Analysis of Proteinase, Phospholipase, Hydrophobicity and Biofilm Forming Ability in Candida Species Isolated from Clinical Specimens. J. Mycol. Médicale 2018, 28, 437–442. [Google Scholar] [CrossRef]
- Muadcheingka, T.; Tantivitayakul, P. Distribution of Candida albicans and Non-Albicans Candida Species in Oral Candidiasis Patients: Correlation between Cell Surface Hydrophobicity and Biofilm Forming Activities. Arch. Oral Biol. 2015, 60, 894–901. [Google Scholar] [CrossRef]
- Suchodolski, J.; Muraszko, J.; Korba, A.; Bernat, P.; Krasowska, A. Lipid Composition and Cell Surface Hydrophobicity of Candida albicans Influence the Efficacy of Fluconazole–Gentamicin Treatment. Yeast 2020, 37, 117–129. [Google Scholar] [CrossRef]
- Kurakado, S.; Takatori, K.; Sugita, T. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation. Jpn. J. Infect. Dis. 2017, 70, 490–494. [Google Scholar] [CrossRef]
- Takahara, M.; Mochizuki, S.; Wakabayashi, R.; Minamihata, K.; Goto, M.; Sakurai, K.; Kamiya, N. Extending the Half-Life of a Protein In Vivo by Enzymatic Labeling with Amphiphilic Lipopeptides. Bioconjug. Chem. 2021, 32, 655–660. [Google Scholar] [CrossRef]
- Santoso, P.; Minamihata, K.; Ishimine, Y.; Taniguchi, H.; Komada, T.; Sato, R.; Goto, M.; Takashima, T.; Taira, T.; Kamiya, N. Enhancement of the Antifungal Activity of Chitinase by Palmitoylation and the Synergy of Palmitoylated Chitinase with Amphotericin B. ACS Infect. Dis. 2022, 8, 1051–1061. [Google Scholar] [CrossRef]
- Taniguchi, H.; Ishimime, Y.; Minamihata, K.; Santoso, P.; Komada, T.; Saputra, H.; Uchida, K.; Goto, M.; Taira, T.; Kamiya, N. Liposomal Amphotericin B Formulation Displaying Lipid-Modified Chitin-Binding Domains with Enhanced Antifungal Activity. Mol. Pharm. 2022, 19, 3906–3914. [Google Scholar] [CrossRef]
- Borman, A.M.; Muller, J.; Walsh-Quantick, J.; Szekely, A.; Patterson, Z.; Palmer, M.D.; Fraser, M.; Johnson, E.M. MIC Distributions for Amphotericin B, Fluconazole, Itraconazole, Voriconazole, Flucytosine and Anidulafungin and 35 Uncommon Pathogenic Yeast Species from the UK Determined Using the CLSI Broth Microdilution Method. J. Antimicrob. Chemother. 2020, 75, 1194–1205. [Google Scholar] [CrossRef]
- Mori, T.; Yoshida, M.; Hazekawa, M.; Ishibashi, D.; Hatanaka, Y.; Nagao, T.; Kakehashi, R.; Kojima, H.; Uno, R.; Ozeki, M.; et al. Antimicrobial Activities of LL-37 Fragment Mutant-Poly (Lactic-Co-Glycolic) Acid Conjugate against Staphylococcus Aureus, Escherichia Coli, and Candida Albicans. Int. J. Mol. Sci. 2021, 22, 5097. [Google Scholar] [CrossRef]
- Ibaraki, H.; Kanazawa, T.; Chien, W.-Y.; Nakaminami, H.; Aoki, M.; Ozawa, K.; Kaneko, H.; Takashima, Y.; Noguchi, N.; Seta, Y. The Effects of Surface Properties of Liposomes on Their Activity against Pseudomonas Aeruginosa PAO-1 Biofilm. J. Drug Deliv. Sci. Technol. 2020, 57, 101754. [Google Scholar] [CrossRef]
- Ifuku, S.; Nogi, M.; Yoshioka, M.; Morimoto, M.; Yano, H.; Saimoto, H. Fibrillation of Dried Chitin into 10–20nm Nanofibers by a Simple Grinding Method under Acidic Conditions. Carbohydr. Polym. 2010, 81, 134–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saputra, H.; Safaat, M.; Santoso, P.; Wakabayashi, R.; Goto, M.; Taira, T.; Kamiya, N. Design of Protease-Responsive Antifungal Liposomal Formulation Decorated with a Lipid-Modified Chitin-Binding Domain. Int. J. Mol. Sci. 2024, 25, 3567. https://doi.org/10.3390/ijms25073567
Saputra H, Safaat M, Santoso P, Wakabayashi R, Goto M, Taira T, Kamiya N. Design of Protease-Responsive Antifungal Liposomal Formulation Decorated with a Lipid-Modified Chitin-Binding Domain. International Journal of Molecular Sciences. 2024; 25(7):3567. https://doi.org/10.3390/ijms25073567
Chicago/Turabian StyleSaputra, Hendra, Muhammad Safaat, Pugoh Santoso, Rie Wakabayashi, Masahiro Goto, Toki Taira, and Noriho Kamiya. 2024. "Design of Protease-Responsive Antifungal Liposomal Formulation Decorated with a Lipid-Modified Chitin-Binding Domain" International Journal of Molecular Sciences 25, no. 7: 3567. https://doi.org/10.3390/ijms25073567
APA StyleSaputra, H., Safaat, M., Santoso, P., Wakabayashi, R., Goto, M., Taira, T., & Kamiya, N. (2024). Design of Protease-Responsive Antifungal Liposomal Formulation Decorated with a Lipid-Modified Chitin-Binding Domain. International Journal of Molecular Sciences, 25(7), 3567. https://doi.org/10.3390/ijms25073567