Promising Approaches in Plant-Based Therapies for Thyroid Cancer: An Overview of In Vitro, In Vivo, and Clinical Trial Studies
Abstract
:1. Introduction
2. The Effectiveness of PDT in the Treatment of Thyroid Cancer
Natural Substances and PDT
3. Phytochemicals in Thyroid Cancer Treatment
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Asa, S.L.; Ezzat, S.; Sawka, A.M.; Goldstein, D. Diagnosis and Pathologic Characteristics of Medullary Thyroid Carcinoma—Review of Current Guidelines. Curr. Oncol. 2019, 26, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Copland, J.A. Anaplastic Thyroid Carcinoma: Pathogenesis and Emerging Therapies. Clin. Oncol. 2010, 22, 486–497. [Google Scholar] [CrossRef]
- Elia, G.; Patrizio, A.; Ragusa, F.; Paparo, S.R.; Mazzi, V.; Balestri, E.; Botrini, C.; Rugani, L.; Benvenga, S.; Materazzi, G.; et al. Molecular features of aggressive thyroid cancer. Front. Oncol. 2022, 12, 1099280. [Google Scholar] [CrossRef] [PubMed]
- Girotti, A.W. Nitric Oxide-Mediated Resistance to Antitumor Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Li, Z.; Zhang, C.; Zhang, W.; He, R.; Xu, J.; Cai, Y. Optical diagnostic imaging and therapy for thyroid cancer. Mater. Today Bio 2022, 17, 100441. [Google Scholar] [CrossRef]
- Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A.; Selgas, R.; López-Cabrera, M.; Aguilera, A.; González Mateo, G. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front. Pharmacol. 2019, 10, 715. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Suguro, R.; Hu, W.; Zheng, J.; Liu, Y.; Guan, M.; Zhou, N.; Zhang, X. Nitric oxide and thyroid carcinoma: A review. Front. Endocrinol. 2023, 13, 1050656. [Google Scholar] [CrossRef]
- Yao, W.; Wang, K.; Guo, Y.; Wei, R.; Luo, S.; Tang, W.; Wang, N.; He, C.; Wei, X.; Yang, R.; et al. Nitric oxide nano-prodrug platform with synchronous glutathione depletion and hypoxia relief for enhanced photodynamic cancer therapy. Mater. Sci. Eng. C 2021, 133, 112616. [Google Scholar] [CrossRef]
- Jiang, W.; Dong, W.; Li, M.; Guo, Z.; Wang, Q.; Liu, Y.; Bi, Y.; Zhou, H.; Wang, Y. Nitric Oxide Induces Immunogenic Cell Death and Potentiates Cancer Immunotherapy. ACS Nano 2022, 16, 3881–3894. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-C.; Biswas, R.; Chung, P.-S. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg. Med. 2012, 44, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Rhee, Y.; Chung, P.-S.; Ge, R.-F.; Ahn, J.-C. Sulforaphene Enhances The Efficacy of Photodynamic Therapy in Anaplastic Thyroid Cancer Through Ras/RAF/MEK/ERK Pathway Suppression. J. Photochem. Photobiol. B Biol. 2018, 179, 46–53. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.W.; Seok, K.H.; Hwang, C.W.; Ahn, J.-C.; Jin, J.-O.; Kang, H.W. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer. Photodiagn. Photodyn. Ther. 2018, 24, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Heydarzadeh, S.; Kia, S.K.; Zarkesh, M.; Pakizehkar, S.; Hosseinzadeh, S.; Hedayati, M. The Cross-Talk between Polyphenols and the Target Enzymes Related to Oxidative Stress-Induced Thyroid Cancer. Oxidative Med. Cell. Longev. 2022, 2022, 2724324. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011, 13, 184–190. [Google Scholar] [CrossRef]
- Youle, R.J.; van der Bliek, A.M. Mitochondrial Fission, Fusion, and Stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Jacobsen, A.-B.; Grøholt, K.K.; Lorntzsen, B.; Osnes, T.A.; Falk, R.S.; Sigstad, E. Anaplastic thyroid cancer and hyperfractionated accelerated radiotherapy (HART) with and without surgery. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 4203–4209. [Google Scholar] [CrossRef] [PubMed]
- Ferraz da Costa, D.; Fialho, E.; Silva, J. Cancer Chemoprevention by Resveratrol: The p53 Tumor Suppressor Protein as a Promising Molecular Target. Molecules 2017, 22, 1014. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, B.; Tian, X.-T.; Song, X.; Wu, M.-L.; Kong, Q.-Y.; Li, H.; Liu, J. Correlation of Reactive Oxygen Species Levels with Resveratrol Sensitivities of Anaplastic Thyroid Cancer Cells. Oxidative Med. Cell. Longev. 2018, 2018, 6235417. [Google Scholar] [CrossRef]
- Tadi, K.; Chang, Y.; Ashok, B.T.; Chen, Y.; Moscatello, A.; Schaefer, S.D.; Schantz, S.P.; Policastro, A.J.; Geliebter, J.; Tiwari, R.K. 3,3′-Diindolylmethane, a cruciferous vegetable derived synthetic anti-proliferative compound in thyroid disease. Biochem. Biophys. Res. Commun. 2005, 337, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Esposito, T.; Lucariello, A.; Hay, E.; Contieri, M.; Tammaro, P.; Varriale, B.; Guerra, G.; De Luca, A.; Perna, A. Effects of curcumin and its adjuvant on TPC1 thyroid cell line. Chem.-Biol. Interact. 2019, 305, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, X.; Gao, Y.; Zheng, J.; Xu, Q.; Sun, Y.; Guan, H.; Yu, H.; Sun, Z. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 2015, 6, 3464–3472. [Google Scholar] [CrossRef]
- Greenman, Y.; Grafi-Cohen, M.; Sharon, O.; Knoll, E.; Kohen, F.; Stern, N.; Somjen, D. Anti-proliferative effects of a novel isoflavone derivative in medullary thyroid carcinoma: An in vitro study. J. Steroid Biochem. Mol. Biol. 2012, 132, 256–261. [Google Scholar] [CrossRef] [PubMed]
- De Amicis, F.; Perri, A.; Vizza, D.; Russo, A.; Panno, M.L.; Bonofiglio, D.; Giordano, C.; Mauro, L.; Aquila, S.; Tramontano, D.; et al. Epigallocatechin gallate inhibits growth and epithelial-to-mesenchymal transition in human thyroid carcinoma cell lines. J. Cell. Physiol. 2013, 228, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Cui, Z.; Shi, H.; Ma, X.; Li, W.; Liu, X.; Jiang, Y. Ellagic acid inhibits cell proliferation, migration, and invasion of anaplastic thyroid cancer cells via the Wnt/β-catenin and PI3K/Akt pathways. Acta Biochim. Pol. 2023, 70, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Lujan-Barroso, L.; Achaintre, D.; Franceschi, S.; Kyrø, C.; Overvad, K.; Tjønneland, A.; Truong, T.; Lecuyer, L.; Boutron-Ruault, M.-C.; et al. Blood polyphenol concentrations and differentiated thyroid carcinoma in women from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2021, 113, 162–171. [Google Scholar] [CrossRef]
- Kang, H.J.; Youn, Y.-K.; Hong, M.-K.; Kim, L.S. Antiproliferation and Redifferentiation in Thyroid Cancer Cell Lines by Polyphenol Phytochemicals. J. Korean Med. Sci. 2011, 26, 893. [Google Scholar] [CrossRef]
- Yu, X.-M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol Induces Differentiation Markers Expression in Anaplastic Thyroid Carcinoma via Activation of Notch1 Signaling and Suppresses Cell Growth. Mol. Cancer Ther. 2013, 12, 1276–1287. [Google Scholar] [CrossRef]
- Hong, J.M.; Park, C.S.; Nam-Goong, I.S.; Kim, Y.S.; Lee, J.C.; Han, M.W.; Choi, J.I.; Kim, Y.I.; Kim, E.S. Curcumin Enhances Docetaxel-Induced Apoptosis of 8505C Anaplastic Thyroid Carcinoma Cells. Endocrinol. Metab. 2014, 29, 54. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, L.; Zhang, Y. Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathol.—Res. Pract. 2019, 215, 152707. [Google Scholar] [CrossRef]
- Somjen, D.; Grafi-Cohen, M.; Weisinger, G.; Izkhakov, E.; Sharon, O.; Kraiem, Z.; Fliss, D.; Zikk, D.; Kohen, F.; Stern, N. Growth Inhibition of Human Thyroid Carcinoma and Goiter Cells In Vitro by the Isoflavone Derivative 7-(O)-Carboxymethyl Daidzein Conjugated to N-t-Boc-Hexylenediamine. Thyroid 2012, 22, 809–813. [Google Scholar] [CrossRef]
- Dodurga, Y.; Eroğlu, C.; Seçme, M.; Elmas, L.; Avcı, B.; Şatıroğlu-Tufan, N.L. Anti-proliferative and anti-invasive effects of ferulic acid in TT medullary thyroid cancer cells interacting with URG4/URGCP. Tumor Biol. 2016, 37, 1933–1940. [Google Scholar] [CrossRef]
- Bonaccorsi, I.; Altieri, F.; Sciamanna, I.; Oricchio, E.; Grillo, C.; Contartese, G.; Galati, E.M. Endogenous reverse transcriptase as a mediator of ursolic acid’s anti-proliferative and differentiating effects in human cancer cell lines. Cancer Lett. 2008, 263, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.Y.; Li, J.P. Saikosaponin-d inhibits proliferation of human undifferentiated thyroid carcinoma cells through induction of apoptosis and cell cycle arrest. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2435–2443. [Google Scholar] [PubMed]
- Xu, S.; Zhang, L.; Cheng, X.; Yu, H.; Bao, J.; Lu, R. Capsaicin inhibits the metastasis of human papillary thyroid carcinoma BCPAP cells through the modulation of the TRPV1 channel. Food Funct. 2018, 9, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Kong, D.; Zhang, Y.; Li, S.; Li, Y.; Dong, L.; Zhang, N.; Ma, J. Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis. Exp. Ther. Med. 2021, 22, 875. [Google Scholar] [CrossRef] [PubMed]
- Ceci, C.; Lacal, P.M.; Tentori, L.; De Martino, M.G.; Miano, R.; Graziani, G. Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid. Nutrients 2018, 10, 1756. [Google Scholar] [CrossRef]
- Cao, X.; He, Q. Ursolic acid inhibits proliferation, migration and invasion of human papillary thyroid carcinoma cells via CXCL12/CXCR4/CXCR7 axis through cancer-associated fibroblasts. Hum. Exp. Toxicol. 2022, 41, 9603271221111333. [Google Scholar] [CrossRef]
- Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015, 357, 129–140. [Google Scholar] [CrossRef]
- Samykutty, A.; Shetty, A.V.; Dakshinamoorthy, G.; Bartik, M.M.; Johnson, G.L.; Webb, B.; Zheng, G.; Chen, A.; Kalyanasundaram, R.; Munirathinam, G. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS ONE 2013, 8, e65889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, X.; Li, H.; Li, B.; Sun, L.; Xie, T.; Zhu, T.; Zhou, H.; Ye, Z. Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int. Immunopharmacol. 2015, 24, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Cheng, X.; Wu, L.; Zheng, J.; Wang, X.; Wu, J.; Yu, H.; Bao, J.; Zhang, L. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell. Signal. 2020, 75, 109733. [Google Scholar] [CrossRef] [PubMed]
- Somjen, D.; Grafi-Cohen, M.; Katzburg, S.; Weisinger, G.; Izkhakov, E.; Nevo, N.; Sharon, O.; Kraiem, Z.; Kohen, F.; Stern, N. Anti-thyroid cancer properties of a novel isoflavone derivative, 7-(O)-carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 2011, 126, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.N.; Yu, X.-M.; Jaskula-Sztul, R.; Chen, H. Hesperetin Activates the Notch1 Signaling Cascade, Causes Apoptosis, and Induces Cellular Differentiation in Anaplastic Thyroid Cancer. Ann. Surg. Oncol. 2014, 21, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Birden, N.; Gunel, N.S.; Ozates, N.P.; Bagca, B.G.; Gunduz, C.; Takanlou, L.S.; Takanlou, M.S.; Avci, C.B. The effects of Epigallocatechin-3-gallate and Dabrafenib combination on apoptosis and the genes involved in epigenetic events in anaplastic thyroid cancer cells. Med. Oncol. 2022, 39, 98. [Google Scholar] [CrossRef]
- Cheng, X.; Gao, Y.; Yao, X.; Yu, H.; Bao, J.; Guan, H.; Sun, Y.; Zhang, L. Punicalagin induces apoptosis-independent autophagic cell death in human papillary thyroid carcinoma BCPAP cells. RSC Adv. 2016, 6, 68485–68493. [Google Scholar] [CrossRef]
- Jang, J.Y.; Sung, B.; Kim, N.D. Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int. J. Mol. Sci. 2022, 23, 3757. [Google Scholar] [CrossRef]
- Mutlu Altundağ, E.; Kasacı, T.; Yılmaz, A.M.; Karademir, B.; Koçtürk, S.; Taga, Y.; Yalçın, A.S. Quercetin-Induced Cell Death in Human Papillary Thyroid Cancer (B-CPAP) Cells. J. Thyroid Res. 2016, 2016, 9843675. [Google Scholar] [CrossRef]
- Quagliariello, V.; Armenia, E.; Aurilio, C.; Rosso, F.; Clemente, O.; de Sena, G.; Barbarisi, M.; Barbarisi, A. New Treatment of Medullary and Papillary Human Thyroid Cancer: Biological Effects of Hyaluronic Acid Hydrogel Loaded With Quercetin Alone or in Combination to an Inhibitor of Aurora Kinase. J. Cell. Physiol. 2016, 231, 1784–1795. [Google Scholar] [CrossRef]
- Yin, F.; Giuliano, A.E.; van Herle, A.J. Growth Inhibitory Effects of Flavonoids in Human Thyroid Cancer Cell Lines. Thyroid 1999, 9, 369–376. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.-H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells. Mol. Cell. Endocrinol. 2013, 369, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A., Jr.; Franz, C. Medullary Carcinoma of the Thyroid Gland. World J. Surg. 2000, 24, 952–956. [Google Scholar] [CrossRef]
- Yao, X.; Cheng, X.; Zhang, L.; Yu, H.; Bao, J.; Guan, H.; Lu, R. Punicalagin from pomegranate promotes human papillary thyroid carcinoma BCPAP cell death by triggering ATM-mediated DNA damage response. Nutr. Res. 2017, 47, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bian, P.; Hu, W.; Liu, C.; Li, L. Resveratrol potentiates the anti-tumor effects of rapamycin in papillary thyroid cancer: PI3K/AKT/mTOR pathway involved. Arch. Biochem. Biophys. 2020, 689, 108461. [Google Scholar] [CrossRef] [PubMed]
- Shih, A.; Davis, F.B.; Lin, H.-Y.; Davis, P.J. Resveratrol Induces Apoptosis in Thyroid Cancer Cell Lines via a MAPK- and p53-Dependent Mechanism. J. Clin. Endocrinol. Metab. 2002, 87, 1223–1232. [Google Scholar] [CrossRef]
- Xiong, L.; Lin, X.-M.; Nie, J.-H.; Ye, H.-S.; Liu, J. Resveratrol and its Nanoparticle suppress Doxorubicin/Docetaxel-resistant anaplastic Thyroid Cancer Cells in vitro and in vivo. Nanotheranostics 2021, 5, 143–154. [Google Scholar] [CrossRef]
Phytochemicals | Classification | Natural Occurrence | Effects | Application with References | ||||
---|---|---|---|---|---|---|---|---|
Group | Subgroup | Class | Papillary Thyroid Cancer | Anaplastic Thyroid Cancer | Medullary Thyroid Cancer | |||
| Polyphenols | Flavonoids | Flavonols | Onion, kale, red wine, berries, buckwheat, red grapes, tea, apples | Inhibition of growth of cancer cells; induces down-regulation | [49,50] | [28] | [50] |
| Polyphenols | Flavonoids | Flavonols | Inhibits cell growth in a dose-dependent manner | [51] | [28] | ND | |
| Polyphenols | Flavonoids | Flavones | Celery, herbs, parsley, chamomile, rooibos tea, capsicum pepper | Inhibit cancer cell, induces autophagic cell death | [23] | [52] | ND |
| Polyphenols | Flavonoids | Isoflavones | Soya, beans, chickpeas, alfalfa, peanuts | Inhibits tumor growth and improves the response to conventional therapy | ND | [28] | [53] |
| Polyphenols | Flavonoids | Isoflavones | Retards the growth of human thyroid carcinoma cell lines | [32] | ND | [24] | |
| Polyphenols | Flavonoids | Flavanones | Citrus fruit | Induces cell apoptosis | [31,45] | ND | ND |
| Polyphenols | Flavonoids | Flavanones | Induces cellular differentiation | ND | [45] | ND | |
| Polyphenols | Flavonoids | - | Red grapes, pomegranates, blueberries, cherries, strawberries, blackberries, raspberries | Promotes cell death | [54] | ND | ND |
| Polyphenols | Flavonoids | Flavan–3–ols tannins | Tea, chocolate, grapes | Inhibits growth and epithelial-to-mesenchymal transition | [25] | [46] | ND |
| Polyphenols | Flavonoids | Flavanolols | Grapes, berries, peanuts, blueberries, raspberries, wine | Inhibits tumor growth | [55,56] | [28,29] | [57] |
| Polyphenols | Phenolic acids | Hydrobenzoic acids | Blackberries, grape seed, pomegranates, raspberries, tea, vanilla | Inhibits cell proliferation, migration, and invasion | ND | [26] | ND |
| Polyphenols | Phenolic acids | Hydroxycinnamic acids | Blueberries, cinnamon, coffee, kiwi fruits, plums, wheat bran | Effects the cell cycle, apoptosis, invasion, and colony formation | ND | ND | [33] |
| Polyphenols | Phenolic acids | Hydroxycinnamic acids | Modulates cell cycle arrest, apoptosis, invasion, migration, and colony formation | [27] | ND | ND | |
| Polyphenols | Non-flavonoid polyphenols | Curcuminoids | Turmeric | Effects the viability, migration, and invasion of cancer cells | [22,37] | [30] | [30] |
| Terpenoids | Non-carotenoid terpenoids | - | Chickpeas, soya beans, coffee, tea | Induction of apoptosis and cell cycle arrest | ND | [35] | ND |
| Terpenoids | Non-carotenoid terpenoids | - | Apples, cranberries, peppermint, prunes, oregano, thyme | Inhibits tumor cell proliferation | ND | [34] | ND |
| Thiols | - | Indoles | Broccoli, brussels sprouts | Anti-proliferative effects | [21] | ND | ND |
| Alkaloids | - | - | Chili | Inhibits the metastasis of cancer | [36] | [43] | ND |
| Others | - | - | Black peppers | Inhibitory effect on cell proliferation | [22] | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarzyk, I.; Nowak-Perlak, M.; Woźniak, M. Promising Approaches in Plant-Based Therapies for Thyroid Cancer: An Overview of In Vitro, In Vivo, and Clinical Trial Studies. Int. J. Mol. Sci. 2024, 25, 4463. https://doi.org/10.3390/ijms25084463
Kaczmarzyk I, Nowak-Perlak M, Woźniak M. Promising Approaches in Plant-Based Therapies for Thyroid Cancer: An Overview of In Vitro, In Vivo, and Clinical Trial Studies. International Journal of Molecular Sciences. 2024; 25(8):4463. https://doi.org/10.3390/ijms25084463
Chicago/Turabian StyleKaczmarzyk, Ilona, Martyna Nowak-Perlak, and Marta Woźniak. 2024. "Promising Approaches in Plant-Based Therapies for Thyroid Cancer: An Overview of In Vitro, In Vivo, and Clinical Trial Studies" International Journal of Molecular Sciences 25, no. 8: 4463. https://doi.org/10.3390/ijms25084463
APA StyleKaczmarzyk, I., Nowak-Perlak, M., & Woźniak, M. (2024). Promising Approaches in Plant-Based Therapies for Thyroid Cancer: An Overview of In Vitro, In Vivo, and Clinical Trial Studies. International Journal of Molecular Sciences, 25(8), 4463. https://doi.org/10.3390/ijms25084463