Detection of Interleukin-1 β (IL-1β) in Single Human Blastocyst-Conditioned Medium Using Ultrasensitive Bead-Based Digital Microfluidic Chip and Its Relationship with Embryonic Implantation Potential
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Reproductive Outcomes
2.2. Analyzing Embryo-Conditioned Sample by a Magnetic-Beads-Based Digital Microfluidic Immunoassay Chip
2.3. Beads, Reagents, and Sample Preparation
2.4. Establishing the Calibration Curve for Human Interleukin 1-β and Data Collection
2.5. Interleukin 1-β and Embryonic Development and Implantation Potential
2.6. Interleukin 1β Levels as a Diagnostic Tool to Predict Successful Implantation
3. Discussion
4. Materials and Methods
4.1. Study Population and Clinical Management
4.2. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojosnegros, S.; Seriola, A.; Godeau, A.L.; Veiga, A. Embryo implantation in the laboratory: An update on current techniques. Hum. Reprod. Update 2021, 27, 501–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lin, H.; Kong, S.; Wang, S.; Wang, H.; Wang, H.; Armant, D.R. Physiological and molecular determinants of embryo implantation. Mol. Asp. Med. 2013, 34, 939–980. [Google Scholar] [CrossRef] [PubMed]
- Lessey, B.A.; Young, S.L. What exactly is endometrial receptivity? Fertil. Steril. 2019, 111, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Prins, J.R.; Gomez-Lopez, N.; Robertson, S.A. Interleukin-6 in pregnancy and gestational disorders. J. Reprod. Immunol. 2012, 95, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Teklenburg, G.; Salker, M.; Heijnen, C.; Macklon, N.S.; Brosens, J.J. The molecular basis of recurrent pregnancy loss: Impaired natural embryo selection. Mol. Hum. Reprod. 2010, 16, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Gurner, K.H.; Evans, J.; Hutchison, J.C.; Harvey, A.J.; Gardner, D.K. A microenvironment of high lactate and low pH created by the blastocyst promotes endometrial receptivity and implantation. Reprod. Biomed. Online 2021, 44, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Brosens, J.J.; Salker, M.S.; Teklenburg, G.; Nautiyal, J.; Salter, S.; Lucas, E.S.; Steel, J.H.; Christian, M.; Chan, Y.-W.; Boomsma, C.M.; et al. Uterine Selection of Human Embryos at Implantation. Sci. Rep. 2014, 4, 3894. [Google Scholar] [CrossRef] [PubMed]
- Ebner, T.; Moser, M.; Sommergruber, M.; Tews, G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: A review. Hum. Reprod. Update 2003, 9, 251–262. [Google Scholar] [CrossRef]
- Hernández-Vargas, P.; Muñoz, M.; Domínguez, F. Identifying biomarkers for predicting successful embryo implantation: Applying single to multi-OMICs to improve reproductive outcomes. Hum. Reprod. Update 2020, 26, 264–301. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Dominguez, F.; Meseguer, M.; Aparicio-Ruiz, B.; Piqueras, P.; Quiñonero, A.; Simón, C. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil. Steril. 2015, 104, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Meseguer, M.; Rubio, C.; Treff, N.R. Diagnosis of human preimplantation embryo viability. Hum. Reprod. Update 2015, 21, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Dubanchet, S.; Zourbas, S.; Chaouat, G.; DAS, C. Expression of Pro-inflammatory Cytokines in Mouse Blastocysts During Implantation: Modulation by Steroid Hormones. Am. J. Reprod. Immunol. 2002, 47, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kruessel, J.; Huang, H.-Y.; Wen, Y.; Kloodt, A.; Bielfeld, P.; Polan, M. Different pattern of interleukin-1β-(IL-1β), interleukin-1 receptor antagonist-(IL-1ra) and interleukin-1 receptor type I-(IL-1R tI) mRNA-expression in single preimplantation mouse embryos at various developmental stages. J. Reprod. Immunol. 1997, 34, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Librach, C.; Feigenbaum, S.; Bass, K.; Cui, T.; Verastas, N.; Sadovsky, Y.; Quigley, J.; French, D.; Fisher, S. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J. Biol. Chem. 1994, 269, 17125–17131. [Google Scholar] [CrossRef] [PubMed]
- Pantos, K.; Grigoriadis, S.; Maziotis, E.; Pistola, K.; Xystra, P.; Pantou, A.; Kokkali, G.; Pappas, A.; Lambropoulou, M.; Sfakianoudis, K.; et al. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2022, 23, 2198. [Google Scholar] [CrossRef] [PubMed]
- Löb, S.; Amann, N.; Kuhn, C.; Schmoeckel, E.; Wöckel, A.; Zehni, A.Z.; Kaltofen, T.; Keckstein, S.; Mumm, J.-N.; Meister, S.; et al. Interleukin-1 beta is significantly upregulated in the decidua of spontaneous and recurrent miscarriage placentas. J. Reprod. Immunol. 2021, 144, 103283. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.; Shih, Y.-T.; Lee, M.-S.; Huang, H.-Y.; Wu, W.-N. Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay. Biosensors 2022, 12, 340. [Google Scholar] [CrossRef]
- Apter, S.; Ebner, T.; Freour, T.; Guns, Y.; Kovacic, B.; Le Clef, N.; Marques, M.; Meseguer, M.; Montjean, D.; Sfontouris, I.; et al. Good practice recommendations for the use of time-lapse technology. Hum. Reprod. Open 2020, 2020, hoaa008. [Google Scholar] [CrossRef]
- Ezoe, K.; Hickman, C.; Miki, T.; Okimura, T.; Uchiyama, K.; Yabuuchi, A.; Kobayashi, T.; Coticchio, G.; Kato, K. Cytoplasmic halo characteristics during fertilization and their implications for human preimplantation embryo development and pregnancy outcome. Reprod. Biomed. Online 2020, 41, 191–202. [Google Scholar] [CrossRef]
- Lee, C.-I.; Huang, C.-C.; Lee, T.-H.; Chen, H.-H.; Cheng, E.-H.; Lin, P.-Y.; Yu, T.-N.; Chen, C.-I.; Chen, C.-H.; Lee, M.-S. Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles. Reprod. Biol. Endocrinol. 2024, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Katz-Jaffe, M.; McReynolds, S.; Gardner, D.; Schoolcraft, W. The role of proteomics in defining the human embryonic secretome. Mol. Hum. Reprod. 2009, 15, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, F.; Gadea, B.; Esteban, F.J.; Horcajadas, J.A.; Pellicer, A.; Simon, C. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Hum. Reprod. 2008, 23, 1993–2000. [Google Scholar] [CrossRef]
- Biba, M.; Keramitsoglou, T.; Goukos, D.; Varla-Leftherioti, M.; Pantos, K. Interleukin (IL)-1 Beta and IL-6 Levels in Human Embryo Culture Supernatants and their Role in Implantation Following IVF: A Prospective, Non-randomized Study. J. Immuno. Biol. 2015, 1, 2. [Google Scholar]
- Caillaud, M.; Duchamp, G.; Gérard, N. In vivo effect of interleukin-1beta and interleukin-1RA on oocyte cytoplasmic maturation, ovulation, and early embryonic development in the mare. Reprod. Biol. Endocrinol. 2005, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Takacs, P.; Kauma, S. The expression of Interleukin-1α, Interleukin-1β, and Interleukin-1 receptor type I mRNA during preimplantation mouse development. J. Reprod. Immunol. 1996, 32, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Spandorfer, S.D.; Neuer, A.; Liu, H.-C.; Rosenwaks, Z.; Witkin, S.S. Involvement of Interleukin-1 and the Interleukin-1 Receptor Antagonist in In Vitro Embryo Development Among Women Undergoing In Vitro Fertilization–Embryo Transfer. J. Assist. Reprod. Genet. 2003, 20, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Krussel, J.S.; Simon, C.; Rubio, M.C.; Pape, A.R.; Wen, Y.; Huang, H.Y.; Bielfeld, P.; Polan, M.L. Expression of interleukin-1 system mRNA in single blastomeres from human preimplantation embryos. Hum. Reprod. 1998, 13, 2206–2211. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, M.; Wang, L.; Xu, G.; Baloch, A.R.; Kashif, J.; Fan, J.; Yu, S. Interleukin-1 beta induces autophagy of mouse preimplantation embryos and improves blastocyst quality. J. Cell. Biochem. 2019, 121, 1087–1100. [Google Scholar] [CrossRef]
- Pathak, M.; Vani, V.; Sharma, S.; Seshagiri, P.B. Expression of IL-1β and implantation serine proteases is required for mouse blastocyst hatching. Reproduction 2021, 161, 123–133. [Google Scholar] [CrossRef]
- Herrler, A.; von Rango, U.; Beier, H.M. Embryo-maternal signalling: How the embryo starts talking to its mother to accomplish implantation. Reprod. Biomed. Online 2003, 6, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Salama, K.M.; Alloush, M.K.; Al Hussini, R.M. Are the cytokines TNF alpha and IL 1Beta early predictors of embryo implantation? Cross sectional study. J. Reprod. Immunol. 2019, 137, 102618. [Google Scholar] [CrossRef] [PubMed]
- Simón, C.; Valbuena, D.; Krüssel, J.; Bernal, A.; Murphy, C.R.; Shaw, T.; Pellicer, A.; Polan, M.L. Interleukin-1 receptor antagonist prevents embryonic implantation by a direct effect on the endometrial epithelium. Fertil. Steril. 1998, 70, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Yunis, E.J.; Santos, M.J.D.L.; Xiao, L.; Anderson, D.J.; A Hill, J. T helper 1-type immunity to trophoblast antigens in women with a history of recurrent pregnancy loss is associated with polymorphism of the IL1B promoter region. Genes Immun. 2002, 3, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, L.; Anderson, D.; Osathanondh, R.; Hill, J. Reduced IL-1β production is associated with altered T helper 1 (Th1)/Th2 cytokine profile at the mRNA level in the decidua in unexplained recurrent pregnancy loss (RPL). Fertil. Steril. 2001, 76, S62–S63. [Google Scholar] [CrossRef]
- Robertson, S.A.; Moldenhauer, L.M.; Green, E.S.; Care, A.S.; Hull, M.L. Immune determinants of endometrial receptivity: A biological perspective. Fertil. Steril. 2022, 117, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Kong, L.; Qing, P.; Cheng, K.; Chen, H.; Zhang, S.; Hu, X.; Hu, Z.; Yu, F.; Qin, L. Interleukin-1β as clinically predictive risk marker for recurrent pregnancy loss in women positive for antinuclear antibody. Int. J. Clin. Pract. 2021, 75, e14887. [Google Scholar] [CrossRef]
- Lee, M.-S.; Chang, Y.-C.; Huang, H.-Y.; Hsu, W. Single-type reporter multiplexing with A single droplet through bead-based digital microfluidics. J. Pharm. Biomed. Anal. 2022, 219, 114877. [Google Scholar] [CrossRef]
- Veeck, L.L. An Atlas of Human Gametes and Conceptuses; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
Characteristics | N = 15 |
---|---|
Age (years) (Mean ± SD) | 33 ± 6 |
BMI (kg/m2) (Mean ± SD) | 21.78 ± 2.33 |
AMH (ng/mL) (Mean ± SD) | 5.90 ± 4.15 |
Day 3 FSH (mIU/mL) (Mean ± SD) | 6.00 ± 1.64 |
GnRH antagonist protocol, n | 11 |
PPOS protocol, n | 4 |
E2 on triggering day (pg/mL) (Mean ± SD) | 3190 ± 2335 |
Retrieved oocytes number (Mean ± SD) | 20 ± 6 |
Number of 2PN zygotes (Mean ± SD) | 11 ± 6 |
Number of blastocysts (Mean ± SD) | 9 ± 5 |
Non-Pregnant (N = 14) | Pregnant (N = 12) | |
---|---|---|
Day 3 IL-1β (pg/mL) | 49.46 ± 21.58 | 46.49 ± 16.52 |
Day 5 IL-1β (pg/mL) | 88.15 ± 28.69 | 68.04 ± 30.91 |
Day 5–Day 3 IL-1β (pg/mL) | 37.86 ± 27.18 | 21.54 ± 22.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, T.-C.; Wang, Y.-W.; Lee, M.-S.; Wu, W.-N.; Hsu, W.; Yao, D.-J.; Huang, H.-Y. Detection of Interleukin-1 β (IL-1β) in Single Human Blastocyst-Conditioned Medium Using Ultrasensitive Bead-Based Digital Microfluidic Chip and Its Relationship with Embryonic Implantation Potential. Int. J. Mol. Sci. 2024, 25, 4006. https://doi.org/10.3390/ijms25074006
Tsai T-C, Wang Y-W, Lee M-S, Wu W-N, Hsu W, Yao D-J, Huang H-Y. Detection of Interleukin-1 β (IL-1β) in Single Human Blastocyst-Conditioned Medium Using Ultrasensitive Bead-Based Digital Microfluidic Chip and Its Relationship with Embryonic Implantation Potential. International Journal of Molecular Sciences. 2024; 25(7):4006. https://doi.org/10.3390/ijms25074006
Chicago/Turabian StyleTsai, Tian-Chi, Yi-Wen Wang, Meng-Shiue Lee, Wan-Ning Wu, Wensyang Hsu, Da-Jeng Yao, and Hong-Yuan Huang. 2024. "Detection of Interleukin-1 β (IL-1β) in Single Human Blastocyst-Conditioned Medium Using Ultrasensitive Bead-Based Digital Microfluidic Chip and Its Relationship with Embryonic Implantation Potential" International Journal of Molecular Sciences 25, no. 7: 4006. https://doi.org/10.3390/ijms25074006
APA StyleTsai, T. -C., Wang, Y. -W., Lee, M. -S., Wu, W. -N., Hsu, W., Yao, D. -J., & Huang, H. -Y. (2024). Detection of Interleukin-1 β (IL-1β) in Single Human Blastocyst-Conditioned Medium Using Ultrasensitive Bead-Based Digital Microfluidic Chip and Its Relationship with Embryonic Implantation Potential. International Journal of Molecular Sciences, 25(7), 4006. https://doi.org/10.3390/ijms25074006