Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model
Abstract
:1. Introduction
2. Results
2.1. Manual Palpation
2.2. Radiographic Analysis
2.3. Micro-CT Analysis
2.4. Serum Markers of Bone Metabolism
2.5. Histological Analysis
3. Discussion
4. Materials and Methods
4.1. Preparation of Matrices
4.2. Animals
4.3. Study Groups
4.4. Surgical Technique of Rat L4–L5 Posterolateral Spinal Fusion Model
4.5. Manual Assessment of Fusion
4.6. Radiographic Analysis
4.7. Micro-CT Analysis
4.8. Analysis of Serum Markers
4.9. Histological Analysis
4.10. Statistical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boden, S.D. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 2002, 27 (Suppl. S1), S26–S31. [Google Scholar] [CrossRef]
- Bridwell, K.H.; Sedgewick, T.A.; O’Brien, M.F.; Lenke, L.G.; Baldus, C. The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J. Spinal Disord. 1993, 6, 461–472. [Google Scholar] [CrossRef]
- McGuire, R.A.; Amundson, G.M. The use of primary internal fixation in spondylolisthesis. Spine 1993, 18, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- West, J.L.; Bradford, D.S.; Ogilvie, J.W. Results of spinal arthrodesis with pedicle screw-plate fixation. J. Bone Jt. Surg. Am. 1991, 73, 1179–1184. [Google Scholar] [CrossRef]
- Zdeblick, T.A. A prospective, randomized study of lumbar fusion. Preliminary results. Spine 1993, 18, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Kanatani, M.; Sugimoto, T.; Kaji, H.; Kobayashi, T.; Nishiyama, K.; Fukase, M.; Kumegawa, M.; Chihara, K. Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J. Bone Miner. Res. 1995, 10, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Murai, J.; Yoshikawa, H.; Tsumaki, N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J. Bone Miner. Res. 2006, 21, 1022–1033. [Google Scholar] [CrossRef]
- Wozney, J.M.; Rosen, V.; Celeste, A.J.; Mitsock, L.M.; Whitters, M.J.; Kriz, R.W.; Hewick, R.M.; Wang, E.A. Novel regulators of bone formation: Molecular clones and activities. Science 1988, 242, 1528–1534. [Google Scholar] [CrossRef]
- Boden, S.D.; Kang, J.; Sandhu, H.; Heller, J.G. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: A prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 2002, 27, 2662–2673. [Google Scholar] [CrossRef] [PubMed]
- Suh, D.Y.; Boden, S.D.; Louis-Ugbo, J.; Mayr, M.; Murakami, H.; Kim, H.S.; Minamide, A.; Hutton, W.C. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine 2002, 27, 353–360. [Google Scholar] [CrossRef]
- Kanayama, M.; Hashimoto, T.; Shigenobu, K.; Yamane, S.; Bauer, T.W.; Togawa, D. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: Emphasis of surgical exploration and histologic assessment. Spine 2006, 31, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.D.; Carreon, L.; Djurasovic, M.; Campbell, M.J.; Puno, R.M.; Johnson, J.R.; Dimar, J.R. Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J. 2007, 7, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Dimar, J.R.; Glassman, S.D.; Burkus, K.J.; Carreon, L.Y. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 2006, 31, 2534–2539, discussion 2540. [Google Scholar] [CrossRef] [PubMed]
- Louis-Ugbo, J.; Kim, H.S.; Boden, S.D.; Mayr, M.T.; Li, R.C.; Seeherman, H.; D’Augusta, D.; Blake, C.; Jiao, A.; Peckham, S. Retention of 125I-labeled recombinant human bone morphogenetic protein-2 by biphasic calcium phosphate or a composite sponge in a rabbit posterolateral spine arthrodesis model. J. Orthop. Res. 2002, 20, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.D.; Hattersley, G.; Riis, B.J.; Williams, G.C.; Lau, E.; Russo, L.A.; Alexandersen, P.; Zerbini, C.A.; Hu, M.Y.; Harris, A.G.; et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: A randomized clinical trial. JAMA 2016, 316, 722–733. [Google Scholar] [CrossRef]
- Tabacco, G.; Bilezikian, J.P. Osteoanabolic and dual action drugs. Br. J. Clin. Pharmacol. 2019, 85, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Doyle, N.; Varela, A.; Haile, S.; Guldberg, R.; Kostenuik, P.J.; Ominsky, M.S.; Smith, S.Y.; Hattersley, G. Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos. Int. 2018, 29, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Bone, H.G.; Cosman, F.; Miller, P.D.; Williams, G.C.; Hattersley, G.; Hu, M.Y.; Fitzpatrick, L.A.; Mitlak, B.; Papapoulos, S.; Rizzoli, R.; et al. ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 2018, 103, 2949–2957. [Google Scholar] [CrossRef]
- Hattersley, G.; Dean, T.; Corbin, B.A.; Bahar, H.; Gardella, T.J. Binding selectivity of abaloparatide for PTH Type-1-Receptor conformations and effects on downstream signaling. Endocrinology 2016, 157, 141–149. [Google Scholar] [CrossRef]
- Abe, T.; Miyazaki, M.; Ishihara, T.; Kanezaki, S.; Tsubouchi, Y.; Tsumura, H. Optimal intermittent administration interval of parathyroid hormone 1-34 for bone morphogenetic protein-induced bone formation in a rat spinal fusion model. JOR Spine 2021, 4, e1168. [Google Scholar] [CrossRef]
- Wang, Y.H.; Qiu, Y.; Han, X.D.; Xiong, J.; Chen, Y.X.; Shi, H.F.; Karaplis, A. Haploinsufficiency of endogenous parathyroid hor-mone-related peptide impairs bone fracture healing. Clin. Exp. Pharmacol. Physiol. 2013, 40, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, M.P.; Gamradt, S.C.; Asnis, P.; Vickery, B.H.; Hill, E.; Avnur, Z.; Waters, R.V. Parathyroid hormone-related protein analog RS-66271 is an effective therapy for impaired bone healing in rabbits on corticosteroid therapy. Bone 2000, 26, 437–442. [Google Scholar] [CrossRef]
- Liu, A.; Li, Y.; Wang, Y.; Liu, L.; Shi, H.; Qiu, Y. Exogenous parathyroid hormone-related peptide promotes fracture healing in lepr(-/-) mice. Calcif. Tissue Int. 2015, 97, 581–591. [Google Scholar] [CrossRef]
- Arlt, H.; Besschetnova, T.; Ominsky, M.S.; Fredericks, D.C.; Lanske, B. Effects of systemically administered abaloparatide, an os-teoanabolic PTHrP analog, as an adjuvant therapy for spinal fusion in rats. JOR Spine 2021, 4, e1132. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Ferrandon, S.; Vilardaga, J.P.; Bouxsein, M.L.; Potts, J.T.; Gardella, T.J. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc. Natl Acad. Sci. USA 2008, 105, 16525–16530. [Google Scholar] [CrossRef] [PubMed]
- Ferrandon, S.; Feinstein, T.N.; Castro, M.; Wang, B.; Bouley, R.; Potts, J.T.; Gardella, T.J.; Vilardaga, J.P. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 2009, 5, 734–742. [Google Scholar] [CrossRef]
- Le Henaff, C.; Ricarte, F.; Finnie, B.; He, Z.; Johnson, J.; Warshaw, J.; Kolupaeva, V.; Partridge, N.C. Abaloparatide at the same dose has the same effects on bone as PTH (1–34) in mice. J. Bone Miner. Res. 2020, 35, 714–724. [Google Scholar] [CrossRef]
- Bransford, R.; Goergens, E.; Briody, J.; Amanat, N.; Cree, A.; Little, D. Effect of zoledronic acid in an L6–L7 rabbit spine fusion model. Eur. Spine J. 2007, 16, 557–562. [Google Scholar] [CrossRef]
- Inose, H.; Yamada, T.; Mulati, M.; Hirai, T.; Ushio, S.; Yoshii, T.; Kato, T.; Kawabata, S.; Okawa, A. Bone turnover markers as a new predicting factor for nonunion after spinal fusion surgery. Spine 2018, 43, E29–E34. [Google Scholar] [CrossRef]
- Nakamura, T.; Sugimoto, T.; Nakano, T.; Kishimoto, H.; Ito, M.; Fukunaga, M.; Hagino, H.; Sone, T.; Yoshikawa, H.; Nishizawa, Y.; et al. Randomized teriparatide [human parathyroid hormone (PTH) 1–34] once-weekly efficacy research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J. Clin. Endocrinol. Metab. 2012, 97, 3097–3106. [Google Scholar] [CrossRef]
- Ebata, S.; Takahashi, J.; Hasegawa, T.; Mukaiyama, K.; Isogai, Y.; Ohba, T.; Shibata, Y.; Ojima, T.; Yamagata, Z.; Matsuyama, Y.; et al. Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: A multicenter, prospective randomized study. J. Bone Joint Surg. Am. 2017, 99, 365–372. [Google Scholar] [CrossRef]
- Jespersen, A.B.; Andresen, A.D.K.; Jacobsen, M.K.; Andersen, M.Ø.; Carreon, L.Y. Does systemic administration of parathyroid hormone after noninstrumented spinal fusion surgery improve fusion rates and fusion mass in elderly patients compared to placebo in patients with degenerative lumbar spondylolisthesis? Spine 2019, 44, 157–162. [Google Scholar] [CrossRef]
- Ide, M.; Yamada, K.; Kaneko, K.; Sekiya, T.; Kanai, K.; Higashi, T.; Saito, T. Combined teriparatide and denosumab therapy accelerates spinal fusion following posterior lumbar interbody fusion. Orthop. Traumatol. Surg. Res. 2018, 104, 1043–1048. [Google Scholar] [CrossRef]
- Bougioukli, S.; Jain, A.; Sugiyama, O.; Tinsley, B.A.; Tang, A.H.; Tan, M.H.; Adams, D.J.; Kostenuik, P.J.; Lieberman, J.R. Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect. Bone 2016, 84, 93–103. [Google Scholar] [CrossRef]
- Kodera, R.; Miyazaki, M.; Yoshiiwa, T.; Kawano, M.; Kaku, N.; Tsumura, H. Manipulation of anabolic and catabolic responses with bone morphogenetic protein and zoledronic acid in a rat spinal fusion model. Bone 2014, 58, 26–32. [Google Scholar] [CrossRef]
- Hayashi, T.; Lord, E.L.; Suzuki, A.; Takahashi, S.; Scott, T.P.; Phan, K.; Tian, H.; Daubs, M.D.; Shiba, K.; Wang, J.C. A comparison of commercially available demineralized bone matrices with and without human mesenchymal stem cells in a rodent spinal fusion model. J. Neurosurg. Spine 2016, 25, 133–137. [Google Scholar] [CrossRef]
- Kaito, T.; Johnson, J.; Ellerman, J.; Tian, H.; Aydogan, M.; Chatsrinopkun, M.; Ngo, S.; Choi, C.; Wang, J.C. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J. Bone Jt. Surg. Am. 2013, 95, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Sugiyama, O.; Tow, B.; Zou, J.; Morishita, Y.; Wei, F.; Napoli, A.; Sintuu, C.; Lieberman, J.R.; Wang, J.C. The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J. Spinal Disord. Tech. 2008, 21, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Zuk, P.A.; Zou, J.; Yoon, S.H.; Wei, F.; Morishita, Y.; Sintuu, C.; Wang, J.C. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine 2008, 33, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Sugiyama, O.; Zou, J.; Yoon, S.H.; Wei, F.; Morishita, Y.; Sintuu, C.; Virk, M.S.; Lieberman, J.R.; Wang, J.C. Comparison of lentiviral and adenoviral gene therapy for spinal fusion in rats. Spine 2008, 33, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Miyazaki, M.; Notani, N.; Kanezaki, S.; Kawano, M.; Tsumura, H. Locally applied simvastatin promotes bone formation in a rat model of spinal fusion. J. Orthop. Res. 2017, 35, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
Group | No. Assessed | Assessed as Fused | Fusion Rate (%) | |
---|---|---|---|---|
Group I | Carrier alone | 12 | 0 | 0 |
Group II | 3 μg BMP-2 without abaloparatide | 24 | 4 | 16.7 |
Group III | 3 μg BMP-2 with abaloparatide (3 times/week) | 24 | 18 | 75.0 * (vs. Groups I and II) |
Group IV | 3 μg BMP-2 with abaloparatide (6 times/week) | 24 | 16 | 66.7 * (vs. Groups I and II) |
Group | No. Assessed | Fusion Score (Mean ± SD) | |
---|---|---|---|
Group I | Carrier alone | 12 | 0.75 ± 1.21 |
Group II | 3 μg BMP-2 without abaloparatide | 24 | 1.44 ± 1.41 |
Group III | 3 μg BMP-2 with abaloparatide (3 times/week) | 24 | 3.12 ± 1.08 * (vs. Groups I and II) |
Group IV | 3 μg BMP-2 with abaloparatide (6 times/week) | 24 | 3.04 ± 0.78 * (vs. Groups I and II) |
Group | TV (mm3) | BV (mm3) | BV/TV (%) | |
---|---|---|---|---|
Group I | Carrier alone | 373.8 ± 75.4 | 58.7 ± 14.6 | 15.9 ± 4.16 |
Group II | 3 μg BMP-2 without abaloparatide | 398.7 ± 66.3 | 59.9 ± 8.39 | 15.2 ± 1.84 |
Group III | 3 μg BMP-2 with abaloparatide (3 times/week) | 582.2 ± 136.6 * (vs. Groups I, II, and IV) | 87.5 ± 12.2 * (vs. Groups I and II) | 16.1 ± 5.75 |
Group IV | 3 μg BMP-2 with abaloparatide (6 times/week) | 380.5 ± 78.6 | 86.7 ± 10.1 * (vs. Groups I and II) | 23.2 ± 2.6 * (vs. Groups I, II, and III) |
Group | Tb. Th (mm) | Tb. N (1/mm) | Tb. Sp (mm) | |
---|---|---|---|---|
Group I | Carrier alone | 0.26 ± 0.01 | 0.62 ± 0.15 | 1.77 ± 0.43 |
Group II | 3 μg BMP-2 without abaloparatide | 0.21 ± 0.05 | 0.75 ± 0.11 | 1.54 ± 0.12 |
Group III | 3 μg BMP-2 with abaloparatide (3 times/week) | 0.20 ± 0.04 | 0.77 ± 0.16 | 1.20 ± 0.17 * (vs. Group I) |
Group IV | 3 μg BMP-2 with abaloparatide (6 times/week) | 0.25 ± 0.04 | 0.96 ± 0.20 * (vs. Group I) | 1.13 ± 0.19 * (vs. Group I) |
Group | Fusion Scores (Mean ± SD) | |
---|---|---|
Group I | Carrier alone | 1.40 ± 0.69 |
Group II | 3 μg BMP-2 without abaloparatide | 1.91 ± 1.16 |
Group III | 3 μg BMP-2 with abaloparatide (3 times/week) | 3.91 ± 1.16 * (vs. Groups I and II) |
Group IV | 3 μg BMP-2 with abaloparatide (6 times/week) | 4.16 ± 1.03 * (vs. Groups I and II) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, T.; Miyazaki, M.; Sako, N.; Kanezaki, S.; Tsubouchi, Y.; Kaku, N. Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model. Int. J. Mol. Sci. 2024, 25, 3655. https://doi.org/10.3390/ijms25073655
Abe T, Miyazaki M, Sako N, Kanezaki S, Tsubouchi Y, Kaku N. Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model. International Journal of Molecular Sciences. 2024; 25(7):3655. https://doi.org/10.3390/ijms25073655
Chicago/Turabian StyleAbe, Tetsutaro, Masashi Miyazaki, Noriaki Sako, Shozo Kanezaki, Yuta Tsubouchi, and Nobuhiro Kaku. 2024. "Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model" International Journal of Molecular Sciences 25, no. 7: 3655. https://doi.org/10.3390/ijms25073655
APA StyleAbe, T., Miyazaki, M., Sako, N., Kanezaki, S., Tsubouchi, Y., & Kaku, N. (2024). Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model. International Journal of Molecular Sciences, 25(7), 3655. https://doi.org/10.3390/ijms25073655