Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1
Abstract
:1. Introduction and Background
2. Methods of Approach and Results
3. The 29 Treatments for the 18 Components of Pathogenesis
3.1. Treatment to Reverse the Deposition of Aβ
3.2. Treatment to Reverse the Deposition of Tau Protein
3.3. Treatment to Reverse Reactive Oxidative Stress (ROS)
3.4. Treatment to Reverse the Reduced Level of Brain-Derived Neurotrophic Factor (BDNF)
3.5. Treatment to Reverse Reduced Levels of Transforming Growth Factor β (TGFβ)
3.6. Treatment to Reverse the Reduced Levels of Wnt/β-Catenin
3.7. Treatment to Reverse the Direction of EMT from M-E to E-M
3.8. Treatment to Reverse the Cerebral Microcirculatory Abnormalities
3.9. Treatment to Reverse Insulin Resistance in the Brain
3.10. Treatment to Reverse Neuroinflammation
3.11. Treatment to Reverse Increased Intracellular Ca2+ Levels
3.12. Treatment to Reverse Increased APOE4ε
3.13. Treatment to Reverse Epigenetic Changes
3.14. Treatment to Reverse Reduced Autophagy
3.15. Treatment to Address the miRNAs Involved in AD
3.16. Treatments to Reduce the Impaired Mitochondrial Function in AD
3.17. Treatment to Address the Disturbed Circadian Rhythmicity in AD
3.18. Treatment to Reverse Reduced Synaptic and Neuronal Function
- (a)
- Reduced activity of acetylcholine. This can be treated by three FDA-approved anticholinesterase drugs, donepezil, galantamine, and rivastigmine, and also by pioglitazone, which restored anticholinesterase esterase to 83% from its reduction by an anticholinesterase agent [15]. The effect of anticholinesterase drugs on neural circuitry was demonstrated for both galantamine and donepezil. Galantamine increased functional connectivity in the posterior subcomponent of the DMN involving the PCC and PC [95], and donepezil increased connectivity in the parahippocampal gyrus and stabilized activation in the precuneus [96].
- (b)
- Reduced glutamatergic function. In AD, the activation of specific glutamate receptors may lead to neurotoxicity because extrasynaptic N-methyl-D-aspartate receptor (NMDAR) signaling, activated by glutamate released from astrocytes or presynaptic terminals, antagonizes synaptic pro-survival signaling and tilts the balance toward excitotoxicity and neurodegeneration [97]. NMDAR antagonists include memantine and riluzole. Memantine plus anticholinesterase drugs created a greater reduction in behavior disturbance than anticholinesterase drugs given alone [98]. Riluzole blocks the downstream effects of NMDAR; when administered to AD model mice, it significantly enhanced cognition and reduced Aβ42, Aβ40, Aβ oligomers’ levels and Aβ plaque load [99]. Other drugs that enhance glutamatergic neurons are N-acetylcysteine, gabapentin, lamotrigine, and topiramate.
- (c)
- Reduced GABA function occurs in AD. γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain, regulating cognition, memory, adult neurogenesis, and circadian rhythm (see above). GABA synthesis occurs via the α-decarboxylation of L-glutamate by glutamic acid decarboxylase (GAD). Reports of studies using GABAergic drugs have given inconsistent results; that may be, in part, because GABA receptors have subunits with different abilities to bind GABA. The dominant finding in AD is a reduced level of GABA in the cerebral cortex and hippocampus. A meta-analysis of 48 reports involving 603 AD patients found a global reduction of GABAergic components in both brain and cerebrospinal fluid (CSF) [100]. Advanced AD with Braak stages V and VI showed the most marked decreases in GABA as compared to earlier stages [101]. In the frontal cortex of AD, there was a reduced level of the long isoform of the Munc18-1 protein, which is important for presynaptic GABA function [102]. Membranes of pyramidal cells in contact with amyloid plaques lacked GABAergic perisomatic synapses, causing decreased neuronal inhibition; their loss may lead to the hyperactivity of such neurons [103]. Thus, treatment to raise GABA levels in AD may contribute to reversing dementia. This may be achieved with vigabatrin, which is an FDA-approved inhibitor of GABA transaminase. The administration of 50 mgs of vigabatrin produced a 40% increase in GABA in human brain [104]. Nicotinamide also raises GABA levels [105].
- (d)
- Reduced adrenergic neurons are also a factor in AD, in which there was a 50% loss of cells in the rostral locus coeruleus (LC) and a 31% reduction in noradrenaline concentration in the midtemporal cortex [106]. Of the adrenergic neurons in the LC, 49% project to the medial prefrontal cortex (PFC), 28% to the orbitofrontal cortex, and 18% to the anterior cingulate cortex (ACC) [107]. Prazosin and erythropoietin increased the levels of α-2 adrenergic activity [108,109]. Prazosin, an α-1 adrenoreceptor antagonist, prevents the closure of gap junctions and allows communication between neurons, astrocytes, and blood vessels [110]. Erythropoietin regulates α-2 adrenergic activity via cells of the LC, which express erythropoietin receptors [111] and are a major source for control of norepinephrine formation [112].
- (e)
- Reduced serotonergic neurons are seen in AD, where serotonin (5-HT) levels were significantly lowered in the hippocampal cortex, hippocampus, caudate nucleus, and putamen, and the concentrations of 5-HIAA, a metabolite of 5-HT, were reduced in three cortical areas, thalamus and putamen [113]. Serotonin reuptake inhibitors (SSRIs), e.g., fluoxetine and venlafaxine, increase the availability of serotonin for its binding by the serotonin receptor.
4. Combinations That Include Drugs Providing Benefits to More than One Component of Pathogenesis
Brain Penetration of the Mentioned Drugs
5. Construction of a Clinical Trial to Demonstrate Safety and Efficacy
- The lowest dosages, which will be used for each of the above drugs, are shown in the following (alphabetic) list: aducanumab (1 mg/kg increasing to 10 mg/kg IV q4wk), atorvastatin (10 mg qd), caffeine (1 glass tea qd), diclofenac (75 mg delayed release tab. qd), doxycycline (100 mg qd), erythropoietin (50 units/kg IM, q7 days), fluoxetine (10 mg qd), folate (5 mg qd), galantamine (4 mg bid), gabapentin (300 mg tid), gemfibrozil (300 mg qd), intranasal insulin (20 iu, qd), lecanemab (10 mg/kg IV q2w), lithium (150 mg qd), melatonin (5 mg qHS), memantine (5 mg qd), N-acetyl cysteine (effervescent tab: 600 mg once daily); nicotinamide (100 mg qd), pioglitazone (15 mg qd), prazosin (1.0 mg qd), prednisone (2.5 mg qd), pyridoxine (25 mg qd), rapamycin (0.5 mg qd), rasagaline (0.5 mg qd), riluzole (50 mg qd), rivastigmine (1.5 mg bid), venlafaxine (37.5 mg qd), vigabatrin 25 mg bid), vitamin C (1000 mg qd).
- Many of these drugs have potentially serious side effects, so clinical trials must have an assigned clinical pharmacologist whose function will be to assess whether or not an individual patient should receive a given triple-drug combination. Removing that triple combination will lower the total exposure of many participants to all of the drugs; that could be beneficial if a substudy of such participants showed that even lower exposure to the triple-drug combinations could produce a higher cure rate compared with equipoise treatment.
- Treatment for conditions that occurred during one year, either before or after the appearance of AD. Finally, it is the role of risk factors whose first presence or worsening was ±1 year when AD first appeared. Those elements were examined in three analyses [154,155,156]. Twelve risk factors for AD included inadequate exercise, hearing loss, and infrequent social contact [154], plus six others, for which Barnes and Yaffe gave the following population prevalences: physical inactivity 32.5%, smoking 20.6%, depression 19.2%, midlife hypertension 14.3%, mid-life obesity 13.1%, and diabetes 8.7% [155]. Twelve reports involving 6865 participants showed metabolic syndrome as another risk factor [156], and the Italian Longitudinal Study on Aging found that it approximately doubled the risk of dementia [157]. Another report included metabolic syndrome and added nutrient deficiencies, traumatic head injuries, and occupational exposure to toxins [158].
6. Summary
Funding
Informed Consent Statement
Conflicts of Interest
References
- Liu, Y.; Su, Y.; Wang, J.; Sun, S.; Wang, T.; Qiao, X.; Run, X.; Li, H.; Liang, Z. Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase. Neurochem. Int. 2013, 62, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Liang, M.-H.; Ren, M.; Marinova, Z.; Leeds, P.; Chuang, D.-M. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: Roles of glycogen synthase kinase-3 inhibition. J. Neurosci. 2008, 28, 2576–2588. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-J.; Long, Z.; Li, F.; Shi, X.; Shen, Y.-F.; Liu, M.-L. Distinct Effects of Aducanumab and Lecanemab on Intraneuronal Endogenous Aβ42 and Phosphorylated Tau in Alzheimer’s Disease Treatment. bioRxiv 2024. bioRxiv:2024.02.06.579113. [Google Scholar]
- Pontecorvo, M.J.; Lu, M.; Burnham, S.C.; Schade, A.E.; Dage, J.L.; Shcherbinin, S.; Collins, E.C.; Sims, J.R.; Mintun, M.A. Association of donanemab treatment with exploratory plasma biomarkers in early symptomatic Alzheimer disease: A secondary analysis of the TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurol. 2022, 79, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Manji, H.K.; Moore, G.J.; Chen, G. Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: A role for neurotrophic and neuroprotective effects in manic depressive illness. J. Clin. Psychiatry 2000, 61, 82–96. [Google Scholar] [PubMed]
- Vakilinezhad, M.A.; Amini, A.; Akbari Javar, H.; Baha’addini Beigi Zarandi, B.F.; Montaseri, H.; Dinarvand, R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. DARU J. Pharm. Sci. 2018, 26, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Jang, S.-Y.; Hwang, E.S. High-dose nicotinamide suppresses ROS generation and augments population expansion during CD8+ T cell activation. Mol. Cells 2015, 38, 918. [Google Scholar] [CrossRef] [PubMed]
- Zandi, P.P.; Anthony, J.C.; Khachaturian, A.S.; Stone, S.V.; Gustafson, D.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A.; Breitner, J.C.S.; Cache County Study Group. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Arch. Neurol. 2004, 61, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N. Engl. J. Med. 1997, 336, 1216–1222. [Google Scholar] [CrossRef]
- West, M.; Coleman, P.; Flood, D.; Troncoso, J. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 1994, 344, 769–772. [Google Scholar] [CrossRef]
- Vitaliano, G.D.; Kim, J.K.; Kaufman, M.J.; Adam, C.W.; Zeballos, G.; Shanmugavadivu, A.; Subburaju, S.; McLaughlin, J.P.; Lukas, S.E.; Vitaliano, F. Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun. Biol. 2022, 5, 236. [Google Scholar] [CrossRef] [PubMed]
- Vitaliano, G.; Adam, C.; Zeballos, G.; Chen, X.; Du, F.; Vitaliano, F. Clathrin Nanoparticles Efficiently Deliver Brain-Derived Neurotrophic Factor (BDNF) to the Hippocampus, Reverse Oxidative Stress and Enhance Synaptogenesis and Memory in Alzheimer’s Mouse Model. Biol. Psychiatry 2020, 87, S151–S152. [Google Scholar] [CrossRef]
- Beheshti, F.; Hosseini, M.; Hashemzehi, M.; Soukhtanloo, M.; Khazaei, M.; Shafei, M.N. The effects of PPAR-γ agonist pioglitazone on hippocampal cytokines, brain-derived neurotrophic factor, memory impairment, and oxidative stress status in lipopolysaccharide-treated rats. Iran. J. Basic. Med. Sci. 2019, 22, 940. [Google Scholar]
- Kariharan, T.; Nanayakkara, G.; Parameshwaran, K.; Bagasrawala, I.; Ahuja, M.; Abdel-Rahman, E.; Amin, A.T.; Dhanasekaran, M.; Suppiramaniam, V.; Amin, R.H. Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression. Neurobiol. Aging 2015, 36, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Kumar, A. Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of β-amyloid animal model of Alzheimer’s disease. Neurotox. Res. 2014, 25, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.; Ginty, M.; Kemp, K.; Scolding, N.; Wilkins, A. The PPAR-γ agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function. J. Neuroinflammation 2012, 9, 63. [Google Scholar] [CrossRef]
- Kanakasabai, S.; Pestereva, E.; Chearwae, W.; Gupta, S.K.; Ansari, S.; Bright, J.J. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS ONE 2012, 7, e50500. [Google Scholar] [CrossRef]
- Fessel, J. Analysis of why Alzheimer’s dementia never sponatneously reverses, suggests the basis for curative treatment. J. Clin. Med. 2023, 12, 4873. [Google Scholar] [CrossRef] [PubMed]
- Caraci, F.; Tascedda, F.; Merlo, S.; Benatti, C.; Spampinato, S.F.; Munafò, A.; Leggio, G.M.; Nicoletti, F.; Brunello, N.; Drago, F. Fluoxetine prevents Aβ1-42-induced toxicity via a paracrine signaling mediated by transforming-growth-factor-β1. Front. Pharmacol. 2016, 7, 389. [Google Scholar] [CrossRef]
- Zepeda, R.; Contreras, V.; Pissani, C.; Stack, K.; Vargas, M.; Owen, G.I.; Lazo, O.M.; Bronfman, F.C. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats. Neuropharmacology 2016, 107, 131–145. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chen, S.-L.; Chang, Y.-H.; Chen, P.S.; Huang, S.-Y.; Tzeng, N.-S.; Wang, L.-J.; Lee, I.H.; Wang, T.-Y.; Chen, K.C. Low-dose memantine attenuated methadone dose in opioid-dependent patients: A 12-week double-blind randomized controlled trial. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Hallschmid, M. Intranasal insulin for Alzheimer’s disease. CNS Drugs 2021, 35, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.K.; Zou, Y.; Ghosh, A. Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Dev. 2008, 3, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Inestrosa, N. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1 [DELTA] E9 mouse model of Alzheimer’s disease. Mol. Psychiatry 2010, 15, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.V.; EAvila, M.; AMedina, M.; Pérez-Palma, E.; IBustos, B.; AAlarcon, M. Wnt/β-catenin signaling in Alzheimer’s disease. CNS Neurol. Disord.-Drug Targets 2014, 13, 745–754. [Google Scholar] [CrossRef]
- Song, D.; He, G.; Song, F.; Wang, Z.; Liu, X.; Liao, L.; Ni, J.; Silva, M.J.; Long, F. Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res. 2020, 8, 4. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, L.; Kasugai, S. Effect of doxycycline doped bone substitute on vertical bone augmentation on rat calvaria. Dent. Mater. J. 2019, 38, 211–217. [Google Scholar] [CrossRef]
- Robin, N.C.; Agoston, Z.; Biechele, T.L.; James, R.G.; Berndt, J.D.; Moon, R.T. Simvastatin promotes adult hippocampal neurogenesis by enhancing Wnt/β-catenin signaling. Stem Cell Rep. 2014, 2, 9–17. [Google Scholar] [CrossRef]
- Zhou, H.; Mak, W.; Kalak, R.; Street, J.; Fong-Yee, C.; Zheng, Y.; Dunstan, C.R.; Seibel, M.J. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development 2009, 136, 427–436. [Google Scholar] [CrossRef]
- Suzuki, S.C.; Takeichi, M. Cadherins in neuronal morphogenesis and function. Dev. Growth Differ. 2008, 50, S119–S130. [Google Scholar] [CrossRef]
- Liu, L.; Watanabe, N.; Akatsu, H.; Nishimura, M. Neuronal expression of ILEI/FAM3C and its reduction in Alzheimer’s disease. Neuroscience 2016, 330, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Nakano, M.; Mitsuishi, Y.; Hara, N.; Mano, T.; Iwata, A.; Murayama, S.; Suzuki, T.; Ikeuchi, T.; Nishimura, M. Transcriptional downregulation of FAM3C/ILEI in the Alzheimer’s brain. Hum. Mol. Genet. 2022, 31, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Liu, L.; Tooyama, I.; Murayama, S.; Nishimura, M. The FAM3 superfamily member ILEI ameliorates Alzheimer’s disease-like pathology by destabilizing the penultimate amyloid-β precursor. Nat. Commun. 2014, 5, 3917. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lu, Z.; Hay, E.D. Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol. Int. 2002, 26, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Calero, M.; Rostagno, A.; Matsubara, E.; Zlokovic, B.; Frangione, B.; Ghiso, J. Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc. Res. Tech. 2000, 50, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tsai, L.-K.; Munasinghe, J.; Leng, Y.; Fessler, E.B.; Chibane, F.; Leeds, P.; Chuang, D.-M. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012, 43, 2430–2436. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Liang, L.; Liu, Y.; Zhang, L.; Zhu, H.; Huang, L.; Qin, C. Valproate improves memory deficits in an Alzheimer’s disease mouse model: Investigation of possible mechanisms of action. Cell. Mol. Neurobiol. 2014, 34, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Drzezga, A.; Lautenschlager, N.; Siebner, H.; Riemenschneider, M.; Willoch, F.; Minoshima, S.; Schwaiger, M.; Kurz, A. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: A PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1104–1113. [Google Scholar] [PubMed]
- Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 2011, 68, 51–57. [Google Scholar] [CrossRef]
- Brabazon, F.; Bermudez, S.; Shaughness, M.; Khayrullina, G.; Byrnes, K.R. The effects of insulin on the inflammatory activity of BV2 microglia. PLoS ONE 2018, 13, e0201878. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. Targeting microglia for the treatment of Alzheimer’s disease. Expert. Opin. Ther. Targets 2015, 19, 497–506. [Google Scholar] [CrossRef]
- Stopschinski, B.E.; Weideman, R.A.; McMahan, D.; Jacob, D.A.; Little, B.B.; Chiang, H.-S.; Saez Calveras, N.; Stuve, O. Microglia as a cellular target of diclofenac therapy in Alzheimer’s disease. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231156674. [Google Scholar] [CrossRef]
- Khachaturian, Z.S.; Cotman, C.W.; Pettegrew, J.W. Introduction and overview on calcium, membranes, aging, and Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1989, 568, 1–4. [Google Scholar] [CrossRef]
- LaFerla, F.M. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat. Rev. Neurosci. 2002, 3, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Lacampagne, A.; Liu, X.; Reiken, S.; Bussiere, R.; Meli, A.C.; Lauritzen, I.; Teich, A.F.; Zalk, R.; Saint, N.; Arancio, O. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer’s disease-like pathologies and cognitive deficits. Acta Neuropathol. 2017, 134, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Walweel, K.; Oo, Y.W.; Laver, D.R. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin. Exp. Pharmacol. Physiol. 2017, 44, 135–142. [Google Scholar] [CrossRef]
- Egorova, P.A.; Bezprozvanny, I.B. Inositol 1, 4, 5-trisphosphate receptors and neurodegenerative disorders. FEBS J. 2018, 285, 3547–3565. [Google Scholar] [CrossRef]
- Ivanova, H.; Vervliet, T.; Monaco, G.; Terry, L.E.; Rosa, N.; Baker, M.R.; Parys, J.B.; Serysheva, I.I.; Yule, D.I.; Bultynck, G. Bcl-2-protein family as modulators of IP3 receptors and other organellar Ca2+ channels. Cold Spring Harb. Perspect. Biol. 2020, 12, a035089. [Google Scholar] [CrossRef] [PubMed]
- Kozopas, K.M.; Yang, T.; Buchan, H.L.; Zhou, P.; Craig, R.W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. USA 1993, 90, 3516–3520. [Google Scholar] [CrossRef]
- Maruyama, W.; Akao, Y.; Youdim, M.B.H.; Davis, B.A.; Naoi, M. Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl (R) salsolinol. J. Neurochem. 2001, 78, 727–735. [Google Scholar] [CrossRef]
- Huang, W.; Cane, M.C.; Mukherjee, R.; Szatmary, P.; Zhang, X.; Elliott, V.; Ouyang, Y.; Chvanov, M.; Latawiec, D.; Wen, L. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1, 4, 5-trisphosphate receptor-mediated Ca2+ release. Gut 2017, 66, 301–313. [Google Scholar] [CrossRef]
- Kang, S.S.; Han, K.-S.; Ku, B.M.; Lee, Y.K.; Hong, J.; Shin, H.Y.; Almonte, A.G.; Woo, D.H.; Brat, D.J.; Hwang, E.M. Caffeine-mediated inhibition of calcium release channel inositol 1, 4, 5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res. 2010, 70, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.M.; Merves, M.L.; Goldberger, B.A.; Sampson-Cone, A.; Cone, E.J. Caffeine content of brewed teas. J. Anal. Toxicol. 2008, 32, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Naj, A.C.; Jun, G.; Reitz, C.; Kunkle, B.W.; Perry, W.; Park, Y.S.; Beecham, G.W.; Rajbhandary, R.A.; Hamilton-Nelson, K.L.; Wang, L.-S. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: A genome-wide association study. JAMA Neurol. 2014, 71, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011, 10, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.-J.; Zhang, S.-X.; Li, Y.; Xu, S.-Y. Rapamycin Responds to Alzheimer’s Disease: A Potential Translational Therapy. Clin. Interv. Aging 2023, 18, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Claxton, A.; Baker, L.D.; Hanson, A.; Trittschuh, E.H.; Cholerton, B.; Morgan, A.; Callaghan, M.; Arbuckle, M.; Behl, C.; Craft, S. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J. Alzheimer’s Dis. 2015, 44, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.F.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, X.; Sun, Y.; Zhou, F. Blood and CSF homocysteine levels in Alzheimer’s disease: A meta-analysis and meta-regression of case–control studies. Neuropsychiatr. Dis. Treat. 2022, 18, 2391–2403. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and dementia: An international consensus statement. J. Alzheimer’s Dis. 2018, 62, 561–570. [Google Scholar] [CrossRef]
- Wang, P.; Guan, Y.-F.; Du, H.; Zhai, Q.-W.; Su, D.-F.; Miao, C.-Y. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 2012, 8, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Festa, B.P.; Barbosa, A.D.; Rob, M.; Rubinsztein, D.C. The pleiotropic roles of autophagy in Alzheimer’s disease: From pathophysiology to therapy. Curr. Opin. Pharmacol. 2021, 60, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhao, B.; Li, K.; Zhang, L.; Li, C.; Quazi, S.H.; Tan, Y. Mammalian target of rapamycin: A valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J. Neurosci. Res. 2012, 90, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, A.; Kanno, H.; Ozawa, H.; Yamaya, S.; Itoi, E. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J. Neurotrauma 2012, 29, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Nanbo, A.; Furuyama, W.; Lin, Z. RNA virus-encoded miRNAs: Current insights and future challenges. Front. Microbiol. 2021, 12, 679210. [Google Scholar] [CrossRef] [PubMed]
- Swarbrick, S.; Wragg, N.; Ghosh, S.; Stolzing, A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol. 2019, 56, 6156–6167. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65, 6029–6033. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.T.; Wang, W.-X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: Validation study. J. Alzheimer’s Dis. 2010, 21, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R.L.; Atwood, C.S.; Johnson, A.B.; Kress, Y.; Vinters, H.V.; Tabaton, M. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 2001, 21, 3017–3023. [Google Scholar] [CrossRef]
- Baloyannis, S.J.; Costa, V.; Michmizos, D. Mitochondrial alterations Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement.® 2004, 19, 89–93. [Google Scholar] [CrossRef]
- Selfridge, J.E.; Lezi, E.; Lu, J.; Swerdlow, R.H. Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol. Dis. 2013, 51, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.S.; Reiman, E.M.; Valla, J.; Dunckley, T.; Beach, T.G.; Grover, A.; Niedzielko, T.L.; Schneider, L.E.; Mastroeni, D.; Caselli, R. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. USA 2008, 105, 4441–4446. [Google Scholar] [CrossRef]
- Bubber, P.; Haroutunian, V.; Fisch, G.; Blass, J.P.; Gibson, G.E. Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child. Neurol. Soc. 2005, 57, 695–703. [Google Scholar] [CrossRef]
- Maiese, K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr. Neurovasc. Res. 2021, 18, 134. [Google Scholar] [CrossRef]
- Terni, B.; Boada, J.; Portero-Otin, M.; Pamplona, R.; Ferrer, I. Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer’s disease pathology. Brain Pathol. 2010, 20, 222–233. [Google Scholar] [CrossRef]
- Khan, N.A.; Auranen, M.; Paetau, I.; Pirinen, E.; Euro, L.; Forsström, S.; Pasila, L.; Velagapudi, V.; Carroll, C.J.; Auwerx, J. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B 3. EMBO Mol. Med. 2014, 6, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Remes, A.M.; Liimatta, E.V.; Winqvist, S.; Tolonen, U.; Ranua, J.A.; Reinikainen, K.; Hassinen, I.E.; Majamaa, K. Ubiquinone and nicotinamide treatment of patients with the 3243A → G mtDNA mutation. Neurology 2002, 59, 1275–1277. [Google Scholar] [CrossRef] [PubMed]
- Weldemichael, D.A.; Grossberg, G.T. Circadian rhythm disturbances in patients with Alzheimer’s disease: A review. Int. J. Alzheimer’s Dis. 2010, 2010, 716453. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, K.E.; Koscik, R.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Sager, M.A.; Asthana, S.; Johnson, S.C.; Benca, R.M. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 2017, 89, 445–453. [Google Scholar] [CrossRef]
- Vitiello, M.V.; Poceta, J.S.; Prinz, P.N. Sleep in Alzheimer’s disease and other dementing disorders. Can. J. Psychol. 1991, 45, 221. [Google Scholar] [CrossRef]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 2009, 326, 1005–1007. [Google Scholar] [CrossRef] [PubMed]
- Ooms, S.; Overeem, S.; Besse, K.; Rikkert, M.O.; Verbeek, M.; Claassen, J.A.H.R. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: A randomized clinical trial. JAMA Neurol. 2014, 71, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Lucey, B.P.; Hicks, T.J.; McLeland, J.S.; Toedebusch, C.D.; Boyd, J.; Elbert, D.L.; Patterson, B.W.; Baty, J.; Morris, J.C.; Ovod, V. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 2018, 83, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Blennow, K.; Zetterberg, H.; Cedernaes, J. Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men. Neurology 2020, 94, e1181–e1189. [Google Scholar] [CrossRef] [PubMed]
- Anders, J.J.; Arany, P.R.; Baxter, G.D.; Lanzafame, R.J. Light-Emitting Diode Therapy and Low-Level Light Therapy Are Photobiomodulation Therapy; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 2019; Volume 37, pp. 63–65. [Google Scholar]
- Pan, W.-T.; Liu, P.-M.; Ma, D.; Yang, J.-J. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J. Transl. Med. 2023, 21, 135. [Google Scholar] [CrossRef]
- Stepanov, Y.V.; Golovynska, I.; Zhang, R.; Golovynskyi, S.; Stepanova, L.I.; Gorbach, O.; Dovbynchuk, T.; Garmanchuk, L.V.; Ohulchanskyy, T.Y.; Qu, J. Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: Mechanisms of light therapy for Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bathini, M.; Raghushaker, C.R.; Mahato, K.K. The molecular mechanisms of action of photobiomodulation against neurodegenerative diseases: A systematic review. Cell. Mol. Neurobiol. 2022, 42, 955–971. [Google Scholar] [CrossRef] [PubMed]
- da Luz Eltchechem, C.; Salgado, A.S.I.; Zângaro, R.A.; da Silva Pereira, M.C.; Kerppers, I.I.; da Silva, L.A.; Parreira, R.B. Transcranial LED therapy on amyloid-β toxin 25–35 in the hippocampal region of rats. Lasers Med. Sci. 2017, 32, 749–756. [Google Scholar] [CrossRef]
- Pini, L.; Wennberg, A.M.; Salvalaggio, A.; Vallesi, A.; Pievani, M.; Corbetta, M. Breakdown of specific functional brain networks in clinical variants of Alzheimer’s disease. Ageing Res. Rev. 2021, 72, 101482. [Google Scholar] [CrossRef]
- Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science 1982, 215, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.F.S.; Cuello, A.C. Altered synaptic function in Alzheimer’s disease. Eur. J. Pharmacol. 2006, 545, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; van Velthoven, C.T.; Kunst, M.; Zhang, M.; McMillen, D.; Lee, C.; Jung, W.; Goldy, J.; Abdelhak, A.; Aitken, M. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023, 624, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Blautzik, J.; Keeser, D.; Paolini, M.; Kirsch, V.; Berman, A.; Coates, U.; Reiser, M.; Teipel, S.J.; Meindl, T. Functional connectivity increase in the default-mode network of patients with Alzheimer’s disease after long-term treatment with Galantamine. Eur. Neuropsychopharmacol. 2016, 26, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Solé-Padullés, C.; Bartrés-Faz, D.; Lladó, A.; Bosch, B.; Peña-Gómez, C.; Castellví, M.; Rami, L.; Bargalló, N.; Sánchez-Valle, R.; Molinuevo, J.L. Donepezil treatment stabilizes functional connectivity during resting state and brain activity during memory encoding in Alzheimer’s disease. J. Clin. Psychopharmacol. 2013, 33, 199–205. [Google Scholar] [CrossRef]
- Greenamyre, J.T.; Maragos, W.F.; Albin, R.L.; Penney, J.B.; Young, A.B. Glutamate transmission and toxicity in Alzheimer’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 1988; 12, 421–430. [Google Scholar]
- Kishia, T.; Matsunagaa, S.; Oyaa, K.; Nomuraa, I.; Ikutab, T.; Iwataa, N. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis. J. Alzheimer’s Dis. 2017, 60, 401–425. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Gray, J.D.; Larson, C.S.; Kazim, S.F.; Soya, H.; McEwen, B.S.; Pereira, A.C. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer’s disease. Transl. Psychiatry 2018, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Carello-Collar, G.; Bellaver, B.; Ferreira, P.C.L.; Ferrari-Souza, J.P.; Ramos, V.G.; Therriault, J.; Tissot, C.; De Bastiani, M.A.; Soares, C.; Pascoal, T.A. The GABAergic system in Alzheimer’s disease: A systematic review with meta-analysis. Mol. Psychiatry 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, K.; Ikonomovic, M.D.; Grayson, D.R.; Sheffield, R.; Armstrong, D.M. Immunohistochemical study of GABAA receptor α1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Res. 1998, 799, 148–155. [Google Scholar] [CrossRef]
- Ramos-Miguel, A.; Hercher, C.; Beasley, C.L.; Barr, A.M.; Bayer, T.A.; Falkai, P.; Leurgans, S.E.; Schneider, J.A.; Bennett, D.A.; Honer, W.G. Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol. Neurodegener. 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Garcia-Marin, V.; Blazquez-Llorca, L.; Rodriguez, J.-R.; Boluda, S.; Muntane, G.; Ferrer, I.; DeFelipe, J. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front. Neuroanat. 2009, 3, 1102. [Google Scholar] [CrossRef] [PubMed]
- Petroff, O.; Rothman, D.; Behar, K.; Collins, T.; Mattson, R. Human brain GABA levels rise rapidly after initiation of vigabatrin therapy. Neurology 1996, 47, 1567–1571. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer’s disease: Amelioration by metabolic switching. Int. Rev. Neurobiol. 2020, 154, 191–205. [Google Scholar] [PubMed]
- Matthews, K.L.; Chen, C.P.L.H.; Esiri, M.M.; Keene, J.; Minger, S.L.; Francis, P.T. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol. Psychiatry 2002, 51, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.; Waterhouse, B.D. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front. Behav. Neurosci. 2012, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Shofer, J.B.; Rohde, K.; Hart, K.L.; Hoff, D.J.; McFall, Y.H.; Raskind, M.A.; Peskind, E.R. Prazosin for the treatment of behavioral symptoms in patients with Alzheimer disease with agitation and aggression. Am. J. Geriatr. Psychiatry 2009, 17, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Csete, M.; Rodriguez, L.; Wilcox, M.; Chadalavada, S. Erythropoietin receptor is expressed on adult rat dopaminergic neurons and erythropoietin is neurotrophic in cultured dopaminergic neuroblasts. Neurosci. Lett. 2004, 359, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Giaume, C.; Marin, P.; Cordier, J.; Glowinski, J.; Premont, J. Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc. Natl. Acad. Sci. USA 1991, 88, 5577–5581. [Google Scholar] [CrossRef]
- Silva, C.A.; Vicente, M.C.; Tenorio-Lopes, L.; Soliz, J.; Gargaglioni, L.H. Erythropoietin in the Locus coeruleus attenuates the ventilatory response to CO2 in rats. Respir. Physiol. Neurobiol. 2017, 236, 11–18. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef]
- Reinikainen, K.J.; Paljärvi, L.; Huuskonen, M.; Soininen, H.; Laakso, M.; Riekkinen, P.J. A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J. Neurol. Sci. 1988, 84, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Loera-Valencia, R.; Cedazo-Minguez, A.; Kenigsberg, P.; Page, G.; Duarte, A.; Giusti, P.; Zusso, M.; Robert, P.; Frisoni, G.; Cattaneo, A. Current and emerging avenues for Alzheimer’s disease drug targets. J. Intern. Med. 2019, 286, 398–437. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Napolitano, F.; Montesarchio, D.; Sampaolo, S.; Melone, M.A.B. Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases. Pharmaceutics 2021, 13, 1897. [Google Scholar] [CrossRef] [PubMed]
- Dodart, J.C.; Mathis, C.; Bales, K.; Paul, S. Does my mouse have Alzheimer’s disease? Genes. Brain Behav. 2002, 1, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Duyckaerts, C.; Potier, M.-C.; Delatour, B. Alzheimer disease models and human neuropathology: Similarities and differences. Acta Neuropathol. 2008, 115, 5–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, H.J.; Kang, H.; Kim, E.H.; Lim, Y.C.; Park, H.; Lim, S.M.; Lee, Y.J.; Kim, J.M.; Kim, J.S. Trastuzumab induced chemobrain, atorvastatin rescued chemobrain with enhanced anticancer effect and without hair loss-side effect. J. Clin. Med. 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Kokki, H.; Kumpulainen, E.; Laisalmi, M.; Savolainen, J.; Rautio, J.; Lehtonen, M. Diclofenac readily penetrates the cerebrospinal fluid in children. Br. J. Clin. Pharmacol. 2008, 65, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Kitaichi, K.; Abe, F.; Fujimoto, Y.; Takagi, K.; Takagi, K.; Morishima, T.; Hasegawa, T. Altered brain penetration of diclofenac and mefenamic acid, but not acetaminophen, in Shiga-like toxin II-treated mice. J. Pharmacol. Sci. 2005, 97, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, M.; Martin, S.; Mitkovski, M.; Vozari, R.R.; Stühmer, W.; Bel, E.D. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 2013, 61, 1084–1100. [Google Scholar] [CrossRef]
- Kilic, E.; Kilic, Ü.; Soliz, J.; Bassetti, C.L.; Gassmann, M.; Hermann, D.M. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J. 2005, 19, 2026–2028. [Google Scholar] [CrossRef]
- Sirén, A.-L.; Fratelli, M.; Brines, M.; Goemans, C.; Casagrande, S.; Lewczuk, P.; Keenan, S.; Gleiter, C.; Pasquali, C.; Capobianco, A. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. USA 2001, 98, 4044–4049. [Google Scholar] [CrossRef] [PubMed]
- Szasz, B.K.; Mike, A.; Karoly, R.; Gerevich, Z.; Illes, P.; Vizi, E.S.; Kiss, J.P. Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system. Biol. Psychiatry 2007, 62, 1303–1309. [Google Scholar] [CrossRef]
- Shapovalov, Y.; Zettel, M.; Spielman, S.C.; Amico-Ruvio, S.A.; Kelly, E.A.; Sipe, G.O.; Dickerson, I.M.; Majewska, A.K.; Brown, E.B. Fluoxetine modulates breast cancer metastasis to the brain in a murine model. BMC Cancer 2014, 14, 1–15. [Google Scholar] [CrossRef]
- Bobrowski-Khoury, N.; Sequeira, J.M.; Quadros, E.V. Brain Uptake of Folate Forms in the Presence of Folate Receptor Alpha Antibodies in Young Rats: Folate and Antibody Distribution. Nutrients 2023, 15, 1167. [Google Scholar] [CrossRef]
- Petroff, O.A.; Hyder, F.; Rothman, D.L.; Mattson, R.H. Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy patients. Epilepsia 2000, 41, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Goa, K.L.; Sorkin, E.M. Gabapentin: A review of its pharmacological properties and clinical potential in epilepsy. Drugs 1993, 46, 409–427. [Google Scholar] [CrossRef]
- Geerts, H.; Guillaumat, P.-O.; Grantham, C.; Bode, W.; Anciaux, K.; Sachak, S. Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits. Brain Res. 2005, 1033, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.; Kershaw, P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: Effects on the course of Alzheimer’s disease. Biol. Psychiatry 2001, 49, 289–299. [Google Scholar] [CrossRef]
- Gottschalk, C.G.; Jana, M.; Roy, A.; Patel, D.R.; Pahan, K. Gemfibrozil protects dopaminergic neurons in a mouse model of Parkinson’s disease via PPARα-dependent astrocytic GDNF pathway. J. Neurosci. 2021, 41, 2287–2300. [Google Scholar] [CrossRef]
- Logovinsky, V.; Satlin, A.; Lai, R.; Swanson, C.; Kaplow, J.; Osswald, G.; Basun, H.; Lannfelt, L. Safety and tolerability of BAN2401-a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimer’s Res. Ther. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- De La Monte, S.M. Insulin resistance and Alzheimer’s disease. BMB Rep. 2009, 42, 475. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L. Normalization of insulin sensitivity with lithium in diabetic rats. Diabetes 1989, 38, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Tabata, I.; Schluter, J.; Gulve, E.A.; Holloszy, J.O. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Diabetes 1994, 43, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; Trakht, I.; Srinivasan, V.; Spence, D.W.; Maestroni, G.J.; Zisapel, N.; Cardinali, D.P. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 2008, 85, 335–353. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, M.B.; De Boer, B.G.; Breimer, D.D.; Danysz, W. Brain penetration and in vivo recovery of NMDA receptor antagonists amantadine and memantine: A quantitative microdialysis study. Pharm. Res. 1999, 16, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, B.; Sekhon, C.; Khan, M.; Patel, S.J.; Singh, I.; Singh, A.K. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res. 2003, 971, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shear, D.A.; Dixon, C.E.; Bramlett, H.M.; Mondello, S.; Dietrich, W.D.; Deng-Bryant, Y.; Schmid, K.E.; Wang, K.K.; Hayes, R.L.; Povlishock, J.T. Nicotinamide treatment in traumatic brain injury: Operation brain trauma therapy. J. Neurotrauma 2016, 33, 523–537. [Google Scholar] [CrossRef]
- Sauerbeck, A.; Gao, J.; Readnower, R.; Liu, M.; Pauly, J.R.; Bing, G.; Sullivan, P.G. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp. Neurol. 2011, 227, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Claudio, L.; Brosnan, C.F. Effects of prazosin on the blood-brain barrier during experimental autoimmune encephalomyelitis. Brain Res. 1992, 594, 233–243. [Google Scholar] [CrossRef]
- Spector, R. Vitamin B6 transport in the central nervous system: In vivo studies. J. Neurochem. 1978, 30, 881–887. [Google Scholar] [CrossRef]
- Towner, R.A.; Gulej, R.; Zalles, M.; Saunders, D.; Smith, N.; Lerner, M.; Morton, K.A.; Richardson, A. Rapamycin restores brain vasculature, metabolism, and blood-brain barrier in an inflammaging model. Geroscience 2021, 43, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B.; Bar Am, O.; Yogev-Falach, M.; Weinreb, O.; Maruyama, W.; Naoi, M.; Amit, T. Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition. J. Neurosci. Res. 2005, 79, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Stover, J.F.; Beyer, T.F.; Unterberg, A.W. Riluzole reduces brain swelling and contusion volume in rats following controlled cortical impact injury. J. Neurotrauma 2000, 17, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, M.D.; Rozanski, R.I. Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: Review and current status. Expert. Opin. Investig. Drugs 1999, 8, 1673–1682. [Google Scholar] [CrossRef]
- Paulzen, M.; Groppe, S.; Tauber, S.C.; Veselinovic, T.; Hiemke, C.; Gründer, G. Venlafaxine and O-desmethylvenlafaxine concentrations in plasma and cerebrospinal fluid. J. Clin. Psychiatry 2014, 76, 22165. [Google Scholar] [CrossRef]
- Shannon, R.J.; Timofeev, I.; Nortje, J.; Hutchinson, P.J.; Carpenter, K.L. Monitoring vigabatrin in head injury patients by cerebral microdialysis: Obtaining pharmacokinetic measurements in a neurocritical care setting. Br. J. Clin. Pharmacol. 2014, 78, 981–995. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Luchowska-Kocot, D.; Kiełczykowska, M.; Musik, I.; Kurzepa, J. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients 2017, 9, 659. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.B. Effects of gonadal hormone replacement on measures of basal forebrain cholinergic function. Neuroscience 2000, 101, 931–938. [Google Scholar] [CrossRef]
- Rodgers, S.P.; Bohacek, J.; Daniel, J.M. Transient estradiol exposure during middle age in ovariectomized rats exerts lasting effects on cognitive function and the hippocampus. Endocrinology 2010, 151, 1194–1203. [Google Scholar] [CrossRef]
- Velázquez-Zamora, D.A.; Garcia-Segura, L.M.; González-Burgos, I. Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm. Behav. 2012, 61, 512–517. [Google Scholar] [CrossRef]
- Åstrand, B.; Åstrand, E.; Antonov, K.; Petersson, G. Detection of potential drug interactions–a model for a national pharmacy register. Eur. J. Clin. Pharmacol. 2006, 62, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef]
- Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Scafato, E.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Frisardi, V.; Vendemiale, G.; Baldereschi, M.; Crepaldi, G.; Di Carlo, A. Metabolic syndrome, mild cognitive impairment, and progression to dementia. The Italian Longitudinal Study on Aging. Neurobiol. Aging 2011, 32, 1932–1941. [Google Scholar] [CrossRef]
- Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: Occurrence, determinants and strategies toward intervention. Dialogues Clin. Neurosci. 2009, 11, 111–128. [Google Scholar] [CrossRef]
Conditions to Address |
---|
Deposition of Aβ/amyloid |
Deposition of tau protein |
↑reactive oxygen species |
↓Wnt/β-catenin |
↓TGFβ |
↓EMT |
Abnormal cerebral microvascularity |
Insulin resistance (cerebral) |
↑intracellular Ca2+ |
↓Autophagy |
↓UPR |
↑inflammation |
miRNA |
Mitochondrial dysfunction |
↓BDNF |
Synaptic and neuronal dysfunctions |
↑ApoE4ε |
Abnormal circadian rhythm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fessel, J. Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1. Int. J. Mol. Sci. 2024, 25, 3909. https://doi.org/10.3390/ijms25073909
Fessel J. Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1. International Journal of Molecular Sciences. 2024; 25(7):3909. https://doi.org/10.3390/ijms25073909
Chicago/Turabian StyleFessel, Jeffrey. 2024. "Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1" International Journal of Molecular Sciences 25, no. 7: 3909. https://doi.org/10.3390/ijms25073909
APA StyleFessel, J. (2024). Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1. International Journal of Molecular Sciences, 25(7), 3909. https://doi.org/10.3390/ijms25073909