Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis—Impact of Oxidative Stress on Disease Severity
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Patients with Preeclampsia and Healthy Pregnant Women
2.2. RBC Aggregation and Main Rheological Indices of Healthy Pregnant Women and Patients with Preeclampsia
2.3. Rheological Features of RBCs under In Vitro Chemically Induced Oxidative Stress
3. Discussion
3.1. Changes in the Rheological Features of RBCs in Preeclampsia
3.2. Effect of a Chemically Induced Oxidative Stress
4. Materials and Methods
4.1. Study Groups and Ethics Statement
4.2. Sample Preparations
4.3. Preparation of Oxidized RBCs
4.4. Stimulation RBC Aggregation
4.5. Viscosity Measurements
4.6. Microfluidic System and Experiments
4.7. Design of the Experiments
4.8. Computational Image Analysis for the Evaluation of the RBC Aggregates
4.9. RBC Aggregation Measurement
4.10. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, L.K. Diagnosis and management of preeclampsia. Am. Fam. Physician 2004, 70, 2317–2324. [Google Scholar]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 2019, 15, 275–289, Erratum in: Nat. Rev. Nephrol. 2019, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Chaiworapongsa, T. Preeclampsia: A link between trophoblast dysregulation and an antiangiogenic state. J. Clin. Investig. 2013, 123, 2775–2777. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.; Kim, S.H.; Cha, D.H.; Park, H.J. Defective Uteroplacental Vascular Remodeling in Preeclampsia: Key Molecular Factors Leading to Long Term Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 11202. [Google Scholar] [CrossRef]
- Smith, K.L.M.; Swiderska, A.; Lock, M.C.; Graham, L.; Iswari, W.; Choudhary, T.; Thomas, D.; Kowash, H.M.; Desforges, M.; Cottrell, E.C.; et al. Chronic developmental hypoxia alters mitochondrial oxidative capacity and reactive oxygen species production in the fetal rat heart in a sex-dependent manner. J. Pineal Res. 2022, 73, e12821. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Nakashima, A. A review of the mechanism for poor placentation in early-onset preeclampsia: The role of autophagy in trophoblast invasion and vascular remodeling. J. Reprod. Immunol. 2014, 101–102, 80–88. [Google Scholar] [CrossRef]
- Goulopoulou, S.; Davidge, S.T. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol. Med. 2014, 21, 88–97. [Google Scholar] [CrossRef]
- Tannetta, D.S.; Dragovic, R.A.; Gardiner, C.; Redman, C.W.; Sargent, I.L. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: Expression of Flt-1 and endoglin. PLoS ONE 2013, 8, e56754. [Google Scholar] [CrossRef]
- Sarosh, R.; Suzanne, D.; Burke, S.; Karumanchi, A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2022, 226, S1019–S1034. [Google Scholar]
- Hayman, R.; Warren, A.; Brockelsby, J.; Johnson, I.; Baker, P. Plasma from women with pre-eclampsia induces an in vitro alteration in the endothelium-dependent behaviour of myometrial resistance arteries. BJOG 2000, 107, 108–115. [Google Scholar] [CrossRef]
- Michalczyk, M.; Celewicz, A.; Celewicz, M.; Woźniakowska-Gondek, P.; Rzepka, R. The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediat. Inflamm. 2020, 2020, 3864941. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.N.; Orrico, F.; Villar, S.F.; López, A.C.; Silva, N.; Donzé, M.; Thomson, L.; Denicola, A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS Omega 2022, 8, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zennadi, R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants 2021, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Spengler, M.I.; Svetaz, M.J.; Leroux, M.B.; Bertoluzzo, S.M.; Parente, F.M.; Bosch, P. Lipid peroxidation affects red blood cells membrane properties in patients with systemic lupus erythematosus. Clin. Hemorheol. Microcirc. 2014, 58, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Uotila, J.T.; Tuimala, R.J.; Aarnio, T.M.; Pyykkö, K.A.; Ahotupa, M.O. Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy. Br. J. Obstet. Gynaecol. 1993, 100, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Mishra, S.; Sehgal, A.; Prasad, R. Alterations in lipid peroxidation and antioxidant status in pregnancy with preeclampsia. Mol. Cell. Biochem. 2008, 313, 37–44. [Google Scholar] [CrossRef]
- Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar] [CrossRef]
- Reisz, J.A.; Tzounakas, V.L.; Nemkov, T.; Voulgaridou, A.I.; Papassideri, I.S.; Kriebardis, A.G.; D’Alessandro, A.; Antonelou, M.H. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors. Front. Med. 2017, 4, 248. [Google Scholar] [CrossRef] [PubMed]
- Bosman, G.J.; Stappers, M.; Novotný, V.M. Changes in band 3 structure as determinants of erythrocyte integrity during storage and survival after transfusion. Blood Transfus. 2010, 3, s48–s52. [Google Scholar]
- Barbarino, F.; Wäschenbach, L.; Cavalho-Lemos, V.; Dillenberger, M.; Becker, K.; Gohlke, H.; Cortese-Krott, M.M. Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol. Chem. 2021, 402, 317–331. [Google Scholar] [CrossRef]
- Spickett, C.M.; Reglinski, J.; Smith, W.E.; Wilson, R.; Walker, J.J.; McKillop, J. Erythrocyte Glutathione Balance and Membrane Stability During Preeclampsia. Free Radic. Biol. Med. 1998, 24, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Meiselman, H.J. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 2003, 29, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.J.; Meiselman, H.J.; Baskurt, O.K. Blood rheology and aging. J. Geriatr. Cardiol. 2013, 10, 291–301. [Google Scholar]
- Alexy, T.; Detterich, J.; Connes, P.; Toth, K.; Nader, E.; Kenyeres, P.; Arriola-Montenegro, J.; Ulker, P.; Simmonds, M.J. Physical Properties of Blood and their Relationship to Clinical Conditions. Front. Physiol. 2022, 13, 906768. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Temiz, A.; Meiselman, H.J. Red blood cell aggregation in experimental sepsis. J. Lab. Clin. Med. 1997, 130, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Temiz, A.; Meiselman, H.J. Effect of superoxide anions on red blood cell rheologic properties. Free Radic. Biol. Med. 1998, 24, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Bros, J.; Ibershoff, L.; Zollmann, E.; Zacher, J.; Tomschi, F.; Predel, H.G.; Bloch, W.; Grau, M. Changes in Hematological and Hemorheological Parameters Following Mild COVID-19: A 4-Month Follow-Up Study. Hematol. Rep. 2023, 15, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Han, K.; Xu, M.; Li, L.; Qian, J.; Li, L.; Li, X. Blood Viscosity in Subjects with Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front. Physiol. 2022, 13, 827428. [Google Scholar] [CrossRef] [PubMed]
- Koscielny, J.; Jung, E.M.; Mrowietz, C.; Kiesewetter, H.; Latza, R. Blood fluidity, fibrinogen, and cardiovascular risk factors of occlusive arterial disease: Results of the Aachen study. Clin. Hemorheol. Microcirc. 2004, 31, 185–195. [Google Scholar]
- Lominadze, D.; Schuschke, D.A.; Joshua, I.G.; Dean, W.L. Increased ability of erythrocytes to aggregate in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2002, 24, 397–406. [Google Scholar] [CrossRef]
- Heilmann, L.; Rath, W.; Pollow, K. Hemorheological changes in women with severe preeclampsia. Clin. Hemorheol. Microcirc. 2004, 31, 49–58. [Google Scholar]
- Cicco, G.; Pirrelli, A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin. Hemorheol. Microcirc. 1999, 21, 169–177. [Google Scholar] [PubMed]
- Tripette, J.; Alexy, T.; Hardy-Dessources, M.D.; Mougenel, D.; Beltan, E.; Chalabi, T.; Chout, R.; Etienne-Julan, M.; Hue, O.; Meiselman, H.J.; et al. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica 2009, 94, 1060–1065. [Google Scholar] [CrossRef]
- Schauf, B.; Lang, U.; Stute, P.; Schneider, S.; Dietz, K.; Aydeniz, B.; Wallwiener, D. Reduced red blood cell deformability, an indicator for high fetal or maternal risk, is found in preeclampsia and IUGR. Hypertens. Pregnancy 2002, 21, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Pepple, D.J.; Hardeman, M.R.; Mullings, A.M.; Reid, H.L. Erythrocyte deformability and erythrocyte aggregation in preeclampsia. Clin. Hemorheol. Microcirc. 2001, 24, 43–48. [Google Scholar]
- Csiszar, B.; Galos, G.; Funke, S.; Kevey, D.K.; Meggyes, M.; Szereday, L.; Kenyeres, P.; Toth, K.; Sandor, B. Peripartum Investigation of Red Blood Cell Properties in Women Diagnosed with Early-Onset Preeclampsia. Cells 2021, 10, 2714. [Google Scholar] [CrossRef]
- Guo, Q.; Duffy, S.P.; Matthews, K.; Santoso, A.T.; Scott, M.D.; Ma, H. Microfluidic analysis of red blood cell deformability. J. Biomech. 2014, 47, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Pivkin, I.V.; Peng, Z.; Karniadakis, G.E.; Buffet, P.A.; Dao, M.; Suresh, S. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl. Acad. Sci. USA 2016, 113, 7804–7809. [Google Scholar] [CrossRef]
- Kang, Y.J. Microfluidic-based effective monitoring of bloods by measuring RBC aggregation and blood viscosity under stepwise varying shear rates. Korea Aust. Rheol. J. 2020, 32, 15–27. [Google Scholar] [CrossRef]
- Sebastian, B.; Dittrich, P.S. Microfluidics to Mimic Blood Flow in Health and Disease. Annu. Rev. Fluid Mech. 2018, 50, 483–504. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hell. J. Cardiol. 2005, 46, 9–15. [Google Scholar]
- Foresto, P.; D’Arrigo, M.; Carreras, L.; Cuezzo, R.E.; Valverde, J.; Rasia, R. Evaluation of red blood cell aggregation in diabetes by computerized image analysis. Med. B Aires 2000, 60, 570–572. [Google Scholar]
- Fusman, R.; Zeltser, D.; Rotstein, R.; Chapman, J.; Avitzour, D.; Shapira, I.I.; Eldor, A.; Elkayam, O.; Caspi, D.; Arber, N.; et al. INFLAMET: An image analyzer to display erythrocyte adhesiveness/aggregation. Eur. J. Intern. Med. 2000, 11, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Kaliviotis, E.; Dusting, J.; Balabani, S. Spatial variation of blood viscosity: Modelling using shear fields measured by a μPIV based technique. Med. Eng. Phys. 2011, 33, 824–831. [Google Scholar] [CrossRef]
- Dusting, J.; Kaliviotis, E.; Balabani, S.; Yianneskis, M. Coupled human erythrocyte velocity field and aggregation measurements at physiological haematocrit levels. J. Biomech. 2009, 42, 1438–1443. [Google Scholar] [CrossRef]
- Chen, S.; Gavish, B.; Zhang, S.; Mahler, Y.; Yedgar, S. Monitoring of erythrocyte aggregate morphology under flow by computerized image analysis. Biorheology 1995, 32, 487–496. [Google Scholar] [CrossRef]
- Kavitha, A.; Ramakrishnan, S. Assessment of human red blood cell aggregation using image processing and wavelets. Meas. Sci. 2007, 7, 43–51. [Google Scholar]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- de Simone, G.; Devereux, R.B.; Chinali, M.; Best, L.G.; Lee, E.T.; Welty, T.K.; Strong Heart Study Investigators. Association of blood pressure with blood viscosity in American Indians: The Strong Heart Study. Hypertension 2005, 45, 625–630. [Google Scholar] [CrossRef]
- Shin, S.; Ku, Y.; Park, M.S.; Suh, J.S. Deformability of red blood cells: A determinant of blood viscosity. J. Mech. Sci. Technol. 2005, 19, 216–223. [Google Scholar] [CrossRef]
- Pennington, K.A.; Schlitt, J.M.; Jackson, D.L.; Schulz, L.C.; Schust, D.J. Preeclampsia: Multiple approaches for a multifactorial disease. Dis. Model Mech. 2012, 5, 9–18. [Google Scholar] [CrossRef]
- Kaliviotis, E. Mechanics of the Red Blood Cell Network. J. Cell. Biotech. 2015, 1, 37–43. [Google Scholar] [CrossRef]
- Gamzu, R.; Barshtein, G.; Tsipis, F.; Lessing, J.B.; Berliner, A.S.; Kupferminc, M.J.; Eldor, A.; Yedgar, S. Pregnancy-induced hypertension is associated with elevation of aggregability of red blood cells. Clin. Hemorheol. Microcirc. 2002, 27, 163–169. [Google Scholar] [PubMed]
- Weber-Fishkin, S.; Seidner, H.S.; Gunter, G.; Frame, M.D. Erythrocyte aggregation in sudden flow arrest is linked to hyperthermia, hypoxemia, and band 3 availability. J. Thromb. Haemost. 2022, 20, 2284–2292. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, K. Association of resistin with impaired membrane fluidity of red blood cells in hypertensive and normotensive subjects: An electron paramagnetic resonance study. Heart Vessel 2016, 31, 1724–1730. [Google Scholar] [CrossRef]
- Martínez-Vieyra, I.; Rodríguez-Varela, M.; García-Rubio, D.; De la Mora-Mojica, B.; Méndez-Méndez, J.; Durán-Álvarez, C.; Cerecedo, D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. Biochim. Biophys. Acta BBA–Biomembr. 2019, 1861, 182996. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.; Müller-Seydlitz, P.M.; Jöckel, K.H.; Hubert, H.; Heimburg, P. Viscoelasticity and Red Blood Cell Aggregation in Patients with Coronary Heart Disease. Angiology 1989, 40, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Olumuyiwa-Akeredolu, O.O.; Soma, P.; Buys, A.V.; Debusho, L.K.; Pretorius, E. Characterizing pathology in erythrocytes using morphological and biophysical membrane properties: Relation to impaired hemorheology and cardiovascular function in rheumatoid arthritis. Biochim. Biophys. Acta BBA–Biomembr. 2017, 1859, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Giosheva, I.; Strijkova, V.; Komsa-Penkova, R.; Krumova, S.; Langari, A.; Danailova, A.; Taneva, S.G.; Stoyanova, T.; Topalova, L.; Gartchev, E.; et al. Membrane Lesions and Reduced Life Span of Red Blood Cells in Preeclampsia as Evidenced by Atomic Force Microscopy. Int. J. Mol. Sci. 2023, 24, 7100. [Google Scholar] [CrossRef]
- Hernández Hernández, J.D.; Villaseñor, O.R.; Del Rio, A.J.; Lucach, R.O.; Zárate, A.; Saucedo, R.; Hernández-Valencia, M. Morphological changes of red blood cells in peripheral blood smear of patients with pregnancy-related hypertensive disorders. Arch. Med. Res. 2015, 46, 479–483. [Google Scholar] [CrossRef]
- Uyesaka, N.; Hasegawa, S.; Ishioka, N.; Ishioka, R.; Shio, H.; Schechter, A.N. Effects of superoxide anions on red cell deformability and membrane proteins. Biorheology 1992, 29, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Ugurlu, E.; Kilic-Toprak, E.; Altinisik, G.; Kilic-Erkek, O.; Cengiz, B.; Kucukatay, V.; Senol, H.; Akbudak, I.H.; Ekbic, Y.; Bor-Kucukatay, M. Increased erythrocyte aggregation and oxidative stress in patients with idiopathic interstitial pneumonia. Sarcoidosis Vasc. Diffus. Lung Dis. 2016, 33, 308–316. [Google Scholar]
- Sinha, A.; Chu, T.T.; Dao, M.; Chandramohanadas, R. Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci. Rep. 2015, 7, 9768. [Google Scholar] [CrossRef]
- Langari, A.; Strijkova, V.; Komsa-Penkova, R.; Danailova, A.; Krumova, S.; Taneva, S.G.; Giosheva, I.; Gartchev, E.; Kercheva, K.; Savov, A.; et al. Morphometric and Nanomechanical Features of Erythrocytes Characteristic of Early Pregnancy Loss. Int. J. Mol. Sci. 2022, 23, 4512. [Google Scholar] [CrossRef] [PubMed]
- Neu, B.; Sowemimo-Coker, S.O.; Meiselman, H.J. Cell-Cell Affinity of Senescent Human Erythrocytes. Biophys. J. 2003, 85, 75–84. [Google Scholar] [CrossRef]
- Orrico, F.; Laurance, S.; Lopez, A.C.; Lefevre, S.D.; Thomson, L.; Möller, M.N.; Ostuni, M.A. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023, 13, 1262. [Google Scholar] [CrossRef]
- Richards, R.S.; Wang, L.; Jelinek, H. Erythrocyte oxidative damage in chronic fatigue syndrome. Arch. Med. Res. 2007, 38, 94–98. [Google Scholar] [CrossRef]
- Besedina, N.A.; Skverchinskaya, E.A.; Shmakov, S.V.; Ivanov, A.S.; Mindukshev, I.V.; Bukatin, A.S. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun. Biol. 2022, 5, 659. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E. The Redox Balance and Membrane Shedding in RBC Production, Maturation, and Senescence. Front. Physiol. 2021, 12, 604738. [Google Scholar] [CrossRef]
- Rinalducci, S.; Ferru, E.; Blasi, B.; Turrini, F.; Zolla, L. Oxidative stress, and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012, 2, s55–s62. [Google Scholar]
- Sola, E.; Vaya, A.; Martinez, M.; Moscardo, A.; Corella, D.; Santaolaria, M.L.; Espana, F.; Hernandez-Mijares, A. Erythrocyte membrane phosphatidylserine exposure in obesity. Obes. Silver Spring 2009, 17, 318–322. [Google Scholar] [CrossRef]
- Balaji, S.N.; Trivedi, V. Extracellular methemoglobin primes red blood cell aggregation in malaria: An in vitro mechanistic study. FEBS Lett. 2013, 587, 350–357. [Google Scholar] [CrossRef]
- Chung, T.W.; Ho, C.P. Changes in Viscosity of Low Shear Rates and Viscoelastic Properties of Oxidative Erythrocyte Suspensions. Clin. Hemorheol. Microcirc. 1999, 21, 99–103. [Google Scholar]
- Dordević, N.Z.; Babić, G.M.; Marković, S.D.; Ognjanović, B.I.; Stajn, A.S.; Zikić, R.V.; Saicić, Z.S. Oxidative stress and changes in antioxidative defense system in erythrocytes of preeclampsia in women. Reprod. Toxicol. 2008, 25, 213–218. [Google Scholar] [CrossRef]
- Raijmakers, M.T.; Dechend, R.; Poston, L. Oxidative stress and preeclampsia: Rationale for antioxidant clinical trials. Hypertension 2004, 44, 374–380. [Google Scholar] [CrossRef]
- Badior, K.E.; Casey, J.R. Molecular mechanism for the red blood cell senescence clock. IUBMB Life 2018, 70, 32–40. [Google Scholar] [CrossRef]
- Hypertension in Pregnancy: Diagnosis and Management NICE. Available online: https://www.nice.org.uk (accessed on 25 June 2019).
- Baskurt, O.K.; Boynard, M.; Cokelet, G.C.; Connes, P.; Cooke, B.M.; Forconi, S.; Liao, F.; Hardeman, M.R.; Jung, F.; Meiselman, H.J.; et al. International Expert Panel for Standardization of Hemorheological Methods. New guidelines for hemorheological laboratory techniques. Clin. Hemorheol. Microcirc. 2009, 42, 75–97. [Google Scholar] [CrossRef]
- Yeom, E.; Lee, S.J. Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: A comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood. Biomicrofluidics 2015, 9, 024110. [Google Scholar] [CrossRef]
- Mehri, R.; Mavriplis, C.; Fenech, M. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. PLoS ONE 2018, 13, e0199911. [Google Scholar] [CrossRef]
Characteristics | Reference Values for Pregnant Women | PC (n = 8) | Non-Severe PE (n = 7) | Severe PE (n= 6) |
---|---|---|---|---|
Maternal age (years) | 26.2 ± 5.6 | 27.4 ± 5.8 | 36.8 ± 4.3 * | |
Mean BP (systolic/diastolic) | 105 ± 7/70 ± 5 | 145 ± 3/94 ± 6 * | 165.5 ± 4/112 ± 2 * | |
GA at diagnostic of PE | 34.8 ± 3.4 * | 28.8± 1.3 * | ||
GA at delivery | 39.1 ± 1.1 | 35.3 ± 3.0 * | 29.3 ± 1.0 * | |
Newborn weight (g) | 3366.7 ± 124.7 | 2824.3 ± 416.0 * | 1388.0 ± 356.6 * | |
Number of LBW | - | 1 | 6 | |
Proteinuria (mg in 24-h urine collection) | - | - | 644 ± 6 * | 1975 ± 646 * |
Number of patients with PU | 3 | 5 | ||
Fg (g/L) | 2.90–6.50 | 5.7 ± 0.2 | 5.6 ± 0.4 | 5.7 ± 1.1 |
CRP (mg/L) (interval) | 0.5–5.0 | 4.2–19.9 | 2.00–26.87 | 2.37–76.82 |
Creatinine serum (µmol/L) | 35–80 | 66.25 ±9.1 | 74.4 ±7.3 | 76.0 ±15.1 |
ASAT (U/L) | 4–32 | 16.3 ± 0.9 | 29.2 ± 17.2 | 33.5 ± 20.8 |
ALAT (U/L) | 3–30 | 16.6 ± 4.3 | 26.1 ± 18.3 | 19.7 ± 8.5 |
RBC count (T/L) | 3.6–5.1 | 3.84 ± 0.18 | 3.94 ± 0.3 | 3.87 ± 0.4 |
Hb (g/L) | 110–148 | 118.7 ± 10.7 | 122.2 ± 6.8 | 118.2 ± 5.8 |
Ht (L/L) | 0.30–0.46 | 0.37 ± 0.03 | 0.36 ± 0.02 | 0.36 ± 0.02 |
MCV (fl) | 82–98 | 94.05 ± 3.13 | 92.50 ± 3.73 | 92.60 ± 6.47 |
MCH (Pg/L) | 26.5–32.0 | 31.0 ± 1.8 | 31.0 ± 1.4 | 30.7 ± 2.4 |
MCHC (g/L) | 295–360 | 329.5 ± 9.23 | 345.7 ± 24.2 | 330.8 ± 6.5 |
RDW % | 12.3–14.7 | 12.9 ± 1.3 | 13.6 ± 1.6 | 13.6 ± 2.1 |
Platelet Count ×109/L | 146–429 | 249.5 ± 63.2 | 269.2 ± 68.2 | 220.8 ± 99.1 |
Groups | Low Shear Rate | High Shear Rate | ||
---|---|---|---|---|
AIL | NAL | AIH | NAH | |
PC | 0.085 ± 0.01 | 119.4 ± 38.7 | 0.005 ± 0.002 | 14.4 ± 4.1 |
Non-severe PE | 0.107 ± 0.01 * | 92.1 ± 16.7 | 0.006 ± 0.001 | 18.1 ± 5.5 * |
Severe PE | 0.149 ± 0.05 * | 127.0 ± 9.1 ♦ | 0.011 ± 0.002 *♦ | 25.7 ± 5.8 * |
Groups | Low Shear Rate | High Shear Rate | ||
---|---|---|---|---|
AIL | NAL | AIH | NAH | |
Non treated RBCs | 0.086 ± 0.04 | 131.5 ± 31.4 | 0.004 ± 0.001 | 11.3 ± 1.1 |
RBCs treated with 200 mM H2O2 | 0.073 ± 0.01 * | 128.0 ± 13.3 | 0.005 ± 0.001 | 9.3 ± 2.8 * |
RBCs treated with 300 mM H2O2 | 0.140 ± 0.03 * | 114.0 ± 23.9 | 0.003 ± 0.002 | 8.4 ± 1.3 * |
RBCs treated with 400 mM H2O2 | 0.173 ± 0.03 * | 84.2 ± 25.3 * | 0.005 ± 0.002 | 11.3 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrova-Watanabe, A.; Abadjieva, E.; Giosheva, I.; Langari, A.; Tiankov, T.; Gartchev, E.; Komsa-Penkova, R.; Todinova, S. Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis—Impact of Oxidative Stress on Disease Severity. Int. J. Mol. Sci. 2024, 25, 3732. https://doi.org/10.3390/ijms25073732
Alexandrova-Watanabe A, Abadjieva E, Giosheva I, Langari A, Tiankov T, Gartchev E, Komsa-Penkova R, Todinova S. Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis—Impact of Oxidative Stress on Disease Severity. International Journal of Molecular Sciences. 2024; 25(7):3732. https://doi.org/10.3390/ijms25073732
Chicago/Turabian StyleAlexandrova-Watanabe, Anika, Emilia Abadjieva, Ina Giosheva, Ariana Langari, Tihomir Tiankov, Emil Gartchev, Regina Komsa-Penkova, and Svetla Todinova. 2024. "Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis—Impact of Oxidative Stress on Disease Severity" International Journal of Molecular Sciences 25, no. 7: 3732. https://doi.org/10.3390/ijms25073732
APA StyleAlexandrova-Watanabe, A., Abadjieva, E., Giosheva, I., Langari, A., Tiankov, T., Gartchev, E., Komsa-Penkova, R., & Todinova, S. (2024). Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis—Impact of Oxidative Stress on Disease Severity. International Journal of Molecular Sciences, 25(7), 3732. https://doi.org/10.3390/ijms25073732