Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences
Abstract
:1. Introduction
2. Physiopathological Mechanisms That May Affect Neurodevelopment in Children of Preeclamptic Mothers
2.1. Hypoxia and Excess Cortisol
2.2. Vascular and Angiogenic Dysregulation
2.3. Inflammation
2.4. Disruption in Neurons, Glia, and Neuronal Signaling in PE-F1
3. PE and Neurological Alterations in the Offspring
3.1. PE and CP
3.2. PE and ADHD
3.3. PE and ASD
3.4. PE and Other Neurological Alterations
3.5. Sexual Dimorphism Described in the Alterations Caused by PE in the Offspring
4. Prevention and Treatment of PE in Pregnant Mothers and Their Offspring
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists. Task Force Hypertension in Pregnancy: Executive Summary. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Ishimwe, J.A. Maternal Microbiome in Preeclampsia Pathophysiology and Implications on Offspring Health. Physiol. Rep. 2021, 9, e14875. [Google Scholar] [CrossRef]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ 2019, 366, l2381. [Google Scholar] [CrossRef]
- El-Sayed, A.A.F. Preeclampsia: A Review of the Pathogenesis and Possible Management Strategies Based on Its Pathophysiological Derangements. Taiwan J. Obstet. Gynecol. 2017, 56, 593–598. [Google Scholar] [CrossRef]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-Eclampsia: Pathogenesis, Novel Diagnostics and Therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef]
- Kay, V.R.; Rätsep, M.T.; Figueiró-Filho, E.A.; Croy, B.A. Preeclampsia May Influence Offspring Neuroanatomy and Cognitive Function: A Role for Placental Growth Factor. Biol. Reprod. 2019, 101, 271–283. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Chaemsaithong, P.; Yeo, L.; Romero, R. Pre-Eclampsia Part 1: Current Understanding of Its Pathophysiology. Nat. Rev. Nephrol. 2014, 10, 466–480. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertens. 2018, 13, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Bokslag, A.; Van Weissenbruch, M.; Mol, B.W.; De Groot, C.J.M. Preeclampsia; Short and Long-Term Consequences for Mother and Neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.-B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global Causes of Maternal Death: A WHO Systematic Analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef] [PubMed]
- Stella, C.L.; Sibai, B.M. Preeclampsia: Diagnosis and Management of the Atypical Presentation. J. Matern. Fetal Neonatal Med. 2006, 19, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Kamen, B.; Karwal, M.A.; Yankowitz, J. Hemolysis and Elevated Transaminases Imitating Severe Preeclampsia. Obstet. Gynecol. 2009, 113, 545–547. [Google Scholar] [CrossRef]
- Boushra, M.; Natesan, S.M.; Koyfman, A.; Long, B. High Risk and Low Prevalence Diseases: Eclampsia. Am. J. Emerg. Med. 2022, 58, 223–228. [Google Scholar] [CrossRef]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; De Groot, C.J.M.; Hofmeyr, G.J. Pre-Eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Duley, L. The Global Impact of Pre-Eclampsia and Eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef]
- Bergman, L.; Torres-Vergara, P.; Penny, J.; Wikström, J.; Nelander, M.; Leon, J.; Tolcher, M.; Roberts, J.M.; Wikström, A.-K.; Escudero, C. Investigating Maternal Brain Alterations in Preeclampsia: The Need for a Multidisciplinary Effort. Curr. Hypertens. Rep. 2019, 21, 72. [Google Scholar] [CrossRef]
- Dimitriadis, E.; Rolnik, D.L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R.P.V.; Whitehead, C.; Hyett, J.; Da Silva Costa, F.; Nicolaides, K.; et al. Pre-Eclampsia. Nat. Rev. Dis. Primer 2023, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Sircar, M.; Thadhani, R.; Karumanchi, S.A. Pathogenesis of Preeclampsia. Curr. Opin. Nephrol. Hypertens. 2015, 24, 131–138. [Google Scholar] [CrossRef]
- Barker, D.J.P. Adult Consequences of Fetal Growth Restriction. Clin. Obstet. Gynecol. 2006, 49, 270–283. [Google Scholar] [CrossRef]
- Dang, F.; Croy, B.; Stroman, P.; Figueiró-Filho, E. Impacts of Preeclampsia on the Brain of the Offspring. Rev. Bras. Ginecol. E Obstetrícia RBGO Gynecol. Obstet. 2016, 38, 416–422. [Google Scholar] [CrossRef]
- Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.N.; Oparil, S. Preeclampsia—Pathophysiology and Clinical Presentations. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [Google Scholar] [CrossRef] [PubMed]
- Degner, K.; Magness, R.R.; Shah, D.M. Establishment of the Human Uteroplacental Circulation: A Historical Perspective. Reprod. Sci. 2017, 24, 753–761. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, F.; De Wolf-Peeters, C.; Brosens, I.; Robertson, W.B. The Human Placental Bed: Electron Microscopic Study of Trophoblastic Invasion of Spiral Arteries. Am. J. Obstet. Gynecol. 1980, 137, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fisher, S.J.; Janatpour, M.; Genbacev, O.; Dejana, E.; Wheelock, M.; Damsky, C.H. Human Cytotrophoblasts Adopt a Vascular Phenotype as They Differentiate. A Strategy for Successful Endovascular Invasion? J. Clin. Investig. 1997, 99, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The Role of Immune Cells and Mediators in Preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Vercruysse, L.; Hanssens, M. The Uterine Spiral Arteries in Human Pregnancy: Facts and Controversies. Placenta 2006, 27, 939–958. [Google Scholar] [CrossRef] [PubMed]
- Robertson, W.B.; Brosens, I.; Dixon, H.G. The Pathological Response of the Vessels of the Placental Bed to Hypertensive Pregnancy. J. Pathol. Bacteriol. 1967, 93, 581–592. [Google Scholar] [CrossRef]
- Tomimatsu, T.; Mimura, K.; Endo, M.; Kumasawa, K.; Kimura, T. Pathophysiology of Preeclampsia: An Angiogenic Imbalance and Long-Lasting Systemic Vascular Dysfunction. Hypertens. Res. 2017, 40, 305–310. [Google Scholar] [CrossRef]
- Saito, S.; Nakashima, A.; Shima, T.; Ito, M. REVIEW ARTICLE: Th1/Th2/Th17 and Regulatory T-Cell Paradigm in Pregnancy. Am. J. Reprod. Immunol. 2010, 63, 601–610. [Google Scholar] [CrossRef]
- Whitehouse, A.J.O.; Robinson, M.; Newnham, J.P.; Pennell, C.E. Do Hypertensive Diseases of Pregnancy Disrupt Neurocognitive Development in Offspring? Paediatr. Perinat. Epidemiol. 2012, 26, 101–108. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Meeker, J.D.; McElrath, T.F.; Mukherjee, B.; Cantonwine, D.E. Repeated Measures of Inflammation and Oxidative Stress Biomarkers in Preeclamptic and Normotensive Pregnancies. Am. J. Obstet. Gynecol. 2017, 216, 527.e1–527.e9. [Google Scholar] [CrossRef]
- Gumusoglu, S.B.; Chilukuri, A.S.S.; Hing, B.W.Q.; Scroggins, S.M.; Kundu, S.; Sandgren, J.A.; Santillan, M.K.; Santillan, D.A.; Grobe, J.L.; Stevens, H.E. Altered Offspring Neurodevelopment in an Arginine Vasopressin Preeclampsia Model. Transl. Psychiatry 2021, 11, 79. [Google Scholar] [CrossRef]
- Logue, O.C.; George, E.M.; Bidwell, G.L. Preeclampsia and the Brain: Neural Control of Cardiovascular Changes during Pregnancy and Neurological Outcomes of Preeclampsia. Clin. Sci. 2016, 130, 1417–1434. [Google Scholar] [CrossRef]
- Strand, K.M.; Heimstad, R.; Iversen, A.-C.; Austgulen, R.; Lydersen, S.; Andersen, G.L.; Irgens, L.M.; Vik, T. Mediators of the Association between Pre-Eclampsia and Cerebral Palsy: Population Based Cohort Study. BMJ 2013, 347, f4089. [Google Scholar] [CrossRef]
- Shawwa, K.; McDonnell, N.A.; Garovic, V.D. Pregnancy, Preeclampsia, and Brain: Three Thousand Years of Progress. Hypertension 2018, 72, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Tuovinen, S.; Räikkönen, K.; Kajantie, E.; Pesonen, A.; Heinonen, K.; Osmond, C.; Barker, D.; Eriksson, J. Depressive Symptoms in Adulthood and Intrauterine Exposure to Pre-eclampsia: The Helsinki Birth Cohort Study. BJOG Int. J. Obstet. Gynaecol. 2010, 117, 1236–1242. [Google Scholar] [CrossRef]
- Kay, V.R.; Rätsep, M.T.; Cahill, L.S.; Hickman, A.F.; Zavan, B.; Newport, M.E.; Ellegood, J.; Laliberte, C.L.; Reynolds, J.N.; Carmeliet, P.; et al. Effects of Placental Growth Factor Deficiency on Behavior, Neuroanatomy, and Cerebrovasculature of Mice. Physiol. Genom. 2018, 50, 862–875. [Google Scholar] [CrossRef]
- Kajantie, E.; Eriksson, J.G.; Osmond, C.; Thornburg, K.; Barker, D.J.P. Pre-Eclampsia Is Associated With Increased Risk of Stroke in the Adult Offspring: The Helsinki Birth Cohort Study. Stroke 2009, 40, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, W.; Liu, H.; Kang, Y.; Ye, C.; Gu, W.; Hu, R.; Li, X. Developmental and Functional Brain Impairment in Offspring from Preeclampsia-Like Rats. Mol. Neurobiol. 2016, 53, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; László, K.D.; Gissler, M.; Li, F.; Zhang, J.; Yu, Y.; Li, J. Maternal Hypertensive Disorders and Neurodevelopmental Disorders in Offspring: A Population-Based Cohort in Two Nordic Countries. Eur. J. Epidemiol. 2021, 36, 519–530. [Google Scholar] [CrossRef]
- Walker, C.K.; Krakowiak, P.; Baker, A.; Hansen, R.L.; Ozonoff, S.; Hertz-Picciotto, I. Preeclampsia, Placental Insufficiency, and Autism Spectrum Disorder or Developmental Delay. JAMA Pediatr. 2015, 169, 154. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.; Phillips, T.J.; Stuart, G.C.; Rogers, M.F.; Steinkraus, B.R.; Grant, S.; Case, C.P. Preeclamptic Placentae Release Factors That Damage Neurons: Implications for Foetal Programming of Disease. Neuronal Signal. 2018, 2, NS20180139. [Google Scholar] [CrossRef]
- Mak, L.E.; Croy, B.A.; Kay, V.; Reynolds, J.N.; Rätsep, M.T.; Forkert, N.D.; Smith, G.N.; Paolozza, A.; Stroman, P.W.; Figueiró-Filho, E.A. Resting-State Functional Connectivity in Children Born from Gestations Complicated by Preeclampsia: A Pilot Study Cohort. Pregnancy Hypertens. 2018, 12, 23–28. [Google Scholar] [CrossRef]
- Ushida, T.; Kidokoro, H.; Nakamura, N.; Katsuki, S.; Imai, K.; Nakano-Kobayashi, T.; Moriyama, Y.; Sato, Y.; Hayakawa, M.; Natsume, J.; et al. Impact of Maternal Hypertensive Disorders of Pregnancy on Brain Volumes at Term-Equivalent Age in Preterm Infants: A Voxel-Based Morphometry Study. Pregnancy Hypertens. 2021, 25, 143–149. [Google Scholar] [CrossRef]
- Griffin, A.; Spencer, S.-K.; Bowles, T.; Solis, L.; Robinson, R.; Ramarao, S.; Wallace, K. Male HELLP Pups Experience Sensorimotor Delays and Reduced Body Weight. Physiol. Behav. 2021, 241, 113567. [Google Scholar] [CrossRef] [PubMed]
- Giambrone, A.B.; Logue, O.C.; Shao, Q.; Bidwell, G.L.; Warrington, J.P. Perinatal Micro-Bleeds and Neuroinflammation in E19 Rat Fetuses Exposed to Utero-Placental Ischemia. Int. J. Mol. Sci. 2019, 20, 4051. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.Z.; Moster, D.; Harmon, Q.E.; Wilcox, A.J. Association of Preeclampsia in Term Births With Neurodevelopmental Disorders in Offspring. JAMA Psychiatry 2020, 77, 823. [Google Scholar] [CrossRef] [PubMed]
- Figueiró-Filho, E.A.; Croy, B.A.; Reynolds, J.N.; Dang, F.; Piro, D.; Rätsep, M.T.; Forkert, N.D.; Paolozza, A.; Smith, G.N.; Stroman, P.W. Diffusion Tensor Imaging of White Matter in Children Born from Preeclamptic Gestations. Am. J. Neuroradiol. 2017, 38, 801–806. [Google Scholar] [CrossRef]
- Rätsep, M.T.; Paolozza, A.; Hickman, A.F.; Maser, B.; Kay, V.R.; Mohammad, S.; Pudwell, J.; Smith, G.N.; Brien, D.; Stroman, P.W.; et al. Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study. Am. J. Neuroradiol. 2016, 37, 939–945. [Google Scholar] [CrossRef]
- Morsing, E.; Maršál, K. Pre-Eclampsia—An Additional Risk Factor for Cognitive Impairment at School Age after Intrauterine Growth Restriction and Very Preterm Birth. Early Hum. Dev. 2014, 90, 99–101. [Google Scholar] [CrossRef]
- Lahti-Pulkkinen, M.; Girchenko, P.; Tuovinen, S.; Sammallahti, S.; Reynolds, R.M.; Lahti, J.; Heinonen, K.; Lipsanen, J.; Hämäläinen, E.; Villa, P.M.; et al. Maternal Hypertensive Pregnancy Disorders and Mental Disorders in Children. Hypertension 2020, 75, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Shallie, P.D.; Margolis, D.; Shallie, O.F.; Naicker, T. Placental 11β-HSD2 Downregulated in HIV Associated Preeclampsia. J. Reprod. Immunol. 2020, 142, 103185. [Google Scholar] [CrossRef] [PubMed]
- Newby, E.A.; Myers, D.A.; Ducsay, C.A. Fetal Endocrine and Metabolic Adaptations to Hypoxia: The Role of the Hypothalamic-Pituitary-Adrenal Axis. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E429–E439. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, Y.; Jiang, Y.; Lv, H.; Jiang, T.; Qiu, Y.; Lu, Q.; Du, J.; Lin, Y.; Ma, H. Association of Maternal Hypertensive Disorders in Pregnancy with Infant Neurodevelopment. J. Biomed. Res. 2023, 37, 479. [Google Scholar] [CrossRef] [PubMed]
- Rees, S.; Harding, R.; Walker, D. An Adverse Intrauterine Environment: Implications for Injury and Altered Development of the Brain. Int. J. Dev. Neurosci. 2008, 26, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef]
- Williamson, R.D.; McCarthy, C.; McCarthy, F.P.; Kenny, L.C. Oxidative Stress in Pre-Eclampsia; Have We Been Looking in the Wrong Place? Pregnancy Hypertens. Int. J. Womens Cardiovasc. Health 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim. Biophys. Acta BBA -Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
- Ramos, A.C.; De Mattos Hungria, F.; Camerini, B.A.; Suiama, M.A.; Calzavara, M.B. Potential Beneficial Effects of Caffeine Administration in the Neonatal Period of an Animal Model of Schizophrenia. Behav. Brain Res. 2020, 391, 112674. [Google Scholar] [CrossRef]
- Poore, K.R.; Canny, B.J.; Young, I.R. Adrenal Responsiveness and the Timing of Parturition in Hypothalamo-Pituitary Disconnected Ovine Foetuses with and without Constant Adrenocorticotrophin Infusion. J. Neuroendocrinol. 1999, 11, 343–349. [Google Scholar] [CrossRef]
- Simmonds, P.; Phillips, I.; Poore, K.; Coghill, I.; Young, I.; Canny, B. The Role of the Pituitary Gland and ACTH in the Regulation of mRNAs Encoding Proteins Essential for Adrenal Steroidogenesis in the Late-Gestation Ovine Fetus. J. Endocrinol. 2001, 168, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Challis, J.R.G.; Matthews, S.G.; Gibb, W.; Lye, S.J. Endocrine and Paracrine Regulation of Birth at Term and Preterm. Endocr. Rev. 2000, 21, 514–550. [Google Scholar] [CrossRef]
- Meaney, M.J.; Viau, V.; Bhatnagar, S.; Betito, K.; Iny, L.J.; O’Donnell, D.; Mitchell, J.B. Cellular Mechanisms Underlying the Development and Expression of Individual Differences in the Hypothalamic-Pituitary-Adrenal Stress Response. J. Steroid Biochem. Mol. Biol. 1991, 39, 265–274. [Google Scholar] [CrossRef]
- Munck, A.; Guyre, P.M.; Holbrook, N.J. Physiological Functions of Glucocorticoids in Stress and Their Relation to Pharmacological Actions. Endocr. Rev. 1984, 5, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G. The Role of Stress and the Hypothalamic–Pituitary–Adrenal Axis in the Pathogenesis of the Metabolic Syndrome: Neuro-Endocrine and Target Tissue-Related Causes. Int. J. Obes. 2000, 24, S50–S55. [Google Scholar] [CrossRef] [PubMed]
- Rosmond, R. Role of Stress in the Pathogenesis of the Metabolic Syndrome. Psychoneuroendocrinology 2005, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic–Pituitary–Adrenal Axis, Neuroendocrine Factors and Stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef]
- Poulos, S.P.; Hausman, D.B.; Hausman, G.J. The Development and Endocrine Functions of Adipose Tissue. Mol. Cell. Endocrinol. 2010, 323, 20–34. [Google Scholar] [CrossRef]
- Watson, E.C.; Grant, Z.L.; Coultas, L. Endothelial Cell Apoptosis in Angiogenesis and Vessel Regression. Cell. Mol. Life Sci. 2017, 74, 4387–4403. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.-H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating Angiogenic Factors and the Risk of Preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef]
- Venkatesha, S.; Toporsian, M.; Lam, C.; Hanai, J.; Mammoto, T.; Kim, Y.M.; Bdolah, Y.; Lim, K.-H.; Yuan, H.-T.; Libermann, T.A.; et al. Soluble Endoglin Contributes to the Pathogenesis of Preeclampsia. Nat. Med. 2006, 12, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.K.; Chandel, N.; Jain, V.; Jha, V. The Relationship between Circulating Endothelin-1, Soluble Fms-like Tyrosine Kinase-1 and Soluble Endoglin in Preeclampsia. J. Hum. Hypertens. 2012, 26, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, M.; Bi, X.; Fu, Y.; Jing, X.; Zhang, H.; Cao, B.; Wang, C. A Systematic Review on the Application of Vascular Endothelial Growth Factors in Preeclampsia. Ann. Palliat. Med. 2021, 10, 9259–9266. [Google Scholar] [CrossRef] [PubMed]
- Samson, M.; Peale, F.V.; Frantz, G.; Rioux-Leclercq, N.; Rajpert-De Meyts, E.; Ferrara, N. Human Endocrine Gland-Derived Vascular Endothelial Growth Factor: Expression Early in Development and in Leydig Cell Tumors Suggests Roles in Normal and Pathological Testis Angiogenesis. J. Clin. Endocrinol. Metab. 2004, 89, 4078–4088. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, T.; Alitalo, K. Endothelial Receptor Tyrosine Kinases Involved in Angiogenesis. J. Cell Biol. 1995, 129, 895–898. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal Transduction by Vascular Endothelial Growth Factor Receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF Receptor Signalling? In Control of Vascular Function. Nat. Rev. Mol. Cell Biol. 2006, 7, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Hewett, P.W.; Al-Ani, B.; Sissaoui, S.; Fujisawa, T.; Cudmore, M.J.; Ahmed, A. Autocrine Activity of Soluble Flt-1 Controls Endothelial Cell Function and Angiogenesis. Vasc. Cell 2011, 3, 15. [Google Scholar] [CrossRef]
- Gehmeyr, J.; Maghnouj, A.; Tjaden, J.; Vorgerd, M.; Hahn, S.; Matschke, V.; Theis, V.; Theiss, C. Disabling VEGF-Response of Purkinje Cells by Downregulation of KDR via miRNA-204-5p. Int. J. Mol. Sci. 2021, 22, 2173. [Google Scholar] [CrossRef]
- Herrfurth, L.; Theis, V.; Matschke, V.; May, C.; Marcus, K.; Theiss, C. Morphological Plasticity of Emerging Purkinje Cells in Response to Exogenous VEGF. Front. Mol. Neurosci. 2017, 10, 2. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, J.Y.; Jeong, M.S.; Jang, H.S.; Endo, S.; Bae, J.; Jin, H.K. The Role of Purkinje Cell-Derived VEGF in Cerebellar Astrogliosis in Niemann-Pick Type C Mice. BMB Rep. 2018, 51, 79–84. [Google Scholar] [CrossRef]
- Tjaden, J.; Eickhoff, A.; Stahlke, S.; Gehmeyr, J.; Vorgerd, M.; Theis, V.; Matschke, V.; Theiss, C. Expression Pattern of T-Type Ca2+ Channels in Cerebellar Purkinje Cells after VEGF Treatment. Cells 2021, 10, 2277. [Google Scholar] [CrossRef]
- Schmahmann, J.D. The Cerebellum and Cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef]
- Valencia, M.; Illanes, J.; Santander, O.; Saavedra, D.; Adaros, M.; Ibarra, A.; Saavedra, G.; Pascual, R. Environmental Enrichment Restores the Reduced Expression of Cerebellar Synaptophysin and the Motor Coordination Impairment in Rats Prenatally Treated with Betamethasone. Physiol. Behav. 2019, 209, 112590. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Bohman, S.; Dixelius, J.; Berge, T.; Dimberg, A.; Magnusson, P.; Wang, L.; Wikner, C.; Qi, J.H.; Wernstedt, C.; et al. VEGF Receptor-2 Y951 Signaling and a Role for the Adapter Molecule TSAd in Tumor Angiogenesis. EMBO J. 2005, 24, 2342–2353. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Massena, S.; Kutschera, S.; Padhan, N.; Gualandi, L.; Sundvold-Gjerstad, V.; Gustafsson, K.; Choy, W.W.; Zang, G.; et al. VEGFR2 Induces C-Src Signaling and Vascular Permeability in Vivo via the Adaptor Protein TSAd. J. Exp. Med. 2012, 209, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.E.; Min, J.-Y.; Merchan, J.; Lim, K.-H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess Placental Soluble Fms-like Tyrosine Kinase 1 (sFlt1) May Contribute to Endothelial Dysfunction, Hypertension, and Proteinuria in Preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef]
- Polliotti, B. Second-Trimester Maternal Serum Placental Growth Factor and Vascular Endothelial Growth Factor for Predicting Severe, Early-Onset Preeclampsia. Obstet. Gynecol. 2003, 101, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.N.; Grimwood, J.; Taylor, R.S.; McMaster, M.T.; Fisher, S.J.; North, R.A. Longitudinal Serum Concentrations of Placental Growth Factor: Evidence for Abnormal Placental Angiogenesis in Pathologic Pregnancies. Am. J. Obstet. Gynecol. 2003, 188, 177–182. [Google Scholar] [CrossRef]
- De Alwis, N.; Binder, N.K.; Beard, S.; Mangwiro, Y.T.; Kadife, E.; Cuffe, J.S.; Keenan, E.; Fato, B.R.; Kaitu’u-Lino, T.J.; Brownfoot, F.C.; et al. The L-NAME Mouse Model of Preeclampsia and Impact to Long-Term Maternal Cardiovascular Health. Life Sci. Alliance 2022, 5, e202201517. [Google Scholar] [CrossRef]
- Valencia-Narbona, M.; Torres, E.; Muñoz, F.; García, T. Structural and Functional Cerebellar Impairment in the Progeny of Preeclamptic Rat Mothers. Neurosci. Behav. Physiol. 2023, 53, 1283–1299. [Google Scholar] [CrossRef]
- Nakamura, N.; Ushida, T.; Onoda, A.; Ueda, K.; Miura, R.; Suzuki, T.; Katsuki, S.; Mizutani, H.; Yoshida, K.; Tano, S.; et al. Altered Offspring Neurodevelopment in an L-NAME-Induced Preeclampsia Rat Model. Front. Pediatr. 2023, 11, 1168173. [Google Scholar] [CrossRef]
- James-Todd, T.; Cohen, A.; Wenger, J.; Brown, F. Time-Specific Placental Growth Factor (PlGF) across Pregnancy and Infant Birth Weight in Women with Preexisting Diabetes. Hypertens. Pregnancy 2016, 35, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Bergen, N.E.; Bouwland-Both, M.I.; Steegers-Theunissen, R.P.M.; Hofman, A.; Russcher, H.; Lindemans, J.; Jaddoe, V.W.V.; Steegers, E.A.P. Early Pregnancy Maternal and Fetal Angiogenic Factors and Fetal and Childhood Growth: The Generation R Study. Hum. Reprod. 2015, 30, 1302–1313. [Google Scholar] [CrossRef]
- Gishti, O.; Jaddoe, V.W.V.; Felix, J.F.; Reiss, I.; Hofman, A.; Ikram, M.K.; Steegers, E.A.P.; Gaillard, R. Influence of Maternal Angiogenic Factors during Pregnancy on Microvascular Structure in School-Age Children. Hypertension 2015, 65, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Staff, A.C.; Braekke, K.; Harsem, N.K.; Lyberg, T.; Holthe, M.R. Circulating Concentrations of sFlt1 (Soluble Fms-like Tyrosine Kinase 1) in Fetal and Maternal Serum during Pre-Eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 122, 33–39. [Google Scholar] [CrossRef]
- Torry, D.S.; Wang, H.-S.; Wang, T.-H.; Caudle, M.R.; Torry, R.J. Preeclampsia Is Associated with Reduced Serum Levels of Placenta Growth Factor. Am. J. Obstet. Gynecol. 1998, 179, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Beňovská, M.; Opluštilová, A.; Pinkavová, J.; Hodická, Z.; Čermáková, Z. The New Possibilities in Early Diagnosis of Preeclampsia by Soluble Fms-like Tyrosine Kinase-1 and Placental Growth Factor in 16–20 Weeks Gestation. Lab. Med. 2018, 49, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Jadli, A.; Ghosh, K.; Satoskar, P.; Damania, K.; Bansal, V.; Shetty, S. Combination of Copeptin, Placental Growth Factor and Total Annexin V Microparticles for Prediction of Preeclampsia at 10–14 Weeks of Gestation. Placenta 2017, 58, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Sonek, J.; Krantz, D.; Carmichael, J.; Downing, C.; Jessup, K.; Haidar, Z.; Ho, S.; Hallahan, T.; Kliman, H.J.; McKenna, D. First-Trimester Screening for Early and Late Preeclampsia Using Maternal Characteristics, Biomarkers, and Estimated Placental Volume. Am. J. Obstet. Gynecol. 2018, 218, 126.e1–126.e13. [Google Scholar] [CrossRef]
- Farina, A.; Volinia, S.; Arcelli, D.; Francioso, F.; DeSanctis, P.; Zucchini, C.; Pilu, G.; Carinci, P.; Morano, D.; Pittalis, M.C.; et al. Evidence of Genetic Underexpression in Chorionic Villi Samples of Euploid Fetuses with Increased Nuchal Translucency at 10–11 Weeks’ Gestation. Prenat. Diagn. 2006, 26, 128–133. [Google Scholar] [CrossRef]
- Kay, V.R.; Tayade, C.; Carmeliet, P.; Croy, B.A. Influences of Placental Growth Factor on Mouse Retinal Vascular Development. Dev. Dyn. 2017, 246, 700–712. [Google Scholar] [CrossRef]
- Luna, R.L.; Kay, V.R.; Rätsep, M.T.; Khalaj, K.; Bidarimath, M.; Peterson, N.; Carmeliet, P.; Jin, A.; Anne Croy, B. Placental Growth Factor Deficiency Is Associated with Impaired Cerebral Vascular Development in Mice. Mol. Hum. Reprod. 2016, 22, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhu, W.; Hu, R.; Wang, H.; Ma, D.; Li, X. The Effect of Pre-Eclampsia-like Syndrome Induced by L-NAME on Learning and Memory and Hippocampal Glucocorticoid Receptor Expression: A Rat Model. Hypertens. Pregnancy 2017, 36, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Cauli, O.; Herraiz, S.; Pellicer, B.; Pellicer, A.; Felipo, V. Treatment with Sildenafil Prevents Impairment of Learning in Rats Born to Pre-Eclamptic Mothers. Neuroscience 2010, 171, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Kameda, R.; Yamaoka-Tojo, M.; Makino, A.; Wakaume, K.; Nemoto, S.; Kitasato, L.; Shimohama, T.; Tojo, T.; Machida, Y.; Izumi, T. Soluble Fms-like Tyrosine Kinase 1 Is a Novel Predictor of Brain Natriuretic Peptide Elevation: Results of a 5-Year Observational Study Involving Japanese Patients with Coronary Artery Disease. Int. Heart. J. 2013, 54, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Gregg, A.R. Preeclampsia. In Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 217–234. ISBN 978-0-12-815236-2. [Google Scholar]
- Kendall, R.L.; Thomas, K.A. Inhibition of Vascular Endothelial Cell Growth Factor Activity by an Endogenously Encoded Soluble Receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 10705–10709. [Google Scholar] [CrossRef]
- Wallace, K.; Morris, R.; Kyle, P.B.; Cornelius, D.; Darby, M.; Scott, J.; Moseley, J.; Chatman, K.; LaMarca, B. Hypertension, Inflammation and T Lymphocytes Are Increased in a Rat Model of HELLP Syndrome. Hypertens. Pregnancy 2014, 33, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Gougos, A.; St Jacques, S.; Greaves, A.; O’Connell, P.J.; d’Apice, A.J.F.; Bühring, H.-J.; Bernabeu, C.; Van Mourik, J.A.; Letarte, M. Identification of Distinct Epitopes of Endoglin, an RGD-Containing Glycoprotein of Endothelial Cells, Leukemic Cells, and Syncytiotrophoblasts. Int. Immunol. 1992, 4, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Chen, C.-C.; Ptaszek, L.M.; Xiao, S.; Cao, X.; Fang, F.; Ng, H.H.; Lewin, H.A.; Cowan, C.; Zhong, S. Rewirable Gene Regulatory Networks in the Preimplantation Embryonic Development of Three Mammalian Species. Genome Res. 2010, 20, 804–815. [Google Scholar] [CrossRef]
- Zeng, F.; Baldwin, D.A.; Schultz, R.M. Transcript Profiling during Preimplantation Mouse Development. Dev. Biol. 2004, 272, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Van Steenkiste, C.; Ribera, J.; Geerts, A.; Pauta, M.; Tugues, S.; Casteleyn, C.; Libbrecht, L.; Olievier, K.; Schroyen, B.; Reynaert, H.; et al. Inhibition of Placental Growth Factor Activity Reduces the Severity of Fibrosis, Inflammation, and Portal Hypertension in Cirrhotic Mice. Hepatology 2011, 53, 1629–1640. [Google Scholar] [CrossRef]
- Beck, H.; Acker, T.; Püschel, A.W.; Fujisawa, H.; Carmeliet, P.; Plate, K.H. Cell Type-Specific Expression of Neuropilins in an MCA-Occlusion Model in Mice Suggests a Potential Role in Post-Ischemic Brain Remodeling. J. Neuropathol. Exp. Neurol. 2002, 61, 339–350. [Google Scholar] [CrossRef]
- Freitas-Andrade, M.; Carmeliet, P.; Stanimirovic, D.B.; Moreno, M. VEGFR-2-mediated Increased Proliferation and Survival in Response to Oxygen and Glucose Deprivation in PlGF Knockout Astrocytes. J. Neurochem. 2008, 107, 756–767. [Google Scholar] [CrossRef]
- Chaballe, L.; Schoenen, J.; Franzen, R. Placental Growth Factor: A Tissue Modelling Factor with Therapeutic Potentials in Neurology? Acta Neurol. Belg. 2011, 111, 10–17. [Google Scholar]
- Baston-Buest, D.M.; Porn, A.C.; Schanz, A.; Kruessel, J.-S.; Janni, W.; Hess, A.P. Expression of the Vascular Endothelial Growth Factor Receptor Neuropilin-1 at the Human Embryo–Maternal Interface. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 154, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Makrydimas, G.; Sotiriadis, A.; Savvidou, M.D.; Spencer, K.; Nicolaides, K.H. Physiological Distribution of Placental Growth Factor and Soluble Flt-1 in Early Pregnancy. Prenat. Diagn. 2008, 28, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Kalampokas, E.; Vrachnis, N.; Samoli, E.; Rizos, D.; Iliodromiti, Z.; Sifakis, S.; Kalampokas, T.; Vitoratos, N.; Creatsas, G.; Botsis, D. Association of Adiponectin and Placental Growth Factor in Amniotic Fluid with Second Trimester Fetal Growth. Vivo Athens Greece 2012, 26, 327–333. [Google Scholar]
- Papapostolou, T.; Briana, D.D.; Boutsikou, M.; Iavazzo, C.; Puchner, K.-P.; Gourgiotis, D.; Marmarinos, A.; Malamitsi-Puchner, A. Midtrimester Amniotic Fluid Concentrations of Angiogenic Factors in Relation to Maternal, Gestational and Neonatal Characteristics in Normal Pregnancies. J. Matern. Fetal Neonatal Med. 2013, 26, 75–78. [Google Scholar] [CrossRef]
- Koga, K.; Osuga, Y.; Yoshino, O.; Hirota, Y.; Ruimeng, X.; Hirata, T.; Takeda, S.; Yano, T.; Tsutsumi, O.; Taketani, Y. Elevated Serum Soluble Vascular Endothelial Growth Factor Receptor 1 (sVEGFR-1) Levels in Women with Preeclampsia. J. Clin. Endocrinol. Metab. 2003, 88, 2348–2351. [Google Scholar] [CrossRef]
- Bennett, W.A.; Lagoo-Deenadayalan, S.; Stopple, J.A.; Barber, W.H.; Hale, E.; Brackin, M.N.; Cowan, B.D. Cytokine Expression by First-Trimester Human Chorionic Villi. Am. J. Reprod. Immunol. 1998, 40, 309–318. [Google Scholar] [CrossRef]
- Wegmann, T.G.; Lin, H.; Guilbert, L.; Mosmann, T.R. Bidirectional Cytokine Interactions in the Maternal-Fetal Relationship: Is Successful Pregnancy a TH2 Phenomenon? Immunol. Today 1993, 14, 353–356. [Google Scholar] [CrossRef]
- Harmon, A.C.; Cornelius, D.C.; Amaral, L.M.; Faulkner, J.L.; Cunningham, M.W.; Wallace, K.; LaMarca, B. The Role of Inflammation in the Pathology of Preeclampsia. Clin. Sci. 2016, 130, 409–419. [Google Scholar] [CrossRef]
- Powe, C.E.; Levine, R.J.; Karumanchi, S.A. Preeclampsia, a Disease of the Maternal Endothelium: The Role of Antiangiogenic Factors and Implications for Later Cardiovascular Disease. Circulation 2011, 123, 2856–2869. [Google Scholar] [CrossRef]
- Lamarca, B. The Role of Immune Activation in Contributing to Vascular Dysfunction and the Pathophysiology of Hypertension during Preeclampsia. Minerva Ginecol. 2010, 62, 105–120. [Google Scholar] [PubMed]
- Martinez-Ramirez, S.; Greenberg, S.M.; Viswanathan, A. Cerebral Microbleeds: Overview and Implications in Cognitive Impairment. Alzheimers Res. Ther. 2014, 6, 33. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Sáez, M.A.; Álvarez-Mon, M.A.; Torres-Carranza, D.; Álvarez-Mon, M.; Bujan, J.; García-Honduvilla, N.; Bravo, C.; et al. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.R.; Ettinger, R.; Zhou, Y.-J.; Gadina, M.; Lipsky, P.; Siegel, R.; Candotti, F.; O’Shea, J.J. Cytokines and Their Role in Lymphoid Development, Differentiation and Homeostasis. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 495–506. [Google Scholar] [CrossRef]
- LaMarca, B.B.D.; Cockrell, K.; Sullivan, E.; Bennett, W.; Granger, J.P. Role of Endothelin in Mediating Tumor Necrosis Factor-Induced Hypertension in Pregnant Rats. Hypertension 2005, 46, 82–86. [Google Scholar] [CrossRef]
- Yoshizumi, M.; Perrella, M.A.; Burnett, J.C.; Lee, M.E. Tumor Necrosis Factor Downregulates an Endothelial Nitric Oxide Synthase mRNA by Shortening Its Half-Life. Circ. Res. 1993, 73, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Parchim, N.F.; Wang, W.; Iriyama, T.; Ashimi, O.A.; Siddiqui, A.H.; Blackwell, S.; Sibai, B.; Kellems, R.E.; Xia, Y. Neurokinin 3 Receptor and Phosphocholine Transferase: Missing Factors for Pathogenesis of C-Reactive Protein in Preeclampsia. Hypertension 2015, 65, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Tosun, M.; Celik, H.; Avci, B.; Yavuz, E.; Alper, T.; Malatyalioğlu, E. Maternal and Umbilical Serum Levels of Interleukin-6, Interleukin-8, and Tumor Necrosis Factor-α in Normal Pregnancies and in Pregnancies Complicated by Preeclampsia. J. Matern. Fetal Neonatal Med. 2010, 23, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Vitoratos, N.; Economou, E.; Iavazzo, C.; Panoulis, K.; Creatsas, G. Maternal Serum Levels of TNF-Alpha and IL-6 Long after Delivery in Preeclamptic and Normotensive Pregnant Women. Mediat. Inflamm. 2010, 2010, 908649. [Google Scholar] [CrossRef]
- Dechend, R.; Homuth, V.; Wallukat, G.; Müller, D.N.; Krause, M.; Dudenhausen, J.; Haller, H.; Luft, F.C. Agonistic Antibodies Directed at the Angiotensin II, AT1 Receptor in Preeclampsia. J. Soc. Gynecol. Investig. 2006, 13, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kharfi, A.; Giguère, Y.; Sapin, V.; Massé, J.; Dastugue, B.; Forest, J.-C. Trophoblastic Remodeling in Normal and Preeclamptic Pregnancies: Implication of Cytokines. Clin. Biochem. 2003, 36, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira Cruz-Machado, S.; Guissoni Campos, L.M.; Fadini, C.C.; Anderson, G.; Markus, R.P.; Pinato, L. Disrupted Nocturnal Melatonin in Autism: Association with Tumor Necrosis Factor and Sleep Disturbances. J. Pineal Res. 2021, 70, e12715. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Xu, X.; Xiong, G.; Xu, Q.; Zhou, B.; Li, C.; Qin, Q.; Liu, C.; Li, H.; Sun, Y.; et al. Alterations in Plasma Cytokine Levels in Chinese Children with Autism Spectrum Disorder. Autism Res. 2018, 11, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Maher, G.M.; Dalman, C.; O’Keeffe, G.W.; Kearney, P.M.; McCarthy, F.P.; Kenny, L.C.; Khashan, A.S. Association between Preeclampsia and Attention-deficit Hyperactivity Disorder: A Population-based and Sibling-matched Cohort Study. Acta Psychiatr. Scand. 2020, 142, 275–283. [Google Scholar] [CrossRef]
- Carver, A.R.; Tamayo, E.; Perez-Polo, J.R.; Saade, G.R.; Hankins, G.D.V.; Costantine, M.M. The Effect of Maternal Pravastatin Therapy on Adverse Sensorimotor Outcomes of the Offspring in a Murine Model of Preeclampsia. Int. J. Dev. Neurosci. 2014, 33, 33–40. [Google Scholar] [CrossRef]
- Kay, V.R.; Cahill, L.S.; Hanif, A.; Sled, J.G.; Carmeliet, P.; Tayade, C.; Croy, B.A. Adult Pgf−/− Mice Behaviour and Neuroanatomy Are Altered by Neonatal Treatment with Recombinant Placental Growth Factor. Sci. Rep. 2019, 9, 9285. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H.; Yang, Y.; Guo, F.; Yu, B.; Su, Z. Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing. Mol. Cells 2022, 45, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.R.; McDermott, S.; Griffith, M.I.; Hardin, J.; Gregg, A. Uncovering the Complex Relationship between Pre-eclampsia, Preterm Birth and Cerebral Palsy. Paediatr. Perinat. Epidemiol. 2011, 25, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Rhoads, G.G.; Demissie, K.; Lu, S.-E.; Quinn, V.P.; Fassett, M.J.; Wing, D.A.; Jacobsen, S.J. In Utero Exposure to Ischemic-Hypoxic Conditions and Attention-Deficit/Hyperactivity Disorder. Pediatrics 2013, 131, e53–e61. [Google Scholar] [CrossRef]
- Kratimenos, P.; Penn, A.A. Placental Programming of Neuropsychiatric Disease. Pediatr. Res. 2019, 86, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Böhm, S.; Curran, E.A.; Kenny, L.C.; O’Keeffe, G.W.; Murray, D.; Khashan, A.S. The Effect of Hypertensive Disorders of Pregnancy on the Risk of ADHD in the Offspring. J. Atten. Disord. 2019, 23, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, S.; Dołęgowska, B.; Kwiatkowska, E.; Rzepka, R.; Torbè, A.; Bednarek-Jędrzejek, M. A Common Profile of Disordered Angiogenic Factor Production and the Exacerbation of Inflammation in Early Preeclampsia, Late Preeclampsia, and Intrauterine Growth Restriction. PLoS ONE 2016, 11, e0165060. [Google Scholar] [CrossRef] [PubMed]
- Mor, O.; Stavsky, M.; Yitshak-Sade, M.; Mastrolia, S.A.; Beer-Weisel, R.; Rafaeli-Yehudai, T.; Besser, L.; Hamou, B.; Mazor, M.; Erez, O. Early Onset Preeclampsia and Cerebral Palsy: A Double Hit Model? Am. J. Obstet. Gynecol. 2016, 214, 105.e1–105.e9. [Google Scholar] [CrossRef]
- Nakamura, E.; Mikami, Y.; Era, S.; Ono, Y.; Matsunaga, S.; Nagai, T.; Takai, Y.; Saitoh, M.; Baba, K.; Seki, H. Differences in the Prognosis of Preeclampsia According to the Initial Symptoms: A Single-Center Retrospective Report. Pregnancy Hypertens. 2019, 16, 126–130. [Google Scholar] [CrossRef]
- Blair, E.; Watson, L. The Australian Cerebral Palsy Register Group Cerebral Palsy and Perinatal Mortality after Pregnancy-induced Hypertension across the Gestational Age Spectrum: Observations of a Reconstructed Total Population Cohort. Dev. Med. Child Neurol. 2016, 58, 76–81. [Google Scholar] [CrossRef]
- Halmøy, A.; Klungsøyr, K.; Skjærven, R.; Haavik, J. Pre- and Perinatal Risk Factors in Adults with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2012, 71, 474–481. [Google Scholar] [CrossRef]
- Maher, G.M.; O’Keeffe, G.W.; Kearney, P.M.; Kenny, L.C.; Dinan, T.G.; Mattsson, M.; Khashan, A.S. Association of Hypertensive Disorders of Pregnancy with Risk of Neurodevelopmental Disorders in Offspring: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2018, 75, 809. [Google Scholar] [CrossRef]
- Mann, J.R.; McDermott, S. Are Maternal Genitourinary Infection and Pre-Eclampsia Associated with ADHD in School-Aged Children? J. Atten. Disord. 2011, 15, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Colvin, L.; Hagemann, E.; Bower, C. Environmental Risk Factors by Gender Associated with Attention-Deficit/Hyperactivity Disorder. Pediatrics 2014, 133, e14–e22. [Google Scholar] [CrossRef]
- Gustafsson, P.; Källén, K. Perinatal, Maternal, and Fetal Characteristics of Children Diagnosed with Attention-Deficit-Hyperactivity Disorder: Results from a Population-Based Study Utilizing the Swedish Medical Birth Register: Risk Factors for Developing ADHD. Dev. Med. Child Neurol. 2011, 53, 263–268. [Google Scholar] [CrossRef]
- Kosaka, H.; Munesue, T.; Ishitobi, M.; Asano, M.; Omori, M.; Sato, M.; Tomoda, A.; Wada, Y. Long-Term Oxytocin Administration Improves Social Behaviors in a Girl with Autistic Disorder. BMC Psychiatry 2012, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.; Levi-Shachar, O.; Gvirts, H.Z.; Zagoory-Sharon, O.; Feldman, R.; Bloch, Y.; Nitzan, U.; Maoz, H. Lack of Association between Severity of ADHD Symptoms and Salivary Oxytocin Levels. Psychoneuroendocrinology 2021, 131, 105293. [Google Scholar] [CrossRef]
- Demirci, E.; Ozmen, S.; Kilic, E.; Oztop, D.B. The Relationship between Aggression, Empathy Skills and Serum Oxytocin Levels in Male Children and Adolescents with Attention Deficit and Hyperactivity Disorder. Behav. Pharmacol. 2016, 27, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, Y.; Yoshida, M.; Bielsky, I.F.; Ross, H.E.; Kawamata, M.; Onaka, T.; Yanagisawa, T.; Kimura, T.; Matzuk, M.M.; Young, L.J.; et al. Pervasive Social Deficits, but Normal Parturition, in Oxytocin Receptor-Deficient Mice. Proc. Natl. Acad. Sci. USA 2005, 102, 16096–16101. [Google Scholar] [CrossRef]
- Zhu, T.; Gan, J.; Huang, J.; Li, Y.; Qu, Y.; Mu, D. Association Between Perinatal Hypoxic-Ischemic Conditions and Attention-Deficit/Hyperactivity Disorder: A Meta-Analysis. J. Child Neurol. 2016, 31, 1235–1244. [Google Scholar] [CrossRef]
- Martinez-Biarge, M.; Bregant, T.; Wusthoff, C.J.; Chew, A.T.M.; Diez-Sebastian, J.; Rutherford, M.A.; Cowan, F.M. White Matter and Cortical Injury in Hypoxic-Ischemic Encephalopathy: Antecedent Factors and 2-Year Outcome. J. Pediatr. 2012, 161, 799–807. [Google Scholar] [CrossRef]
- Montaldo, P.; Chaban, B.; Lally, P.J.; Sebire, N.J.; Taylor, A.M.; Thayyil, S. Quantification of Ante-Mortem Hypoxic Ischemic Brain Injury by Post-Mortem Cerebral Magnetic Resonance Imaging in Neonatal Encephalopathy. Eur. J. Paediatr. Neurol. 2015, 19, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Dachew, B.A.; Mamun, A.; Maravilla, J.C.; Alati, R. Pre-Eclampsia and the Risk of Autism-Spectrum Disorder in Offspring: Meta-Analysis. Br. J. Psychiatry 2018, 212, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Son, M.J.; Son, C.Y.; Radua, J.; Eisenhut, M.; Gressier, F.; Koyanagi, A.; Carvalho, A.F.; Stubbs, B.; Solmi, M.; et al. Environmental Risk Factors and Biomarkers for Autism Spectrum Disorder: An Umbrella Review of the Evidence. Lancet Psychiatry 2019, 6, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Maher, G.M.; O’Keeffe, G.W.; Dalman, C.; Kearney, P.M.; McCarthy, F.P.; Kenny, L.C.; Khashan, A.S. Association between Preeclampsia and Autism Spectrum Disorder: A Population-based Study. J. Child Psychol. Psychiatry 2020, 61, 131–139. [Google Scholar] [CrossRef]
- Mann, J.R.; McDermott, S.; Bao, H.; Hardin, J.; Gregg, A. Pre-Eclampsia, Birth Weight, and Autism Spectrum Disorders. J. Autism Dev. Disord. 2010, 40, 548–554. [Google Scholar] [CrossRef]
- Ornoy, A.; Weinstein- Fudim, L.; Ergaz, Z. Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD). Front. Neurosci. 2016, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Warshafsky, C.; Pudwell, J.; Walker, M.; Wen, S.-W.; Smith, G.N. Prospective Assessment of Neurodevelopment in Children Following a Pregnancy Complicated by Severe Pre-Eclampsia. BMJ Open 2016, 6, e010884. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Fassett, M.; Peltier, M.; Wing, D.; Xiang, A.; Chiu, V.; Jacobsen, S. Association of Perinatal Risk Factors with Autism Spectrum Disorder. Am. J. Perinatol. 2017, 34, 295–304. [Google Scholar] [CrossRef]
- Nicolás, C.; Benítez, P.R.; Riaño, M.O.A.; Canencia, L.M.; Mercurio, C.; Fernández, M.S.; Luna, M.S.; Jorge, A.T. Preeclampsia: Long-Term Effects on Pediatric Disability. J. Neonatal-Perinat. Med. 2016, 9, 41–48. [Google Scholar] [CrossRef]
- Straughen, J.K.; Misra, D.P.; Divine, G.; Shah, R.; Perez, G.; VanHorn, S.; Onbreyt, V.; Dygulska, B.; Schmitt, R.; Lederman, S.; et al. The Association between Placental Histopathology and Autism Spectrum Disorder. Placenta 2017, 57, 183–188. [Google Scholar] [CrossRef]
- Girchenko, P.; Lahti-Pulkkinen, M.; Heinonen, K.; Reynolds, R.M.; Laivuori, H.; Lipsanen, J.; Villa, P.M.; Hämäläinen, E.; Kajantie, E.; Lahti, J.; et al. Persistently High Levels of Maternal Antenatal Inflammation Are Associated with and Mediate the Effect of Prenatal Environmental Adversities on Neurodevelopmental Delay in the Offspring. Biol. Psychiatry 2020, 87, 898–907. [Google Scholar] [CrossRef]
- Prins, J.R.; Eskandar, S.; Eggen, B.J.L.; Scherjon, S.A. Microglia, the Missing Link in Maternal Immune Activation and Fetal Neurodevelopment; and a Possible Link in Preeclampsia and Disturbed Neurodevelopment? J. Reprod. Immunol. 2018, 126, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. The Placenta-brain-axis. J. Neurosci. Res. 2021, 99, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Li, Z.; Wang, Y.; Zaidi, S.; Baranova, A.; Zhang, F.; Cao, H. Preeclampsia Drives Molecular Networks to Shift toward Greater Vulnerability to the Development of Autism Spectrum Disorder. Front. Neurol. 2020, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Colomiere, M.; Permezel, M.; Riley, C.; Desoye, G.; Lappas, M. Defective Insulin Signaling in Placenta from Pregnancies Complicated by Gestational Diabetes Mellitus. Eur. J. Endocrinol. 2009, 160, 567–578. [Google Scholar] [CrossRef]
- Street, M.E.; Viani, I.; Ziveri, M.A.; Volta, C.; Smerieri, A.; Bernasconi, S. Impairment of Insulin Receptor Signal Transduction in Placentas of Intra-Uterine Growth-Restricted Newborns and Its Relationship with Fetal Growth. Eur. J. Endocrinol. 2011, 164, 45–52. [Google Scholar] [CrossRef]
- Tarrade, A.; Panchenko, P.; Junien, C.; Gabory, A. Placental Contribution to Nutritional Programming of Health and Diseases: Epigenetics and Sexual Dimorphism. J. Exp. Biol. 2015, 218, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Tekola-Ayele, F.; Workalemahu, T.; Gorfu, G.; Shrestha, D.; Tycko, B.; Wapner, R.; Zhang, C.; Louis, G.M.B. Sex Differences in the Associations of Placental Epigenetic Aging with Fetal Growth. Aging 2019, 11, 5412–5432. [Google Scholar] [CrossRef]
- Tsamou, M.; Martens, D.S.; Cox, B.; Madhloum, N.; Vrijens, K.; Nawrot, T.S. Sex-Specific Associations between Telomere Length and Candidate miRNA Expression in Placenta. J. Transl. Med. 2018, 16, 254. [Google Scholar] [CrossRef]
- Bronson, S.L.; Bale, T.L. Prenatal Stress-Induced Increases in Placental Inflammation and Offspring Hyperactivity Are Male-Specific and Ameliorated by Maternal Antiinflammatory Treatment. Endocrinology 2014, 155, 2635–2646. [Google Scholar] [CrossRef]
- Jenabi, E.; Karami, M.; Khazaei, S.; Bashirian, S. The Association between Preeclampsia and Autism Spectrum Disorders among Children: A Meta-Analysis. Korean J. Pediatr. 2019, 62, 126–130. [Google Scholar] [CrossRef]
- Bandiya, P.; Datta, V.; Saili, A. Short Term Neurobehavioral Outcomes in Late Preterm Neonates Born to Pre-Eclamptic Mothers. Indian Pediatr. 2019, 56, 485–488. [Google Scholar] [CrossRef]
- Dhobale, M. Neurotrophins: Role in Adverse Pregnancy Outcome. Int. J. Dev. Neurosci. 2014, 37, 8–14. [Google Scholar] [CrossRef]
- Roy, S.; Dhobale, M.; Dangat, K.; Mehendale, S.; Lalwani, S.; Joshi, S. Differential Oxidative Stress Levels in Mothers with Preeclampsia Delivering Male and Female Babies. J. Matern. Fetal Neonatal Med. 2015, 28, 1973–1980. [Google Scholar] [CrossRef]
- Muralimanoharan, S.; Maloyan, A.; Myatt, L. Evidence of Sexual Dimorphism in the Placental Function with Severe Preeclampsia. Placenta 2013, 34, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.A.; Roberts, J.M.; Bodnar, L.M.; Haggerty, C.L.; Youk, A.O.; Catov, J.M. Newborns of Preeclamptic Women Show Evidence of Sex-Specific Disparity in Fetal Growth. Gend. Med. 2012, 9, 424–435. [Google Scholar] [CrossRef]
- Van Wassenaer, A.G.; Westera, J.; Van Schie, P.E.M.; Houtzager, B.A.; Cranendonk, A.; De Groot, L.; Ganzevoort, W.; Wolf, H.; De Vries, J.I.P. Outcome at 4.5 Years of Children Born after Expectant Management of Early-Onset Hypertensive Disorders of Pregnancy. Am. J. Obstet. Gynecol. 2011, 204, 510.e1–510.e9. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L. The Placenta and Neurodevelopment: Sex Differences in Prenatal Vulnerability. Dialogues Clin. Neurosci. 2016, 18, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.N.; Duckles, S.P.; Gonzales, R.J. Local Oestrogenic/Androgenic Balance in the Cerebral Vasculature: Vascular Oestrogen/Androgen Balance. Acta Physiol. 2011, 203, 181–186. [Google Scholar] [CrossRef]
- Ehrenstein, V.; Rothman, K.J.; Pedersen, L.; Hatch, E.E.; Sorensen, H.T. Pregnancy-Associated Hypertensive Disorders and Adult Cognitive Function among Danish Conscripts. Am. J. Epidemiol. 2009, 170, 1025–1031. [Google Scholar] [CrossRef]
- Escudero, C.; Celis, C.; Saez, T.; San Martin, S.; Valenzuela, F.J.; Aguayo, C.; Bertoglia, P.; Roberts, J.M.; Acurio, J. Increased Placental Angiogenesis in Late and Early Onset Pre-Eclampsia Is Associated with Differential Activation of Vascular Endothelial Growth Factor Receptor 2. Placenta 2014, 35, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Rahnemaei, F.A.; Fashami, M.A.; Abdi, F.; Abbasi, M. Factors Effective in the Prevention of Preeclampsia:A Systematic Review. Taiwan. J. Obstet. Gynecol. 2020, 59, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Magee, L.; Duley, L. Oral Beta-Blockers for Mild to Moderate Hypertension during Pregnancy. Cochrane Database Syst. Rev. 2003, 2012, CD002863. [Google Scholar] [CrossRef] [PubMed]
- Carlomagno, G.; Minini, M.; Tilotta, M.; Unfer, V. From Implantation to Birth: Insight into Molecular Melatonin Functions. Int. J. Mol. Sci. 2018, 19, 2802. [Google Scholar] [CrossRef]
- Lanoix, D.; Guérin, P.; Vaillancourt, C. Placental Melatonin Production and Melatonin Receptor Expression Are Altered in Preeclampsia: New Insights into the Role of This Hormone in Pregnancy. J. Pineal Res. 2012, 53, 417–425. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tamura, H.; Kashida, S.; Takayama, H.; Yamagata, Y.; Karube, A.; Sugino, N.; Kato, H. Changes of Serum Melatonin Level and Its Relationship to Feto-placental Unit during Pregnancy. J. Pineal Res. 2001, 30, 29–33. [Google Scholar] [CrossRef]
- Savka, R.F.; Berbets, A.M.; Barbe, A.M.; Yuzko, O.M.; Radu, M.R. Changes in Concentrations of Melatonin, PlGF, and Cytokines in Women with Preeclampsia. J. Med. Life 2023, 16, 471–476. [Google Scholar] [CrossRef]
- Langston-Cox, A.; Marshall, S.A.; Lu, D.; Palmer, K.R.; Wallace, E.M. Melatonin for the Management of Preeclampsia: A Review. Antioxidants 2021, 10, 376. [Google Scholar] [CrossRef]
- El-Malkey, N.F.; Aref, M.; Emam, H.; Khalil, S.S. Impact of Melatonin on Full-Term Fetal Brain Development and Transforming Growth Factor-β Level in a Rat Model of Preeclampsia. Reprod. Sci. 2021, 28, 2278–2291. [Google Scholar] [CrossRef]
- Mendez, N.; Abarzua-Catalan, L.; Vilches, N.; Galdames, H.A.; Spichiger, C.; Richter, H.G.; Valenzuela, G.J.; Seron-Ferre, M.; Torres-Farfan, C. Timed Maternal Melatonin Treatment Reverses Circadian Disruption of the Fetal Adrenal Clock Imposed by Exposure to Constant Light. PLoS ONE 2012, 7, e42713. [Google Scholar] [CrossRef]
- Supramaniam, V.; Jenkin, G.; Loose, J.; Wallace, E.; Miller, S. Basic Science: Chronic Fetal Hypoxia Increases Activin A Concentrations in the Late-pregnant Sheep. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 102–109. [Google Scholar] [CrossRef]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Reiter, R.J.; Gitto, E. Potential Utility of Melatonin in Preeclampsia, Intrauterine Fetal Growth Retardation, and Perinatal Asphyxia. Reprod. Sci. 2016, 23, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Mi, B.; Wen, X.; Li, S.; Liu, D.; Lei, F.; Liu, R.; Shen, Y.; Chen, Y.; Zeng, L.; Liu, X.; et al. Vegetable Dietary Pattern Associated with Low Risk of Preeclampsia Possibly through Reducing Proteinuria. Pregnancy Hypertens. 2019, 16, 131–138. [Google Scholar] [CrossRef]
- Abbasi, R.; Bakhshimoghaddam, F.; Alizadeh, M. Major Dietary Patterns in Relation to Preeclampsia among Iranian Pregnant Women: A Case–Control Study. J. Matern. Fetal Neonatal Med. 2021, 34, 3529–3536. [Google Scholar] [CrossRef] [PubMed]
- Charkamyani, F.; Khedmat, L.; Hosseinkhani, A. Decreasing the Main Maternal and Fetal Complications in Women Undergoing in Vitro Fertilization (IVF) Trained by Nutrition and Healthy Eating Practices during Pregnancy. J. Matern. Fetal Neonatal Med. 2021, 34, 1855–1867. [Google Scholar] [CrossRef]
- Zareei, S.; Homayounfar, R.; Naghizadeh, M.M.; Ehrampoush, E.; Amiri, Z.; Rahimi, M.; Tahamtani, L. Dietary Pattern in Patients with Preeclampsia in Fasa, Iran. Shiraz E-Med. J. 2019, 20, e86959. [Google Scholar] [CrossRef]
- Rostami, M.; Simbar, M.; Amiri, M.; Bidhendi-Yarandi, R.; Hosseinpanah, F.; Ramezani Tehrani, F. The Optimal Cut-off Point of Vitamin D for Pregnancy Outcomes Using a Generalized Additive Model. Clin. Nutr. 2021, 40, 2145–2153. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Betrán, A.P.; Singata-Madliki, M.; Cormick, G.; Munjanja, S.P.; Fawcus, S.; Mose, S.; Hall, D.; Ciganda, A.; Seuc, A.H.; et al. Prepregnancy and Early Pregnancy Calcium Supplementation among Women at High Risk of Pre-Eclampsia: A Multicentre, Double-Blind, Randomised, Placebo-Controlled Trial. Lancet 2019, 393, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Kasawara, K.T.; Surita, F.G.; Pinto E Silva, J.L. Translational Studies for Exercise in High-Risk Pregnancy: Pre-Eclampsia Model. Hypertens. Pregnancy 2016, 35, 265–279. [Google Scholar] [CrossRef]
- Davenport, M.H.; Ruchat, S.-M.; Poitras, V.J.; Jaramillo Garcia, A.; Gray, C.E.; Barrowman, N.; Skow, R.J.; Meah, V.L.; Riske, L.; Sobierajski, F.; et al. Prenatal Exercise for the Prevention of Gestational Diabetes Mellitus and Hypertensive Disorders of Pregnancy: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2018, 52, 1367–1375. [Google Scholar] [CrossRef]
- Witvrouwen, I.; Mannaerts, D.; Van Berendoncks, A.M.; Jacquemyn, Y.; Van Craenenbroeck, E.M. The Effect of Exercise Training during Pregnancy to Improve Maternal Vascular Health: Focus on Gestational Hypertensive Disorders. Front. Physiol. 2020, 11, 450. [Google Scholar] [CrossRef]
- Gilbert, J.S. From Apelin to Exercise: Emerging Therapies for Management of Hypertension in Pregnancy. Hypertens. Res. 2017, 40, 519–525. [Google Scholar] [CrossRef]
- Vicente Bertagnolli, T.; Souza Rangel Machado, M.D.; Ferreira, C.J.H.; Machado, J.D.S.R.; Duarte, G.; Cavalli, R.C. Safety of a Physical Therapy Protocol for Women with Preeclampsia: A Randomized Controlled Feasibility Trial. Hypertens. Pregnancy 2018, 37, 59–67. [Google Scholar] [CrossRef]
- Khoram, S.; Loripoor, M.; Pirhadi, M.; Beigi, M. The Effect of Walking on Pregnancy Blood Pressure Disorders in Women Susceptible to Pregnancy Hypertension: A Randomized Clinical Trial. J. Educ. Health Promot. 2019, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Skow, R.J.; King, E.C.; Steinback, C.D.; Davenport, M.H. The Influence of Prenatal Exercise and Pre-Eclampsia on Maternal Vascular Function. Clin. Sci. 2017, 131, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.E.; Levitt, P.; Nelson Iii, C.A. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture. Child Dev. 2010, 81, 28–40. [Google Scholar] [CrossRef]
- Black, M.M.; Walker, S.P.; Fernald, L.C.H.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Shiffman, J.; et al. Early Childhood Development Coming of Age: Science through the Life Course. Lancet 2017, 389, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Wachs, T.D.; Georgieff, M.; Cusick, S.; McEwen, B.S. Issues in the Timing of Integrated Early Interventions: Contributions from Nutrition, Neuroscience, and Psychological Research. Ann. N. Y. Acad. Sci. 2014, 1308, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Bick, J.; Nelson, C.A. Early Adverse Experiences and the Developing Brain. Neuropsychopharmacology 2016, 41, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Li, M.; Shi, H.; Tan, C.; Zhao, C.; Dou, Y.; Duan, X.; Wang, X.; Zhang, J. Early Stimulation and Responsive Care: A Mediator of Caregivers’ Depression on the Suspected Developmental Delay of Left-behind Children in China. J. Affect. Disord. 2023, 341, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Aboud, F.E.; Yousafzai, A.K. Global Health and Development in Early Childhood. Annu. Rev. Psychol. 2015, 66, 433–457. [Google Scholar] [CrossRef] [PubMed]
- Orton, J.; Doyle, L.W.; Tripathi, T.; Boyd, R.; Anderson, P.J.; Spittle, A. Early Developmental Intervention Programmes Provided Post Hospital Discharge to Prevent Motor and Cognitive Impairment in Preterm Infants. Cochrane Database Syst. Rev. 2024, 2024, CD005495. [Google Scholar] [CrossRef]
- Colyvas, J.L.; Sawyer, L.B.; Campbell, P.H. Identifying Strategies Early Intervention Occupational Therapists Use to Teach Caregivers. Am. J. Occup. Ther. 2010, 64, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Pascoali Rodovanski, G.; Bêz Reus, B.A.; Cechinel Damiani, A.V.; Franco Mattos, K.; Moreira, R.S.; Neves Dos Santos, A. Home-Based Early Stimulation Program Targeting Visual and Motor Functions for Preterm Infants with Delayed Tracking: Feasibility of a Randomized Clinical Trial. Res. Dev. Disabil. 2021, 116, 104037. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.V.; Herlinger, A.L.; Ferreira, T.A.A.; Coitinho, J.B.; Pires, R.G.W.; Martins-Silva, C. Environmental Enrichment Cognitive Neuroprotection in an Experimental Model of Cerebral Ischemia: Biochemical and Molecular Aspects. Behav. Brain Res. 2018, 348, 171–183. [Google Scholar] [CrossRef]
- Hannan, A.J. Review: Environmental Enrichment and Brain Repair: Harnessing the Therapeutic Effects of Cognitive Stimulation and Physical Activity to Enhance Experience-dependent Plasticity. Neuropathol. Appl. Neurobiol. 2014, 40, 13–25. [Google Scholar] [CrossRef]
- Nithianantharajah, J. Environmental Enrichment Results in Cortical and Subcortical Changes in Levels of Synaptophysin and PSD-95 Proteins. Neurobiol. Learn. Mem. 2004, 81, 200–210. [Google Scholar] [CrossRef]
- Sampedro-Piquero, P.; Begega, A. Environmental Enrichment as a Positive Behavioral Intervention across the Lifespan. Curr. Neuropharmacol. 2017, 15, 459–470. [Google Scholar] [CrossRef]
- Tai, L.W.; Yeung, S.C.; Cheung, C.W. Enriched Environment and Effects on Neuropathic Pain: Experimental Findings and Mechanisms. Pain Pract. 2018, 18, 1068–1082. [Google Scholar] [CrossRef]
- Ashokan, A.; Hegde, A.; Balasingham, A.; Mitra, R. Housing Environment Influences Stress-Related Hippocampal Substrates and Depression-like Behavior. Brain Res. 2018, 1683, 78–85. [Google Scholar] [CrossRef]
- Hu, Y.-S.; Long, N.; Pigino, G.; Brady, S.T.; Lazarov, O. Molecular Mechanisms of Environmental Enrichment: Impairments in Akt/GSK3β, Neurotrophin-3 and CREB Signaling. PLoS ONE 2013, 8, e64460. [Google Scholar] [CrossRef]
- Rogers, J.; Li, S.; Lanfumey, L.; Hannan, A.J.; Renoir, T. Environmental Enrichment Reduces Innate Anxiety with No Effect on Depression-like Behaviour in Mice Lacking the Serotonin Transporter. Behav. Brain Res. 2017, 332, 355–361. [Google Scholar] [CrossRef]
- Sparling, J.E.; Baker, S.L.; Bielajew, C. Effects of Combined Pre- and Post-Natal Enrichment on Anxiety-like, Social, and Cognitive Behaviours in Juvenile and Adult Rat Offspring. Behav. Brain Res. 2018, 353, 40–50. [Google Scholar] [CrossRef]
- Fauth, M.; Wörgötter, F.; Tetzlaff, C. The Formation of Multi-Synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences. PLOS Comput. Biol. 2015, 11, e1004031. [Google Scholar] [CrossRef] [PubMed]
- Kotloski, R.J.; Sutula, T.P. Environmental Enrichment: Evidence for an Unexpected Therapeutic Influence. Exp. Neurol. 2015, 264, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Niu, W.; Jiang, C.H.; Hu, Y. Effects of Enriched Environment on Gene Expression and Signal Pathways in Cortex of Hippocampal CA1 Specific NMDAR1 Knockout Mice. Brain Res. Bull. 2007, 71, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Nithianantharajah, J.; Barkus, C.; Murphy, M.; Hannan, A.J. Gene–Environment Interactions Modulating Cognitive Function and Molecular Correlates of Synaptic Plasticity in Huntington’s Disease Transgenic Mice. Neurobiol. Dis. 2008, 29, 490–504. [Google Scholar] [CrossRef] [PubMed]
- Rampon, C.; Jiang, C.H.; Dong, H.; Tang, Y.-P.; Lockhart, D.J.; Schultz, P.G.; Tsien, J.Z.; Hu, Y. Effects of Environmental Enrichment on Gene Expression in the Brain. Proc. Natl. Acad. Sci. USA 2000, 97, 12880–12884. [Google Scholar] [CrossRef] [PubMed]
- Ravenelle, R.; Byrnes, E.M.; Byrnes, J.J.; McInnis, C.; Park, J.H.; Donaldson, S.T. Environmental Enrichment Effects on the Neurobehavioral Profile of Selective Outbred Trait Anxiety Rats. Behav. Brain Res. 2013, 252, 49–57. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rojas, A.; Valencia-Narbona, M. Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. Int. J. Mol. Sci. 2024, 25, 3632. https://doi.org/10.3390/ijms25073632
González-Rojas A, Valencia-Narbona M. Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. International Journal of Molecular Sciences. 2024; 25(7):3632. https://doi.org/10.3390/ijms25073632
Chicago/Turabian StyleGonzález-Rojas, Andrea, and Martina Valencia-Narbona. 2024. "Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences" International Journal of Molecular Sciences 25, no. 7: 3632. https://doi.org/10.3390/ijms25073632
APA StyleGonzález-Rojas, A., & Valencia-Narbona, M. (2024). Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. International Journal of Molecular Sciences, 25(7), 3632. https://doi.org/10.3390/ijms25073632