The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome
Abstract
:1. Introduction
2. Results
2.1. Identification of Annexin Genes in the Barley Pan-Genome
2.2. Phylogenetic and Molecular Evolution Analysis of Barley Annexin Genes
2.3. Cis-Element Analysis of Hvanns
2.4. Expression Profiles of Hvanns in Tissues and under Stress Conditions Based on RNA-Seq Data
2.5. Co-Expression Network and GO Enrichment Analysis of Hvanns Involved in Tissues and under Stress Conditions
2.6. Selective Sweep Analysis and Haplotype Analysis of Hvanns
2.7. Validation of the Expression of Hvanns by qRT-PCR Assays
3. Discussion
4. Materials and Methods
4.1. Identification of Annexin Genes in Barley
4.2. Analysis of Evolutionary Relationships and Cis-Acting Elements
4.3. Expression Profile and Co-Expression Network Analysis of Hvanns Based on RNA-seq Data
4.4. qRT-PCR Validation
4.5. The Drought-Tolerant Coefficient for Barley Drought Tolerance
4.6. Selective Sweep Analysis and Haplotype Analysis of Hvanns
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Wang, J.; Rosenberg, D.; Zhao, H.; Lengyel, G.; Nadel, D. Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. J. Archaeol. Sci. Rep. 2018, 21, 783–793. [Google Scholar] [CrossRef]
- Zhou, M. Barley production and consumption. In Genetics and Improvement of Barley Malt Quality; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–17. [Google Scholar]
- Baker, B.P.; Meints, B.M.; Hayes, P.M. Organic barley producers’ desired qualities for crop improvement. Org. Agric. 2020, 10, 35–42. [Google Scholar] [CrossRef]
- Sullivan, P.; Arendt, E.; Gallagher, E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol. 2013, 29, 124–134. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Graner, A.; Wobus, U. Barley genomics: An overview. Int. J. Plant Genom. 2008, 2008, 486258. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Elakhdar, A.; Solanki, S.; Kubo, T.; Abed, A.; Elakhdar, I.; Khedr, R.; Hamwieh, A.; Capo-Chichi, L.J.; Abdelsattar, M.; Franckowiak, J.D.; et al. Barley with improved drought tolerance: Challenges and perspectives. Environ. Exp. Bot. 2022, 201, 104965. [Google Scholar] [CrossRef]
- Wahome, P. Mechanisms of salt (NaCl) stress tolerance in horticultural crops—A mini review. In International Symposium on Managing Greenhouse Crops in Saline Environment; ISHS Acta Horticulturae 609: White River, South Africa, 2003; pp. 127–131. [Google Scholar]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.B.; Ben Romdhane, W.; Ben Hsouna, A.; Mihoubi, W.; Harbaoui, M.; Brini, F. Insights into plant annexins function in abiotic and biotic stress tolerance. Plant Signal. Behav. 2020, 15, 1699264. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Y.; Bian, Y.; Ren, Y.; Xu, X.; Zhou, F.; Ding, H. A critical review on plant annexin: Structure, function, and mechanism. Plant Physiol. Biochem. 2022, 190, 81–89. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, A. A review on plant annexins: The calcium binding proteins with multifaceted roles in plant growth, development and stress tolerance. S. Afr. J. Bot. 2023, 162, 108–114. [Google Scholar] [CrossRef]
- Tang, W.; He, Y.; Tu, L.; Wang, M.; Li, Y.; Ruan, Y.-L.; Zhang, X. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Mol. Biol. 2014, 85, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, J.; Clark, G.; Roux, S.J. ANN1 and ANN2 function in post-phloem sugar transport in root tips to affect primary root growth. Plant Physiol. 2018, 178, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Lichocka, M.; Rymaszewski, W.; Morgiewicz, K.; Barymow-Filoniuk, I.; Chlebowski, A.; Sobczak, M.; Samuel, M.A.; Schmelzer, E.; Krzymowska, M.; Hennig, J. Nucleus-and plastid-targeted annexin 5 promotes reproductive development in Arabidopsis and is essential for pollen and embryo formation. BMC Plant Biol. 2018, 18, 183. [Google Scholar] [CrossRef]
- Xu, L.; Tang, Y.; Gao, S.; Su, S.; Hong, L.; Wang, W.; Fang, Z.; Li, X.; Ma, J.; Quan, W.; et al. Comprehensive analyses of the annexin gene family in wheat. BMC Genom. 2016, 17, 415. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Ying, J.; Xu, L.; Sun, X.; Wang, J.; Wang, Y.; Mei, Y.; Zhu, Y.; Liu, L. Characterization of Annexin gene family and functional analysis of RsANN1a involved in heat tolerance in radish (Raphanus sativus L.). Physiol. Mol. Biol. Plants 2021, 27, 2027–2041. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Zhou, L.; Shan, L.; Li, F.; Li, Z. Phosphatase GhDs PTP 3a interacts with annexin protein Gh ANN 8b to reversely regulate salt tolerance in cotton (Gossypium spp.). N. Phytol. 2019, 223, 1856–1872. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ding, Y.; Shi, Y.; Ma, L.; Wang, Y.; Song, C.; Wilkins, K.A.; Davies, J.M.; Knight, H.; Knight, M.R.; et al. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J. 2021, 40, e104559. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; Zhang, H.; Liu, Z.; Wang, Y.; Xing, L.; He, Q.; Du, H. Plant pan-genomics: Recent advances, new challenges, and roads ahead. J. Genet. Genom. 2022, 49, 833–846. [Google Scholar] [CrossRef]
- Jayakodi, M.; Padmarasu, S.; Haberer, G.; Bonthala, V.S.; Gundlach, H.; Monat, C.; Lux, T.; Kamal, N.; Lang, D.; Himmelbach, A.; et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020, 588, 284–289. [Google Scholar] [CrossRef]
- Jeong, J.H.; Jung, W.J.; Seo, Y.W. Genome-wide identification and expression analysis of the annexin gene family in rye (Secale cereale L.). Gene 2022, 838, 146704. [Google Scholar] [CrossRef]
- Kosová, K.; Urban, M.O.; Vítámvás, P.; Prášil, I.T. Drought stress response in common wheat, durum wheat, and barley: Transcriptomics, proteomics, metabolomics, physiology, and breeding for an enhanced drought tolerance. In Drought Stress Tolerance in Plants; Volume 2: Molecular and Genetic Perspectives; Springer: Cham, Switzerland, 2016; pp. 277–314. [Google Scholar]
- Huh, S.M.; Noh, E.K.; Kim, H.G.; Jeon, B.W.; Bae, K.; Hu, H.-C.; Kwak, J.M.; Park, O.K. Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses. Plant Cell Physiol. 2010, 51, 1499–1514. [Google Scholar] [CrossRef]
- Szalonek, M.; Sierpien, B.; Rymaszewski, W.; Gieczewska, K.; Garstka, M.; Lichocka, M.; Sass, L.; Paul, K.; Vass, I.; Vankova, R.; et al. Potato annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PLOS ONE 2015, 10, e0132683. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, R.; Ejaz, J.; Gao, S.; Liu, T.; Imtiaz, M.; Ye, Z.; Wang, T. Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Sci. Rep. 2017, 7, 12087. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Washida, H.; Takaiwa, F. A 45-bp proximal region containing AACA and GCN4 motif is sufficient to confer endosperm-specific expression of the rice storage protein glutelin gene, GluA-3. FEBS Lett. 1996, 383, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.B.; Lee, D.; Dauwalder, M.; Roux, S.J. Immunolocalization and histochemical evidence for the association of two different Arabidopsis annexins with secretion during early seedling growth and development. Planta 2004, 220, 621–631. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Dong, X.; Lu, S.; Tian, W.; Liu, J. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis. J. Integr. Plant Biol. 2016, 58, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Ambastha, V.; Matityahu, I.; Tidhar, D.; Leshem, Y. RabA2b overexpression alters the plasma-membrane proteome and improves drought tolerance in Arabidopsis. Front. Plant Sci. 2021, 12, 738694. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, M.; Ye, J.; Hu, D.; Zhang, Y.; Li, Z.; Liu, J.; Sun, Y.; Wang, S.; Yuan, X.; et al. Brittle culm 25, which encodes an UDP-xylose synthase, affects cell wall properties in rice. Crop. J. 2023, 11, 733–743. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, X.-F.; Wang, X.-F.; Zhang, D.-P. Arabidopsis 3-Ketoacyl-CoA Thiolase-2 (KAT2), an Enzyme of Fatty Acid β-oxidation, Is Involved in Abscisic Acid Signal Transduction. Plant Cell Physiol. 2011, 52, 528–538. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Murtaza, K.O.; Shah, W.; Ramzan, T.; Ameen, U.; Bhat, M.H. Anthropogenic climate change drives melting of glaciers in the Himalaya. Environ. Sci. Pollut. Res. 2022, 29, 52732–52751. [Google Scholar] [CrossRef]
- Geng, L.; Li, M.; Zhang, G.; Ye, L. Barley: A potential cereal for producing healthy and functional foods. Food Qual. Saf. 2022, 6, fyac012. [Google Scholar] [CrossRef]
- Farag, M.A.; Xiao, J.; Abdallah, H.M. Nutritional value of barley cereal and better opportunities for its processing as a value-added food: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 62, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.; Ma, Y.; Zhao, Q.; Stiller, J.; Feng, Q.; Tian, Q.; Liu, D.; Han, B.; Liu, C. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnol. J. 2019, 18, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Sidik, A.; Sun, J.; Shin, R.; Song, Z.; Ning, Y.; Matthus, E.; Wilkins, K.A.; Davies, J.M. Annexin 1 is a component of eATP-induced cytosolic calcium elevation in Arabidopsis thaliana roots. Int. J. Mol. Sci. 2021, 22, 494. [Google Scholar] [CrossRef] [PubMed]
- Harbaoui, M.; Ben Romdhane, W.; Ben Hsouna, A.; Brini, F.; Ben Saad, R. The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. Protoplasma 2021, 258, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ren, Y.; Jiang, H.; Wang, Y.; Yan, J.; Xu, X.; Zhou, F.; Ding, H. Genome-Wide Identification and Transcriptional Expression Analysis of Annexin Genes in Capsicum annuum and Characterization of CaAnn9 in Salt Tolerance. Int. J. Mol. Sci. 2021, 22, 8667. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Jami, S.K.; Kirti, P.B. Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol. Biol. 2010, 73, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.-L.; Yang, X.-B.; Zhang, Q.; Zhou, M.; Zhao, E.-Z.; Tang, Y.-X.; Zhu, X.-M.; Shao, J.-R.; Wu, Y.-M. Induction of annexin by heavy metals and jasmonic acid in Zea mays. Funct. Integr. Genom. 2013, 13, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Que, Z.; Lu, Q.; Li, Q.; Shen, C. The rice annexin gene OsAnn5 is involved in cold stress tolerance at the seedling stage. Plant Direct 2023, 7, e539. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Xu, Y.J.; Lei, Y.; Li, Q.; Zhao, J.Q.; Li, Y.; Fan, J.; Xiao, S.; Wang, W.M. Annexin 8 negatively regulates rpw8.1-mediated cell death and disease resistance in Arabidopsis. J. Integr. Plant Biol. 2021, 63, 378–392. [Google Scholar] [CrossRef]
- Shen, C.; Que, Z.; Lu, Q.; Liu, T.; Chen, G. The rice annexin gene OsAnn5 is a positive regulator of cold stress tolerance at the seedling stage. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Xia, X.; Li, G.; Ding, Y.; Ren, T.; Zheng, J.; Kan, J. Effect of whole grain Qingke (Tibetan Hordeum vulgare L. Zangqing 320) on the serum lipid levels and intestinal microbiota of rats under high-fat diet. J. Agric. Food Chem. 2017, 65, 2686–2693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tan, C.; Hu, H.; Pan, R.; Xiao, Y.; Ouyang, K.; Zhou, G.; Jia, Y.; Zhang, X.; Hill, C.B.; et al. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. Plant Biotechnol. J. 2022, 21, 46–62. [Google Scholar] [CrossRef]
- Sato, K.; Mascher, M.; Himmelbach, A.; Haberer, G.; Spannagl, M.; Stein, N. Chromosome-scale assembly of wild barley accession “OUH602”. G3 2021, 11, jkab244. [Google Scholar] [CrossRef]
- Mistry, J.; Finn, R.D.; Eddy, S.R.; Bateman, A.; Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013, 41, e121. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, Y.; Shangguan, H.; Bian, J.; Luo, R.; Tian, Y.; Li, Z.; Nie, X.; Cui, L. BarleyExpDB: An integrative gene expression database for barley. BMC Plant Biol. 2023, 23, 170. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Song, S.; Wang, W.; Wang, C.; Li, H.; Wang, F.; Li, S.; Sun, X. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol. 2020, 20, 321. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
Type | Accessions | Amino Acids | pI | GRAVY | Cytoplasm | Mitochondria | Nucleus Cytoplasm | Nucleus | Chloroplast |
---|---|---|---|---|---|---|---|---|---|
Wild | B1K-04-12 | 334.42 | 7.72 | −0.35 | 7 | 1 | 1 | 1 | 2 |
EC-N1 | 330.33 | 8.01 | −0.42 | 7 | 0 | 0 | 2 | 3 | |
EC-S1 | 304.33 | 7.7 | −0.31 | 6 | 1 | 0 | 1 | 4 | |
OUH602 | 334.42 | 7.77 | −0.35 | 6 | 1 | 1 | 1 | 3 | |
Landrace | HOR10350 | 334.42 | 7.71 | −0.35 | 6 | 1 | 1 | 1 | 3 |
HOR13821 | 334.42 | 7.72 | −0.36 | 6 | 1 | 1 | 1 | 3 | |
HOR21599 | 334.42 | 7.73 | −0.36 | 6 | 1 | 1 | 1 | 3 | |
HOR3365 | 334.25 | 7.72 | −0.35 | 6 | 1 | 1 | 1 | 3 | |
Variety | IGRI | 334.58 | 7.72 | −0.35 | 6 | 1 | 1 | 1 | 3 |
Morex V3 | 329.36 | 7.73 | −0.36 | 6 | 1 | 1 | 1 | 3 | |
Barke | 329.67 | 7.68 | −0.35 | 6 | 1 | 1 | 1 | 3 | |
Golden | 329.67 | 7.68 | −0.35 | 6 | 1 | 1 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Chen, K.; Xi, X.; Du, X.; Zou, X.; Ma, Y.; Song, Y.; Luo, C.; Weining, S. The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome. Int. J. Mol. Sci. 2024, 25, 3883. https://doi.org/10.3390/ijms25073883
Chen L, Chen K, Xi X, Du X, Zou X, Ma Y, Song Y, Luo C, Weining S. The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome. International Journal of Molecular Sciences. 2024; 25(7):3883. https://doi.org/10.3390/ijms25073883
Chicago/Turabian StyleChen, Liqin, Kunxiang Chen, Xi Xi, Xianghong Du, Xinyi Zou, Yujia Ma, Yingying Song, Changquan Luo, and Song Weining. 2024. "The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome" International Journal of Molecular Sciences 25, no. 7: 3883. https://doi.org/10.3390/ijms25073883
APA StyleChen, L., Chen, K., Xi, X., Du, X., Zou, X., Ma, Y., Song, Y., Luo, C., & Weining, S. (2024). The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome. International Journal of Molecular Sciences, 25(7), 3883. https://doi.org/10.3390/ijms25073883