Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model
Abstract
:1. Introduction
2. Results
2.1. DHE Increases Histamine Levels in the Hippocampus
2.2. DHE Improves Memory Recognition in the Scopolamine-Induced Amnesia Model
2.3. DHE Improves Spatial Learning and Memory in the Scopolamine-Induced Amnesia Model
2.4. H1R and H2R Antagonists Blockade the Improvement in Recognition Memory Produced by DHE in the Scopolamine-Induced Amnesia Model
2.5. H1R Antagonist Blockades the Improvement in Spatial Learning and Memory Produced by DHE in the Scopolamine-Induced Amnesia Model
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Histamine Quantification in the Hippocampus
4.4. Effects of DHE on the Scopolamine-Induced Amnesia Model
4.4.1. NOR Paradigm
4.4.2. MWM Assay
4.5. Effect of Blockading H1R and HR2 on the Effects on Memory Produced by DHE in the Scopolamine-Induced Amnesia Model
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, L.; Liu, J.; Chen, Z. The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci. 2011, 32, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol. 2001, 63, 637–672. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, W.; Zeng, X.; Hu, G.; Zhang, H.; He, S.; Zhang, S. Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol. Neurobiol. 2014, 49, 1487–1500. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Nakamura, T.; Yanai, K. Analysis of brain histamine clearance using genetically engineered mice. Nihon Yakurigaku Zasshi 2018, 152, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Samotaeva, I.S.; Birioukova, L.M.; Midzyanovskaya, I.S.; Kuznetsova, G.D.; Bazyan, A.S.; Tuomisto, L. Metoprine induced behavioral modifications and brain regional histamine increase in WAG/Rij and Wistar rats. Epilepsy Res. 2012, 101, 148–156. [Google Scholar] [CrossRef]
- de Almeida, M.A.; Izquierdo, I. Memory facilitation by histamine. Arch. Int. Pharmacodyn. Ther. 1986, 283, 193–198. [Google Scholar]
- da Silva, W.C.; Bonini, J.S.; Bevilaqua, L.R.; Izquierdo, I.; Cammarota, M. Histamine enhances inhibitory avoidance memory consolidation through a H2 receptor-dependent mechanism. Neurobiol. Learn. Mem. 2006, 86, 100–106. [Google Scholar] [CrossRef]
- da Silveira, C.K.; Furini, C.R.G.; Benetti, F.; Monteiro, S.D.C.; Izquierdo, I. The role of histamine receptors in the consolidation of object recognition memory. Neurobiol. Learn. Mem. 2013, 103, 64–71. [Google Scholar] [CrossRef]
- Prast, H.; Argyriou, A.; Philippu, A. Histaminergic neurons facilitate social memory in rats. Brain Res. 1996, 734, 316–318. [Google Scholar] [CrossRef]
- Chen, Z. Effect of histamine H3-receptor antagonist clobenpropit on spatial memory of radial maze performance in rats. Acta Pharmacol. Sin. 2000, 21, 905–910. [Google Scholar] [PubMed]
- Chen, Z.; Kamei, C. Facilitating effects of histamine on spatial memory deficit induced by scopolamine in rats. Acta Pharmacol. Sin. 2000, 21, 814–818. [Google Scholar] [PubMed]
- Kamei, C.; Chen, Z.; Nakamura, S.; Sugimoto, Y. Effects of intracerebroventricular injection of histamine on memory deficits induced by hippocampal lesions in rats. Methods Find. Exp. Clin. Pharmacol. 1997, 19, 253–259. [Google Scholar] [PubMed]
- Malmberg-Aiello, P.; Ipponi, A.; Bartolini, A.; Schunack, W. Antiamnesic Effect of Metoprine and of Selective Histamine H1 Receptor Agonists in a Modified Mouse Passive Avoidance Test. Neurosci. Lett. 2000, 288, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.M.; Zołek, T.; Hernández-Perez, P.G.; Miranda, R.; Nicolás-Vázquez, M.I.; Hernández-Rodríguez, M. Drug Repurposing to Inhibit Histamine N-Methyl Transferase. Molecules 2023, 28, 576. [Google Scholar] [CrossRef]
- Nomura, H.; Shimizume, R.; Ikegaya, Y. Histamine: A Key Neuromodulator of Memory Consolidation and Retrieval. Curr. Top. Behav. Neurosci. 2022, 59, 329–353. [Google Scholar]
- Nomura, H. Histamine signaling restores retrieval of forgotten memories. Nihon Yakurigaku Zasshi 2021, 6, 292–296. [Google Scholar] [CrossRef]
- Nonaka, A.; Masuda, F.; Nomura, H.; Matsuki, N. Impairment of fear memory consolidation and expression by antihistamines. Brain Res. 2013, 1493, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Naddafi, F.; Mirshafiey, A. The neglected role of histamine in Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Demen. 2013, 28, 327–336. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Nakamura, T.; Yanai, K. Histamine N-Methyltransferase in the Brain. Int. J. Mol. Sci. 2019, 20, 737. [Google Scholar] [CrossRef]
- Nowak, J.Z.; Zandarowska, E. Effect of amodiaquine on histamine level and histamine-methyltransferase activity in the rat brain. Arch. Immunol. Ther. Exp. 1980, 28, 927–930. [Google Scholar]
- Saper, J.R.; Silberstein, S. Pharmacology of dihydroergotamine and evidence for efficacy and safety in migraine. Headache 2006, 46 (Suppl. S4), S171–S181. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, P. Clinical Pharmacology of Ergotamine. An Overview. In Drug-Induced Headache; Diener, H.C., Wilkinson, M., Eds.; Advances in Applied Neurological Sciences; Springer: Berlin/Heidelberg, Germany, 1988; Volume 5. [Google Scholar]
- von Linstow Roloff, E.; Harbaran, D.; Micheau, J.; Platt, B.; Riedel, G. Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 2007, 146, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, M.; Arciniega-Martínez, I.M.; García-Marín, I.D.; Correa-Basurto, J.; Rosales-Hernández, M.C. Chronic Administration of Scopolamine Increased GSK3βP9, Beta Secretase, Amyloid Beta, and Oxidative Stress in the Hippocampus of Wistar Rats. Mol. Neurobiol. 2020, 57, 3979–3988. [Google Scholar] [CrossRef] [PubMed]
- Givens, B.; Olton, D.S. Local modulation of basal forebrain: Effects on working and reference memory. J. Neurosci. 1994, 14, 3578–3587. [Google Scholar] [CrossRef]
- Chugh, Y.; Saha, N.; Sankaranarayanan, A.; Datta, H. Enhancement of memory retrieval and attenuation of scopolamine-induced amnesia following administration of 5-HT3 antagonist ICS 205-930. Pharmacol. Toxicol. 1991, 69, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Lissner, L.J.; Wartchow, K.M.; Toniazzo, A.P.; Gonçalves, C.A.; Rodrigues, L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol. Biochem. Behav. 2021, 210, 173273. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev. 2008, 88, 1183–1241. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front. Mol. Neurosci. 2018, 11, 255. [Google Scholar] [CrossRef]
- Ambrée, O.; Buschert, J.; Zhang, W.; Arolt, V.; Dere, E.; Zlomuzica, A. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice. Eur. Neuropsychopharmacol. 2014, 24, 1394–1404. [Google Scholar] [CrossRef]
- Schneider, E.H.; Neumann, D.; Seifert, R. Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neurosci. Biobehav. Rev. 2014, 42, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Zlomuzica, A.; Ruocco, L.A.; Sadile, A.G.; Huston, J.P.; Dere, E. Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br. J. Pharmacol. 2009, 157, 86–91. [Google Scholar] [CrossRef]
- Dai, H.; Kaneko, K.; Kato, H.; Fujii, S.; Jing, Y.; Xu, A.; Sakurai, E.; Kato, M.; Okamura, N.; Kuramasu, A.; et al. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci. Res. 2007, 57, 306–313. [Google Scholar] [CrossRef]
- Piechal, A.; Blecharz-Klin, K.; Joniec-Maciejak, I.; Pyrzanowska, J.; Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Dihydroergotamine affects spatial behavior and neurotransmission in the central nervous system of Wistar rats. Ann. Agric. Environ. Med. 2021, 28, 437–445. [Google Scholar] [CrossRef] [PubMed]
- de Aluja, A.S. Laboratory animals and official Mexican norms (NOM-062-ZOO-1999). Gac. Med. Mex. 2002, 138, 295–298. [Google Scholar]
- Lecklin, A.; Eriksson, L.; Leppäluoto, J.; Tarhanen, J.; Tuomisto, L. Metoprine-induced thirst and diuresis in Wistar rats. Acta Physiol. Scand. 1999, 165, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Mancilla, E.; Avilés-Rosas, V.H.; Manrique-Maldonado, G.; Altamirano-Espinoza, A.H.; Villanueva-Castillo, B.; MaassenVanDenBrink, A.; Villalón, C.M. The role of α1- and α2-adrenoceptor subtypes in the vasopressor responses induced by dihydroergotamine in ritanserin-pretreated pithed rats. J. Headache Pain 2017, 18, 104. [Google Scholar] [CrossRef]
- Świąder, M.J.; Czuczwar, S.J. Interaction of famotidine, an H2 histamine receptor antagonist, with conventional antiepileptic drugs in mice. Pharmacol. Rep. 2014, 66, 485–491. [Google Scholar] [CrossRef]
- Levin, E.D.; Rose, J.E.; McGurk, S.R.; Butcher, L.L. Characterization of the cognitive effects of combined muscarinic and nicotinic blockade. Behav. Neural Biol. 1990, 53, 103–112. [Google Scholar] [CrossRef]
- Katiyar, P.; Singh Rathore, A.; Banerjee, S.; Nathani, S.; Zahra, W.; Singh, S.P.; Sircar, D.; Roy, P. Wheatgrass extract imparts neuroprotective actions against scopolamine-induced amnesia in mice. Food. Funct. 2022, 13, 8474–8488. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Ashraf, M.; Alhasaniah, A.H.; Ullah, H.; Zeb, A.; Ghufran, M.; Fahad, S.; Ayaz, M.; Daglia, M. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer’s disease: In Vitro, In Vivo and In Silico approaches. Biomed. Pharmacother. 2023, 165, 115144. [Google Scholar] [CrossRef] [PubMed]
- Retinasamy, T.; Shaikh, M.F.; Kumari, Y.; Othman, I. Ethanolic Extract of Orthosiphon stamineus Improves Memory in Scopolamine-Induced Amnesia Model. Front. Pharmacol. 2019, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Piercey, M.F.; Vogelsang, G.D.; Franklin, S.R.; Tang, A.H. Reversal of scopolamine-induced amnesia and alterations in energy metabolism by the nootropic piracetam: Implications regarding identification of brain structures involved in consolidation of memory traces. Brain Res. 1987, 424, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.; Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2012, 13, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Batool, Z.; Sadir, S.; Liaquat, L.; Tabassum, S.; Madiha, S.; Rafiq, S.; Tariq, S.; Batool, T.S.; Saleem, S.; Naqvi, F.; et al. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res. Bull. 2016, 120, 63–74. [Google Scholar] [CrossRef]
- Othman, M.Z.; Hassan, Z.; Che Has, A.T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. 2022, 71, 264–280. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Rodríguez, M.; Mera Jiménez, E.; Nicolás-Vázquez, M.I.; Miranda-Ruvalcaba, R. Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model. Int. J. Mol. Sci. 2024, 25, 3710. https://doi.org/10.3390/ijms25073710
Hernández-Rodríguez M, Mera Jiménez E, Nicolás-Vázquez MI, Miranda-Ruvalcaba R. Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model. International Journal of Molecular Sciences. 2024; 25(7):3710. https://doi.org/10.3390/ijms25073710
Chicago/Turabian StyleHernández-Rodríguez, Maricarmen, Elvia Mera Jiménez, María Inés Nicolás-Vázquez, and Rene Miranda-Ruvalcaba. 2024. "Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model" International Journal of Molecular Sciences 25, no. 7: 3710. https://doi.org/10.3390/ijms25073710
APA StyleHernández-Rodríguez, M., Mera Jiménez, E., Nicolás-Vázquez, M. I., & Miranda-Ruvalcaba, R. (2024). Dihydroergotamine Increases Histamine Brain Levels and Improves Memory in a Scopolamine-Induced Amnesia Model. International Journal of Molecular Sciences, 25(7), 3710. https://doi.org/10.3390/ijms25073710