Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles
Abstract
:1. Introduction
1.1. Phylogeny and Developmental Origins of Craniofacial Muscles
1.2. Myosin Heavy-Chain and Light-Chain Isoforms and Their Genes
1.3. Kinetic Properties of Myosin Isoforms
1.4. Modulation of Contractility by Thick Filament Proteins
2. MyHC Expression Repertoires of Craniofacial Muscles
3. Craniofacial Muscle Allotypes
4. Extraocular Muscles
4.1. Developmental Origins of EOMs
4.2. Ontogeny of EOMs
4.3. Functional Demands on EOMs
4.4. EOM Fibre Types
4.5. Ocular Motoneurons Innervating MIFs and SIFs
4.6. Longitudinal Variations in EOM Fibre Characteristics and Their Functional Significance
4.7. Regulation of MyHC Expression in EOM
5. Jaw Muscles
5.1. Developmental Origins of Jaw Muscles
5.2. Functional Demands on Mammalian Jaw Muscles
5.3. Fibre Types in Jaw-Closing Muscles of Carnivores
5.4. Ontogeny of Jaw-Closing Muscles in Carnivores
5.5. Mechanical Properties of Masticatory Fibres of Carnivores
5.6. Mechanical Properties of Jaw Slow Fibres of Carnivores
5.7. Neural Regulation of Masticatory and Jaw Slow Fibres of Carnivores
5.8. Expression of Masticatory Myosin among Vertebrates
5.9. Phylogenetic Plasticity of Mammalian Jaw-Closing Muscles
5.10. Development and Regulation of Myosin Expression in Jaw-Closing Muscles in Animals Not Expressing Masticatory Myosin
6. Laryngeal Muscles
6.1. Intrinsic Laryngeal Muscles and Their Functions
6.2. Developmental Origins of Laryngeal Muscles
6.3. Laryngeal Muscle Fibre Types
6.4. Variations in MyHC Expression in Laryngeal Muscles
6.5. Functional Significance of Variations in MyHC Expression of Laryngeal Muscles within Species
6.6. Regulation of MyHC Expression in Laryngeal Muscles within Species
6.7. Functional Significance of Variations in MyHC Expression in Laryngeal Muscles between Species
6.8. Regulation of MyHC Expression in Laryngeal Muscles between Species
7. Overview of Myosin Expression Mechanisms in Craniofacial Muscles
8. Future Directions
Funding
Conflicts of Interest
References
- Neal, H.V. The history of the eye muscles. J. Morphol. 1918, 30, 433–453. [Google Scholar] [CrossRef]
- Young, G.C. Number and arrangement of extraocular muscles in primitive gnathostomes: Evidence from extinct placoderm fishes. Biol. Lett. 2008, 4, 110–114. [Google Scholar] [CrossRef]
- Hoh, J.F. ‘Superfast’ or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J. Exp. Biol. 2002, 205 Pt 15, 2203–2210. [Google Scholar] [CrossRef]
- Sambasivan, R.; Gayraud-Morel, B.; Dumas, G.; Cimper, C.; Paisant, S.; Kelly, R.G.; Tajbakhsh, S. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev. Cell 2009, 16, 810–821. [Google Scholar] [CrossRef]
- Wachtler, F.; Jacob, H.J.; Jacob, M.; Christ, B. The extrinsic ocular muscles in birds are derived from the prechordal plate. Naturwissenschaften 1984, 71, 379–380. [Google Scholar] [CrossRef]
- Couly, G.F.; Coltey, P.M.; Le Douarin, N.M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992, 114, 1–15. [Google Scholar] [CrossRef]
- Bohnsack, B.L.; Gallina, D.; Thompson, H.; Kasprick, D.S.; Lucarelli, M.J.; Dootz, G.; Nelson, C.; McGonnell, I.M.; Kahana, A. Development of extraocular muscles requires early signals from periocular neural crest and the developing eye. Arch. Ophthalmol. 2011, 129, 1030–1041. [Google Scholar] [CrossRef]
- Noden, D.M.; Francis-West, P. The differentiation and morphogenesis of craniofacial muscles. Dev. Dyn. 2006, 235, 1194–1218. [Google Scholar] [CrossRef]
- Sperber, G.H. Craniofacial Embryology; Wright: London, UK, 1989. [Google Scholar]
- Sambasivan, R.; Kuratani, S.; Tajbakhsh, S. An eye on the head: The development and evolution of craniofacial muscles. Development 2011, 138, 2401–2415. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, A.; Chakroun, I.; Islam, U.; Blais, A. Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation. Nucleic Acids Res. 2010, 38, 6857–6871. [Google Scholar] [CrossRef]
- Buckingham, M.; Rigby, P.W. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 2014, 28, 225–238. [Google Scholar] [CrossRef]
- Barany, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 1967, 50, 197–218. [Google Scholar] [CrossRef]
- Squire, J. Special Issue: The actin-myosin interaction in muscle: Background and overview. Int. J. Mol. Sci. 2019, 20, 5715. [Google Scholar] [CrossRef]
- Huxley, A.F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 1957, 7, 257–318. [Google Scholar] [CrossRef]
- Desjardins, P.R.; Burkman, J.M.; Shrager, J.B.; Allmond, L.A.; Stedman, H.H. Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family. Mol. Biol. Evol. 2002, 19, 375–393. [Google Scholar] [CrossRef]
- Moncman, C.L.; Andrade, F.H. Nonmuscle myosin IIB, a sarcomeric component in the extraocular muscles. Exp. Cell Res. 2010, 316, 1958–1965. [Google Scholar] [CrossRef]
- Weiss, A.; Schiaffino, S.; Leinwand, L.A. Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: Implications for functional diversity. J. Mol. Biol. 1999, 290, 61–75. [Google Scholar] [CrossRef]
- McNally, E.M.; Kraft, R.; Bravozehnder, M.; Taylor, D.A.; Leinwand, L.A. Full-Length rat alpha and beta cardiac myosin heavy chain sequences—Comparisons suggest a molecular basis for functional differences. J. Mol. Biol. 1989, 210, 665–671. [Google Scholar] [CrossRef]
- Saez, L.J.; Gianola, K.M.; McNally, E.M.; Feghali, R.; Eddy, R.; Shows, T.B.; Leinwand, L.A. Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Res. 1987, 15, 5443–5459. [Google Scholar] [CrossRef]
- Rossi, A.C.; Mammucari, C.; Argentini, C.; Reggiani, C.; Schiaffino, S. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J. Physiol. 2010, 588 Pt 2, 353–364. [Google Scholar] [CrossRef]
- Mascarello, F.; Toniolo, L.; Cancellara, P.; Reggiani, C.; Maccatrozzo, L. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann. Anat. 2016, 207, 9–20. [Google Scholar] [CrossRef]
- Qin, H.; Hsu, M.K.; Morris, B.J.; Hoh, J.F. A distinct subclass of mammalian striated myosins: Structure and molecular evolution of ‘superfast’ or masticatory myosin heavy chain. J. Mol. Evol. 2002, 55, 544–552. [Google Scholar] [CrossRef]
- Hoh, J.F.Y.; Yeoh, G.P.S. Rabbit skeletal myosin isoenzymes from foetal, fast-twitch and slow-twitch muscles. Nature 1979, 280, 321–323. [Google Scholar] [CrossRef]
- Barton, P.J.R.; Buckingham, M.E. The myosin alkali light chain proteins and their genes. Biochem. J. 1985, 231, 249–261. [Google Scholar] [CrossRef]
- Lowey, S.; Waller, G.S.; Trybus, K.M. Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J. Biol. Chem. 1993, 268, 20414–20418. [Google Scholar] [CrossRef]
- Greaser, M.L.; Moss, R.L.; Reiser, P.J. Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains. J. Physiol. 1988, 406, 85–98. [Google Scholar] [CrossRef]
- Stepkowski, D. The role of the skeletal muscle myosin light chains N-terminal fragments. FEBS Lett. 1995, 374, 6–11. [Google Scholar] [CrossRef]
- Whalen, R.G.; Butler-Browne, G.S.; Gros, F. Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. J. Mol. Biol. 1978, 126, 415–431. [Google Scholar] [CrossRef]
- Hoh, J.F.Y.; McGrath, P.A.; Hale, P.T. Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement. J. Mol. Cell Cardiol. 1978, 10, 1053–1076. [Google Scholar] [CrossRef]
- Rowlerson, A.; Pope, B.; Murray, J.; Whalen, R.G.; Weeds, A.G. A novel myosin present in cat jaw-closing muscles. J. Musc. Res. Cell Motil. 1981, 2, 415–438. [Google Scholar] [CrossRef]
- Barton, P.J.; Robert, B.; Cohen, A.; Garner, I.; Sassoon, D.; Weydert, A.; Buckingham, M.E. Structure and sequence of the myosin alkali light chain gene expressed in adult cardiac atria and fetal striated muscle. J. Biol. Chem. 1988, 263, 12669–12676. [Google Scholar] [CrossRef]
- Reiser, P.J.; Bicer, S.; Patel, R.; An, Y.; Chen, Q.; Quan, N. The myosin light chain 1 isoform associated with masticatory myosin heavy chain in mammals and reptiles is embryonic/atrial MLC1. J. Exp. Biol. 2010, 213 Pt 10, 1633–1642. [Google Scholar] [CrossRef]
- Cohen-Haguenauer, O.; Barton, P.J.; Van Cong, N.; Cohen, A.; Masset, M.; Buckingham, M.; Frézal, J. Chromosomal assignment of two myosin alkali light-chain genes encoding the ventricular/slow skeletal muscle isoform and the atrial/fetal muscle isoform (MYL3, MYL4). Hum. Genet. 1989, 81, 278–282. [Google Scholar] [CrossRef]
- Morano, I.; Haase, H. Different actin affinities of human cardiac essential myosin light chain isoforms. FEBS Lett. 1997, 408, 71–74. [Google Scholar] [CrossRef]
- Hoh, J.F.; Li, Z.B.; Qin, H.; Hsu, M.K.; Rossmanith, G.H. Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: Correlations with myosin subunit composition. J. Muscle Res. Cell Motil. 2007, 28, 329–341. [Google Scholar] [CrossRef]
- Collins, J.H. Myoinformatics report: Myosin regulatory light chain paralogs in the human genome. J. Muscle Res. Cell Motil. 2006, 27, 69–74. [Google Scholar] [CrossRef]
- Nudel, U.; Calvo, J.M.; Shani, M.; Levy, Z. The nucleotide sequence of a rat myosin light chain 2 gene. Nucleic Acids Res. 1984, 12, 7175–7186. [Google Scholar] [CrossRef]
- Kumar, C.C.; Cribbs, L.; Delaney, P.; Chien, K.R.; Siddiqui, M.A. Heart myosin light chain 2 gene. Nucleotide sequence of full length cDNA and expression in normal and hypertensive rat. J. Biol. Chem. 1986, 261, 2866–2872. [Google Scholar] [CrossRef]
- Henderson, S.A.; Xu, Y.C.; Chien, K.R. Nucleotide sequence of full length cDNAs encoding rat cardiac myosin light chain-2. Nucleic Acids Res. 1988, 16, 4722. [Google Scholar] [CrossRef]
- Kubalak, S.W.; Miller-Hance, W.C.; O‘Brien, T.X.; Dyson, E.; Chien, K.R. Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J. Biol. Chem. 1994, 269, 16961–16970. [Google Scholar] [CrossRef]
- Collins, C.; Schappert, K.; Hayden, M.R. The genomic organization of a novel regulatory myosin light chain gene (MYL5) that maps to chromosome 4p16.3 and shows different patterns of expression between primates. Hum. Mol. Genet. 1992, 1, 727–733. [Google Scholar]
- Qin, H.; Morris, B.J.; Hoh, J.F.Y. Isolation and structure of cat superfast myosin light chain-2 cDNA and evidence for the identity of its human homologue. Biochem. Biophys. Res. Commun. 1994, 200, 1277–1282. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Takemori, S.; Kimura, M.; Tanishima, Y.; Nakayoshi, T.; Kimura, S.; Ohno, T.; Yagi, N.; Hoh, J.F.; Umazume, Y. Protruding masticatory (superfast) myosin heads from staggered thick filaments of dog jaw muscle revealed by X-ray diffraction. J. Biochem. 2010, 147, 53–61. [Google Scholar] [CrossRef]
- Close, R.I.; Luff, A.R. Dynamic properties of inferior rectus muscle of the rat. J. Physiol. 1974, 236, 259–270. [Google Scholar] [CrossRef]
- Luff, A.R. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscles of the mouse. J. Physiol. 1981, 313, 161–171. [Google Scholar] [CrossRef]
- Asmussen, G.; Beckers-Bleukx, G.; Marechal, G. The force-velocity relation of the rabbit inferior oblique muscle; influence of temperature. Pflug. Arch. Eur. J. Physiol. 1994, 426, 542–547. [Google Scholar] [CrossRef]
- Li, Z.B.; Rossmanith, G.H.; Hoh, J.F. Cross-bridge kinetics of rabbit single extraocular and limb muscle fibers. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3770–3774. [Google Scholar]
- McLoon, L.K.; Park, H.N.; Kim, J.H.; Pedrosa-Domellof, F.; Thompson, L.V. A continuum of myofibers in adult rabbit extraocular muscle: Force, shortening velocity, and patterns of myosin heavy chain colocalization. J. Appl. Physiol. 2011, 111, 1178–1189. [Google Scholar] [CrossRef]
- Schiaffino, S.; Hughes, S.M.; Murgia, M.; Reggiani, C. MYH13, a superfast myosin expressed in extraocular, laryngeal and syringeal muscles. J. Physiol. 2024, 602, 427–443. [Google Scholar] [CrossRef]
- Hilber, K.; Galler, S.; Gohlsch, B.; Pette, D. Kinetic properties of myosin heavy chain isoforms in single fibers from human skeletal muscle. FEBS Lett. 1999, 455, 267–270. [Google Scholar] [CrossRef]
- Reggiani, C.; Bottinelli, R.; Stienen, G.J. Sarcomeric myosin isoforms: Fine tuning of a molecular motor. News Physiol. Scis. 2000, 15, 26–33. [Google Scholar] [CrossRef]
- Weiss, S.; Rossi, R.; Pellegrino, M.A.; Bottinelli, R.; Geeves, M.A. Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. J. Biol. Chem. 2001, 276, 45902–45908. [Google Scholar] [CrossRef]
- Rossmanith, G.H.; Hoh, J.F.; Kirman, A.; Kwan, L.J. Influence of V1 and V3 isomyosins on the mechanical behaviour of rat papillary muscle as studied by pseudo-random binary noise modulated length perturbations. J. Muscle Res. Cell Motil. 1986, 7, 307–319. [Google Scholar] [CrossRef]
- VanBuren, P.; Harris, D.E.; Alpert, N.R.; Warshaw, D.M. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ. Res. 1995, 77, 439–444. [Google Scholar] [CrossRef]
- Sciote, J.J.; Kentish, J.C. Unloaded shortening velocities of rabbit masseter muscle fibres expressing skeletal or alpha-cardiac myosin heavy chains. J. Physiol. 1996, 492 Pt 3, 659–667. [Google Scholar] [CrossRef]
- Yazaki, Y.; Raben, M.S. Effect of the thyroid state on the enzymatic characteristics of cardiac myosin. A difference in behavior of rat and rabbit cardiac myosin. Circ. Res. 1975, 36, 208–215. [Google Scholar] [CrossRef]
- Bloemink, M.J.; Adamek, N.; Reggiani, C.; Geeves, M.A. Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle. J. Mol. Biol. 2007, 373, 1184–1197. [Google Scholar] [CrossRef]
- Bottinelli, R.; Canepari, M.; Reggiani, C.; Stienen, G.J. Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. J. Physiol. 1994, 481 Pt 3, 663–675. [Google Scholar] [CrossRef]
- Rossmanith, G.H.; Hamilton, A.M.; Hoh, J.F. Influence of myosin isoforms on tension cost and crossbridge kinetics in skinned rat cardiac muscle. Clin. Exp. Pharmacol. Physiol. 1995, 22, 423–429. [Google Scholar] [CrossRef]
- Close, R. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. 1964, 173, 74–95. [Google Scholar] [CrossRef]
- Whalen, R.G.; Sell, S.M.; Butler-Browne, G.S.; Schwartz, K.; Bouveret, P.; Pinset-Harstom, I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 1981, 292, 805–809. [Google Scholar] [CrossRef]
- Agbulut, O.; Noirez, P.; Beaumont, F.; Butler-Browne, G. Myosin heavy chain isoforms in postnatal muscle development of mice. Biol. Cell 2003, 95, 399–406. [Google Scholar] [CrossRef]
- Johnson, C.A.; Walklate, J.; Svicevic, M.; Mijailovich, S.M.; Vera, C.; Karabina, A.; Leinwand, L.A.; Geeves, M.A. The ATPase cycle of human muscle myosin II isoforms: Adaptation of a single mechanochemical cycle for different physiological roles. J. Biol. Chem. 2019, 294, 14267–14278. [Google Scholar] [CrossRef]
- Schiaffino, S.; Rossi, A.C.; Smerdu, V.; Leinwand, L.A.; Reggiani, C. Developmental myosins: Expression patterns and functional significance. Skelet. Muscle 2015, 5, 22. [Google Scholar] [CrossRef]
- Matyushkin, D.P. Varieties of tonic muscle fibres in the oculomotor apparatus of the rabbit. Bull. Exp. Biol. Med. (Engl. Transl.) 1964, 55, 235–238. [Google Scholar] [CrossRef]
- Bach-y-Rita, P.; Ito, F. In vivo studies on fast and slow muscle fibers in cat extraocular muscles. J. Gen. Physiol. 1966, 49, 1177–1198. [Google Scholar] [CrossRef]
- Lennerstrand, G. Mechanical studies on the retractor bulbi muscle and its motor units in the cat. J. Physiol. 1974, 236, 43–55. [Google Scholar] [CrossRef]
- Nelson, J.S.; Goldberg, S.J.; McClung, J.R. Motoneuron electrophysiological and muscle contractile properties of superior oblique motor units in cat. J. Neurophysiol. 1986, 55, 715–726. [Google Scholar] [CrossRef]
- Pierobon-Bormioli, S.P.; Torresan, P.; Sartore, S.; Moschini, G.B.; Schiaffino, S. Immunohistochemical identification of slow-tonic fibers in human extrinsic eye muscles. Investig. Ophthalmol. Vis. Sci. 1979, 18, 303–306. [Google Scholar]
- Pierobon-Bormioli, S.; Sartore, S.; Vitadello, M.; Schiaffino, S. Slow myosins in vertebrate skeletal muscle. An immunofluorescence study. J. Cell Biol. 1980, 85, 675–681. [Google Scholar]
- Close, R.; Hoh, J.F. Effects of nerve cross-union on fast-twitch and slow-graded muscle fibres in the toad. J. Physiol. 1968, 198, 103–125. [Google Scholar] [CrossRef]
- Morgan, D.L.; Proske, U. Vertebrate slow muscle: Its structure, pattern of innervation, and mechanical properties. Physiol. Rev. 1984, 64, 103–169. [Google Scholar] [CrossRef]
- Lee, L.A.; Barrick, S.K.; Meller, A.; Walklate, J.; Lotthammer, J.M.; Tay, J.W.; Stump, W.T.; Bowman, G.; Geeves, M.A.; Greenberg, M.J.; et al. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J. Biol. Chem. 2023, 299, 102657. [Google Scholar] [CrossRef]
- Pellegrino, M.A.; Canepari, M.; Rossi, R.; D‘Antona, G.; Reggiani, C.; Bottinelli, R. Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J. Physiol. 2003, 546 Pt 3, 677–689. [Google Scholar] [CrossRef]
- Johnson, C.A.; McGreig, J.E.; Jeanfavre, S.T.; Walklate, J.; Vera, C.D.; Farré, M.; Mulvihill, D.P.; Baines, A.J.; Ridout, M.; Leinwand, L.A.; et al. Identification of sequence changes in myosin II that adjust muscle contraction velocity. PLoS Biol. 2021, 19, e3001248. [Google Scholar] [CrossRef]
- Stewart, M.A.; Franks-Skiba, K.; Chen, S.; Cooke, R. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 2010, 107, 430–435. [Google Scholar] [CrossRef]
- Linari, M.; Brunello, E.; Reconditi, M.; Fusi, L.; Caremani, M.; Narayanan, T.; Piazzesi, G.; Lombardi, V.; Irving, M. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 2015, 528, 276–279. [Google Scholar] [CrossRef]
- Fusi, L.; Brunello, E.; Yan, Z.; Irving, M. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat. Commun. 2016, 7, 13281. [Google Scholar] [CrossRef]
- Irving, M. Regulation of Contraction by the Thick Filaments in Skeletal Muscle. Biophys. J. 2017, 113, 2579–2594. [Google Scholar] [CrossRef]
- Marcucci, L. Muscle mechanics and thick filament activation: An emerging two-way interaction for the vertebrate striated muscle fine regulation. Int. J. Mol. Sci. 2023, 24, 6265. [Google Scholar] [CrossRef]
- Stull, J.T.; Manning, D.R.; High, C.W.; Blumenthal, D.K. Phosphorylation of contractile proteins in heart and skeletal muscle. Fed. Proc. 1980, 39, 1552–1557. [Google Scholar]
- Stull, J.T.; Kamm, K.E.; Vandenboom, R. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch. Biochem. Biophys. 2011, 510, 120–128. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kimura, M.; Li, Z.B.; Ohno, T.; Takemori, S.; Hoh, J.F.; Yagi, N. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. Am. J. Physiol. Cell Physiol. 2016, 310, C692–C700. [Google Scholar] [CrossRef] [PubMed]
- Heling, L.; Geeves, M.A.; Kad, N.M. MyBP-C: One protein to govern them all. J. Muscle Res. Cell Motil. 2020, 41, 91–101. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.F.; Brooks, R.; Komives, E.A.; Torpey, J.W.; Engvall, E.; Gonias, S.L.; Shelton, G.D. Autoantibodies in canine masticatory muscle myositis recognize a novel myosin binding protein-C family member. J. Immunol. 2007, 179, 4939–4944. [Google Scholar] [CrossRef]
- Kang, L.H.; Rughani, A.; Walker, M.L.; Bestak, R.; Hoh, J.F. Expression of masticatory-specific isoforms of myosin heavy-chain, myosin-binding protein-C and tropomyosin in muscle fibers and satellite cell cultures of cat masticatory muscle. J. Histochem. Cytochem. 2010, 58, 623–634. [Google Scholar] [CrossRef]
- Li, A.; Nelson, S.R.; Rahmanseresht, S.; Braet, F.; Cornachione, A.S.; Previs, S.B.; O‘Leary, T.S.; McNamara, J.W.; Rassier, D.E.; Sadayappan, S.; et al. Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems. Proc. Natl. Acad. Sci. USA 2019, 116, 21882–21892. [Google Scholar] [CrossRef]
- Ponnam, S.; Sevrieva, I.; Sun, Y.B.; Irving, M.; Kampourakis, T. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proc. Natl. Acad. Sci. USA 2019, 116, 15485–15494. [Google Scholar] [CrossRef] [PubMed]
- Gresham, K.S.; Stelzer, J.E. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. J. Physiol. 2016, 594, 669–686. [Google Scholar] [CrossRef]
- Nelson, S.R.; Li, A.; Beck-Previs, S.; Kennedy, G.G.; Warshaw, D.M. Imaging ATP consumption in resting skeletal muscle: One molecule at a time. Biophys. J. 2020, 119, 1050–1055. [Google Scholar] [CrossRef]
- Robinett, J.C.; Hanft, L.M.; Geist, J.; Kontrogianni-Konstantopoulos, A.; McDonald, K.S. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C. J. Gen. Physiol. 2019, 151, 645–659. [Google Scholar] [CrossRef]
- Kjellgren, D.; Stål, P.; Larsson, L.; Fürst, D.; Pedrosa-Domellöf, F. Uncoordinated expression of myosin heavy chains and myosin-binding protein C isoforms in human extraocular muscles. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4188–4193. [Google Scholar] [CrossRef]
- Yu, F.; Stål, P.; Thornell, L.E.; Larsson, L. Human single masseter muscle fibers contain unique combinations of myosin and myosin binding protein C isoforms. J. Muscle Res. Cell Motil. 2002, 23, 317–326. [Google Scholar] [CrossRef]
- Hoh, J.F.Y. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol. 2021, 231, e13535. [Google Scholar] [CrossRef]
- Hoh, J.F. Laryngeal muscle fibre types. Acta Physiol. Scand. 2005, 183, 133–149. [Google Scholar] [CrossRef]
- Hoh, J.F.Y.; Hughes, S. Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J. Muscle Res. Cell Motil. 1988, 9, 59–72. [Google Scholar]
- Kang, L.H.; Hoh, J.F. Regulation of jaw-specific isoforms of myosin-binding protein-C and tropomyosin in regenerating cat temporalis muscle innervated by limb fast and slow motor nerves. J. Histochem. Cytochem. 2010, 58, 989–1004. [Google Scholar] [CrossRef]
- Hoh, J.F.Y.; Hughes, S. Expression of superfast myosin in aneural regenerates of cat jaw muscle. Muscle Nerve 1991, 14, 316–325. [Google Scholar] [CrossRef]
- Sciote, J.J.; Rowlerson, A.M.; Carlson, D.S. Myosin expression in the jaw-closing muscles of the domestic cat and american opossum. Arch. Oral Biol. 1995, 40, 405–413. [Google Scholar] [CrossRef]
- Tsuzuki, S.; Yoshida, S.; Yamamoto, T.; Oka, H. Developmental changes in the electrophysiological properties of neonatal rat oculomotor neurons studied in vitro. Neurosci. Res. 1995, 23, 389–397. [Google Scholar] [CrossRef]
- Robinson, D.A. Oculomotor unit behavior in the monkey. J. Neurophysiol. 1970, 33, 393–403. [Google Scholar] [CrossRef]
- Carrero-Rojas, G.; Hernández, R.G.; Blumer, R.; de la Cruz, R.R.; Pastor, A.M. MIF versus SIF motoneurons, what are their respective contribution in the oculomotor medial rectus pool? J. Neurosci. 2021, 41, 9782–9793. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.D. Commentary: Extraocular muscle sparing in muscular dystrophy: A critical evaluation of potential protective mechanisms. Neuromusc. Disord. 1998, 8, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, H.J.; Maas, E.; Spiegel, P.; Ruff, R.L. Why are eye muscles frequently involved in myasthenia gravis? Neurology 1990, 40, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.S.; Hoh, J.F. Immunohistochemical analysis of the effects of cross-innervation of murine thyroarytenoid and sternohyoid muscles. J. Histochem. Cytochem. 2010, 58, 1057–1065. [Google Scholar] [CrossRef]
- Rhee, H.S.; Hoh, J.F. Immunohistochemical analysis of myosin heavy chain expression in laryngeal muscles of the rabbit, cat, and baboon. J. Histochem. Cytochem. 2008, 56, 929–950. [Google Scholar] [CrossRef] [PubMed]
- Elemans, C.P.; Mead, A.F.; Jakobsen, L.; Ratcliffe, J.M. Superfast muscles set maximum call rate in echolocating bats. Science 2011, 333, 1885–1888. [Google Scholar] [CrossRef] [PubMed]
- Revel, J.P. The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 1962, 12, 571–688. [Google Scholar] [CrossRef] [PubMed]
- Reger, J.F. A comparative study on the fine structure of tongue and cricothyroid muscle of the bat, myotis gisescens, as revealed by thin section and freeze-fracture techniques. J. Ultrastruct. Res. 1978, 63, 275–286. [Google Scholar] [CrossRef]
- Marques, M.J.; Ferretti, R.; Vomero, V.U.; Minatel, E.; Neto, H.S. Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 2007, 35, 349–353. [Google Scholar] [CrossRef]
- Smythe, G.M. Dystrophic pathology in the intrinsic and extrinsic laryngeal muscles in the mdx mouse. J. Otolaryngol. Head Neck Surg. 2009, 38, 323–336. [Google Scholar] [PubMed]
- Thomas, L.B.; Joseph, G.L.; Adkins, T.D.; Andrade, F.H.; Stemple, J.C. Laryngeal muscles are spared in the dystrophin deficient mdx mouse. J. Speech Lang. Hear. Res. 2008, 51, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.; Costa, C.C.; Rêgo, A.P.V.; Velasco, L.C.; Duarte, P.; Roldão, P.; Ramos, H.V.L. Laryngeal findings in Duchenne muscular dystrophy. J. Voice 2022, 36, 880.e1–880.e4. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.W. The origin and development of the extrinsic ocular muscles in the domestic cat. J. Morphol. 1947, 81, 151–193. [Google Scholar] [CrossRef] [PubMed]
- Diehl, A.G.; Zareparsi, S.; Qian, M.; Khanna, R.; Angeles, R.; Gage, P.J. Extraocular muscle morphogenesis and gene expression are regulated by Pitx2 gene dose. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1785–1793. [Google Scholar] [CrossRef]
- Tajbakhsh, S.; Rocancourt, D.; Cossu, G.; Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis—Pax-3 and myf-5 act upstream of myod. Cell 1997, 89, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.N.; Kioussi, C. Location, Location, Location: Signals in Muscle Specification. J. Dev. Biol. 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, G.; Dieter, L.; Hjalt, T.A.; Andrade, F.H.; Stahl, J.S.; Kaminski, H.J. An altered phenotype in a conditional knockout of Pitx2 in extraocular muscle. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4531–4541. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, D.; Kaminski, H.J. Pitx2 regulates myosin heavy chain isoform expression and multi-innervation in extraocular muscle. J. Physiol. 2011, 589 Pt 18, 4601–4614. [Google Scholar] [CrossRef]
- Mascarello, F.; Rowlerson, A.M. Myosin isoform transitions during development of extra-ocular and masticatory muscles in the fetal rat. Anat. Embryol. (Berl.) 1992, 185, 143–153. [Google Scholar] [CrossRef]
- Brueckner, J.K.; Itkis, O.; Porter, J.D. Spatial and temporal patterns of myosin heavy chain expression in developing rat extraocular muscle. J. Muscle Res. Cell Motil. 1996, 17, 297–312. [Google Scholar] [CrossRef]
- Brueckner, J.K.; Porter, J.D. Visual system maldevelopment disrupts extraocular muscle-specific myosin expression. J. Appl. Physiol. 1998, 85, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Brueckner, J.K.; Ashby, L.P.; Prichard, J.R.; Porter, J.D. Vestibulo-ocular pathways modulate extraocular muscle myosin expression patterns. Cell Tissue Res. 1999, 295, 477–484. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, D.; Kaminski, H.J. Myosin heavy chain expression in mouse extraocular muscle: More complex than expected. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6355–6363. [Google Scholar] [CrossRef]
- Rubinstein, N.A.; Porter, J.D.; Hoh, J.F. The development of longitudinal variation of Myosin isoforms in the orbital fibers of extraocular muscles of rats. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3067–3072. [Google Scholar] [CrossRef]
- Moncman, C.L.; Andrade, M.E.; Andrade, F.H. Postnatal changes in the developing rat extraocular muscles. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3962–3969. [Google Scholar] [CrossRef] [PubMed]
- d’Albis, A.; Butler-Browne, G. The hormonal control of myosin isoform expression in skeletal muscle of mammals: A review. Basic Appl. Myol. 1993, 3, 7–16. [Google Scholar]
- Hoh, J.F.Y. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J. Comp. Physiol. B 2023, 193, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Pitts, E.V.; Potluri, S.; Hess, D.M.; Balice-Gordon, R.J. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int. Anesthesiol. Clin. 2006, 44, 21–76. [Google Scholar] [CrossRef]
- Morcuende, S.; Benítez-Temiño, B.; Pecero, M.L.; Pastor, A.M.; de la Cruz, R.R. Abducens internuclear neurons depend on their target motoneurons for survival during early postnatal development. Exp. Neurol. 2005, 195, 244–256. [Google Scholar] [CrossRef]
- Morcuende, S.; Muñoz-Hernández, R.; Benítez-Temiño, B.; Pastor, A.M.; de la Cruz, R.R. Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats. Neuroscience 2013, 250, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Carrero-Rojas, G.; Benítez-Temiño, B.; Pastor, A.M.; Davis López de Carrizosa, M.A. Muscle progenitors derived from extraocular muscles express higher levels of neurotrophins and their receptors than other cranial and limb muscles. Cells 2020, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Buttner-Ennever, J.A.; Horn, A.K. Anatomical substrates of oculomotor control. Curr. Opin. Neurobiol. 1997, 7, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 2002, 3, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Büttner-Ennever, J.A. Anatomy of the oculomotor system. Neuroophthalmology 2007, 40, 1–14. [Google Scholar]
- Spencer, R.F.; Porter, J.D. Biological organization of the extraocular muscles. Prog. Brain Res. 2006, 151, 43–80. [Google Scholar] [PubMed]
- Wong, A.M. Listing’s law: Clinical significance and implications for neural control. Surv. Ophthalmol. 2004, 49, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, D.F.; Periasamy, M.; Butler-Browne, G.S.; Whalen, R.G.; Nadal-Ginard, B. Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J. Cell Biol. 1985, 101, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, J.; Ko, K.; Weiss, C.; Rushbrook, J.I. Systematic variation in myosin expression along extraocular muscle fibres of the adult rat. J. Muscle Res. Cell Motil. 1989, 11, 25–40. [Google Scholar] [CrossRef]
- Rubinstein, N.A.; Hoh, J.F. The distribution of myosin heavy chain isoforms among rat extraocular muscle fiber types. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3391–3398. [Google Scholar]
- Briggs, M.M.; Schachat, F. The superfast extraocular myosin (MYH13) is localized to the innervation zone in both the global and orbital layers of rabbit extraocular muscle. J. Exp. Biol. 2002, 205 Pt 20, 3133–3142. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.A.; Hoh, J.F. Distribution of developmental myosin heavy chains in adult rabbit extraocular muscle: Identification of a novel embryonic isoform absent in fetal limb. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2450–2456. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.A.; Rhee, H.S.M.; Hoh, J.F. Changes in myosin heavy chain isoforms along the length of orbital fibers in rabbit extraocular muscle. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Fraterman, S.; Zeiger, U.; Khurana, T.S.; Wilm, M.; Rubinstein, N.A. Quantitative proteomics profiling of sarcomere associated proteins in limb and extraocular muscle allotypes. Mol. Cell. Proteom. 2007, 6, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.D.; Khanna, S.; Kaminski, H.J.; Rao, J.S.; Merriam, A.P.; Richmonds, C.R.; Leahy, P.; Li, J.; Andrade, F.H. Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc. Natl. Acad. Sci. USA 2001, 98, 12062–12067. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.D.; Budak, M.T.; Bakay, M.; Gorospe, J.R.; Kjellgren, D.; Pedrosa-Domellof, F.; Hoffman, E.P.; Khurana, T.S. Definition of the unique human extraocular muscle allotype by expression profiling. Physiol. Genom. 2005, 22, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ketterer, C.; Zeiger, U.; Budak, M.T.; Rubinstein, N.A.; Khurana, T.S. Identification of the neuromuscular junction transcriptome of extraocular muscle by laser capture microdissection. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4589–4599. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Uber histologische Untersuchungen der Augenmuskelin von Menschen und Saugetieren. Okajimas Folia Anat. Jpn. 1938, 16, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.F.; Porter, J.D. Structural organization of the extraocular muscles. In Neuroanatomy of the Oculomotor System; Buttner-Ennever, Ed.; Elsevier Science Publisher: New York, NY, USA, 1988; pp. 33–79. [Google Scholar]
- Jacoby, J.; Chiarandini, D.J.; Stefani, E. Electrical properties and innervation of fibers in the orbital layer of rat extraocular muscles. J. Neurophysiol. 1989, 61, 116–125. [Google Scholar] [CrossRef]
- Lennerstrand, G. Electrical activity and isometric tension in motor units of the cat’s inferior oblique muscle. Acta Physiol. Scand. 1974, 91, 458–474. [Google Scholar] [CrossRef]
- Ruskell, G.L. The fine structure of innervated myotendinous cylinders in extraocular muscles of rhesus monkeys. J. Neurocytol. 1978, 7, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Blumer, R.; Maurer-Gesek, B.; Gesslbauer, B.; Blumer, M.; Pechriggl, E.; Davis-Lopez de Carrizosa, M.A.; Horn, A.K.; May, P.J.; Streicher, J.; de la Cruz, R.R.; et al. Palisade endings are a constant feature in the extraocular muscles of frontal-eyed, but not lateral-eyed, animals. Investig. Ophthalmol. Vis. Sci. 2016, 57, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; May, P.J.; Pastor, A.M.; Streicher, J.; Blumer, R. Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neurosci Lett. 2011, 489, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Morado-Díaz, C.J.; Davis-López de Carrizosa, M.A.; de la Cruz, R.R.; May, P.J.; Streicher, J.; Pastor, Á.M.; Blumer, R. Axons giving rise to the palisade endings of feline extraocular muscles display motor features. J. Neurosci. 2013, 33, 2784–2793. [Google Scholar] [CrossRef] [PubMed]
- Lienbacher, K.; Mustari, M.; Hess, B.; Büttner-Ennever, J.; Horn, A.K. Is there any sense in the Palisade endings of eye muscles? Ann. N. Y. Acad. Sci. 2011, 1233, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Blumer, R.; Wasicky, R.; Hotzenecker, W.; Lukas, J.R. Presence and structure of innervated myotendinous cylinders in rabbit extraocular muscle. Exp. Eye Res. 2001, 73, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Konakci, K.Z.; Streicher, J.; Hoetzenecker, W.; Blumer, M.J.; Lukas, J.R.; Blumer, R. Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Investig. Ophthalmol. Vis. Sci. 2005, 46, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Budak, M.T.; Bogdanovich, S.; Wiesen, M.H.; Lozynska, O.; Khurana, T.S.; Rubinstein, N.A. Layer-specific differences of gene expression in extraocular muscles identified by laser-capture microscopy. Physiol. Genom. 2004, 20, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Cheng, G.; Gong, B.; Mustari, M.J.; Porter, J.D. Genome-wide transcriptional profiles are consistent with functional specialization of the extraocular muscle layers. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3055–3066. [Google Scholar] [CrossRef]
- Demer, J.L.; Miller, J.M.; Poukens, V.; Vinters, H.V.; Glasgow, B.J. Evidence for fibromuscular pulleys of the recti extraocular muscles. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1125–1136. [Google Scholar]
- Davidowitz, J.; Philips, G.; Breinin, G.M. Organization of the orbital surface layer in rabbit superior rectus. Investig. Ophthalmol. Vis. Sci. 1977, 16, 711–729. [Google Scholar]
- Ruskell, G.L.; Kjellevold Haugen, I.B.; Bruenech, J.R.; van der Werf, F. Double insertions of extraocular rectus muscles in humans and the pulley theory. J. Anat. 2005, 206, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.B.; Collins, C.C. Division of labor in human extraocular muscle. Arch. Ophthalmol. 1973, 90, 319–322. [Google Scholar] [CrossRef]
- Collins, C.C.; O‘Meara, D.; Scott, A.B. Muscle tension during unrestrained human eye movements. J. Physiol. 1975, 245, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Barmack, N.H. Laminar organization of the extraocular muscles of the rabbit. Exp. Neurol. 1978, 59, 304–321. [Google Scholar] [CrossRef]
- Demer, J.L.; Oh, S.Y.; Poukens, V. Evidence for active control of rectus extraocular muscle pulleys. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1280–1290. [Google Scholar]
- Miller, J.M. Understanding and misunderstanding extraocular muscle pulleys. J. Vis. 2007, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Buttner-Ennever, J.A.; Horn, A.K.; Scherberger, H.; D‘Ascanio, P. Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J. Comp. Neurol. 2001, 438, 318–335. [Google Scholar] [CrossRef]
- Lienbacher, K.; Mustari, M.; Ying, H.S.; Buttner-Ennever, J.A.; Horn, A.K. Do palisade endings in extraocular muscles arise from neurons in the motor nuclei? Investig. Ophthalmol. Vis. Sci. 2011, 52, 2510–2519. [Google Scholar] [CrossRef]
- Hernández, R.G.; Calvo, P.M.; Blumer, R.; de la Cruz, R.R.; Pastor, A.M. Functional diversity of motoneurons in the oculomotor system. Proc. Natl. Acad. Sci. USA 2019, 116, 3837–3846. [Google Scholar] [CrossRef]
- Blumer, R.; Streicher, J.; Davis-López de Carrizosa, M.A.; de la Cruz, R.R.; Pastor, A.M. Palisade endings of extraocular muscles develop postnatally following different time courses. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5105–5121. [Google Scholar] [CrossRef] [PubMed]
- Davis-Lopez de Carrizosa, M.A.; Morado-Diaz, C.J.; Miller, J.M.; de la Cruz, R.R.; Pastor, A.M. Dual encoding of muscle tension and eye position by abducens motoneurons. J. Neurosci. 2011, 31, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Davis-Lopez de Carrizosa, M.A.; Morado-Diaz, C.J.; Tena, J.J.; Benitez-Temino, B.; Pecero, M.L.; Morcuende, S.R.; de la Cruz, R.R.; Pastor, A.M. Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons. J. Neurosci. 2009, 29, 575–587. [Google Scholar] [CrossRef]
- Benítez-Temiño, B.; Davis-López de Carrizosa, M.A.; Morcuende, S.; Matarredona, E.R.; de la Cruz, R.R.; Pastor, A.M. Functional diversity of neurotrophin actions on the oculomotor system. Int. J. Mol. Sci. 2016, 17, 2016. [Google Scholar] [CrossRef] [PubMed]
- Hernández, R.G.; Silva-Hucha, S.; Morcuende, S.; de la Cruz, R.R.; Pastor, A.M.; Benítez-Temiño, B. Extraocular motor system exhibits a higher expression of neurotrophins when compared with other brainstem motor systems. Front. Neurosci. 2017, 11, 399. [Google Scholar] [CrossRef] [PubMed]
- Davis-Lopez de Carrizosa, M.A.; Morado-Diaz, C.J.; Morcuende, S.; de la Cruz, R.R.; Pastor, A.M. Nerve growth factor regulates the firing patterns and synaptic composition of motoneurons. J. Neurosci. 2010, 30, 8308–8319. [Google Scholar] [CrossRef] [PubMed]
- Pachter, B.R.; Davidowitz, J.; Breinin, G.M. Light and electron microscopic serial analysis of mouse extraocular muscle: Morphology, innervation and topographical organization of component fiber populations. Tissue Cell 1976, 8, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Pachter, B.R. Rat extraocular muscle. 1. Three dimensional cytoarchitecture, component fibre populations and innervation. J. Anat. 1983, 137, 143–159. [Google Scholar]
- Davidowitz, J.; Philips, G.; Breinin, G.M. Variation of mitochondrial volume fraction along multiply innervated fibers in rabbit extraocular muscle. Tissue Cell 1980, 12, 449–457. [Google Scholar] [CrossRef]
- Pachter, B.R. Rat extraocular muscle. 3. Histochemical variability along the length of multiply-innervated fibers of the orbital surface layer. Histochemistry 1984, 80, 535–538. [Google Scholar] [CrossRef]
- Bicer, S.; Reiser, P.J. Myosin light chain 1 isoforms in slow fibers from global and orbital layers of canine rectus muscles. Investig. Ophthalmol. Vis. Sci. 2004, 45, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.V. The abrupt transition from rest to activity in muscle. Proc. R. Soc. B 1949, 136, 399–420. [Google Scholar]
- Kranjc, B.S.; Sketelj, J.; D’Albis, A.; Erzen, I. Long-term changes in myosin heavy chain composition after botulinum toxin a injection into rat medial rectus muscle. Investig. Ophthalmol. Vis. Sci. 2001, 42, 3158–3164. [Google Scholar]
- Feng, T.P.; Wu, W.Y.; Yang, F.Y. Selective reinnervation of a ‘slow’ or ‘fast’ muscle by its original motor supply during regeneration of mixed nerve. Sci. Sin. 1965, 14, 1717–1720. [Google Scholar]
- Hoh, J.F.Y. Selective reinnervation of fast-twitch and slow-graded muscle fibers in the toad. Exp. Neurol. 1971, 30, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Hennig, R.; Lomo, T. Firing patterns of motor units in normal rats. Nature 1985, 314, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Ausoni, S.; Gorza, L.; Schiaffino, S.; Gundersen, K.; Lomo, T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci. 1990, 10, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.R.; Lee, M.S.; McLoon, L.K. Effects of elevated thyroid hormone on adult rabbit extraocular muscles. Investig. Ophthalmol. Vis. Sci. 2010, 51, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Tzahor, E. Heart and craniofacial muscle development: A new developmental theme of distinct myogenic fields. Dev. Biol. 2009, 327, 273–279. [Google Scholar] [CrossRef]
- Shih, H.P.; Gross, M.K.; Kioussi, C. Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc. Natl. Acad. Sci. USA 2007, 104, 5907–5912. [Google Scholar] [CrossRef]
- Kelly, R.G.; Jerome-Majewska, L.A.; Papaioannou, V.E. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum. Mol. Genet. 2004, 13, 2829–2840. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.R.; Bassel-Duby, R.; Hawkins, A.; Chang, P.; Valdez, R.; Wu, H.; Gan, L.; Shelton, J.M.; Richardson, J.A.; Olson, E.N. Control of facial muscle development by MyoR and capsulin. Science 2002, 298, 2378–2381. [Google Scholar] [CrossRef] [PubMed]
- Nathan, E.; Monovich, A.; Tirosh-Finkel, L.; Harrelson, Z.; Rousso, T.; Rinon, A.; Harel, I.; Evans, S.M.; Tzahor, E. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 2008, 135, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Harel, I.; Maezawa, Y.; Avraham, R.; Rinon, A.; Ma, H.Y.; Cross, J.W.; Leviatan, N.; Hegesh, J.; Roy, A.; Jacob-Hirsch, J.; et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 18839–18844. [Google Scholar] [CrossRef] [PubMed]
- Bubb, W.J.; Sims, M.H. Fiber type composition of rostral and caudal portions of the digastric muscle in the dog. Am. J. Vet. Res. 1986, 47, 1834–1842. [Google Scholar] [PubMed]
- Hoh, J.F.Y.; Lim, J.H.Y.; Kang, L.D.H.; Lucas, C.A. Expression of superfast myosin in the jaw-closing muscles of Crocodylus porosus. In Crocodilian Biology and Evolution; Grigg, G.C., Seebacher, F., Franklin, C.E., Eds.; Surrey Beatty & Sons: Chipping Norton, Australia, 2001; pp. 156–164. [Google Scholar]
- Rowlerson, A.; Mascarello, F.; Veggetti, A.; Carpene, E. The fibre-type composition of the first branchial arch muscles in Carnivora and Primates. J. Muscle Res. Cell Motil. 1983, 4, 443–472. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.H. Myosin light chains and troponin-c—Structural and evolutionary relationships revealed by amino acid sequence comparisons. J. Muscle Res. Cell Motil. 1991, 12, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Rowlerson, A.; Heizmann, C.W.; Jenny, E. Type-specific proteins of single IIM fibres from cat muscle. Biochem. Biophys. Res. Commun. 1983, 113, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Hoh, J.F.Y.; Hughes, S.; Walker, M.L.; Kang, L.H.D.; Everett, A.W. Slow myosin heavy chains in cat jaw and limb muscles are phenotypically distinct: Expression of jaw-specific slow myosin phenotype in regenerated and chronically stimulated jaw muscles. Basic Appl. Myol. 1991, 1, 285–294. [Google Scholar]
- Shelton, G.D.; Cardinet, G.H., 3rd; Bandman, E. Expression of fiber type specific proteins during ontogeny of canine temporalis muscle. Muscle Nerve 1988, 11, 124–132. [Google Scholar] [CrossRef]
- Hoh, J.F.Y.; Hughes, S. Immunocytochemical analysis of the perinatal development of cat masseter muscle using anti-myosin antibodies. J. Muscle Res. Cell Motil. 1989, 10, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Hoh, J.F.Y.; Hughes, S.; Chow, C.; Hale, P.T.; Fitzsimons, R.B. Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat posterior temporalis muscle during postnatal development. J. Muscle Res. Cell Motil. 1988, 9, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Hoh, J.F.Y.; Hughes, S.; Hale, P.T.; Fitzsimons, R.B. Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat limb fast and slow muscles during postnatal development. J. Muscle Res. Cell Motil. 1988, 9, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Narusawa, M.; Fitzsimons, R.B.; Izumo, S.; Nadal-Ginard, B.; Rubinstein, N.A.; Kelly, A.M. Slow myosin in developing rat skeletal muscle. J. Cell Biol. 1987, 104, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.W.; Withers, K.W.; Hoh, J.F. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes. J. Comp. Physiol. B 2010, 180, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Denardi, C.; Ausoni, S.; Moretti, P.; Gorza, L.; Velleca, M.; Buckingham, M.; Schiaffino, S. Type-2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J. Cell Biol. 1993, 123, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Izumo, S.; Nadal-Ginard, B.; Mahdavi, V. All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 1986, 231, 597–600. [Google Scholar] [CrossRef]
- Mahdavi, V.; Izumo, S.; Nadal-Ginard, B. Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ. Res. 1987, 60, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Cody, F.W.J.; Bosley, M.A. Histochemical and mechanical properties of the jaw muscles of the cat. Exp. Neurol. 1973, 38, 99–109. [Google Scholar] [CrossRef]
- Toniolo, L.; Cancellara, P.; Maccatrozzo, L.; Patruno, M.; Mascarello, F.; Reggiani, C. Masticatory myosin unveiled: First determination of contractile parameters of muscle fibers from carnivore jaw muscles. Am. J. Physiol. Cell Physiol. 2008, 295, C1535–C1542. [Google Scholar] [CrossRef]
- Kato, C.; Saeki, Y.; Yanagisawa, K. Ca2+ sensitivities and transient tension responses to step-length stretches in feline mechanically-stripped single-fibre jaw-muscle preparations. Arch. Oral Biol. 1985, 30, 429–432. [Google Scholar] [CrossRef]
- Close, R.; Hoh, J.F.Y. The after-effects of repetitive stimulation on the isometric twitch contraction of rat fast skeletal muscle. J. Physiol. 1968, 197, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Saeki, Y.; Kato, C.; Satomi, M.; Yanagisawa, K. ATPase activity and tension development in mechanically-skinned feline jaw muscle. Arch. Oral Biol. 1987, 32, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Katz, B. The relation between force and speed in muscular contraction. J. Physiol. 1939, 96, 45–64. [Google Scholar] [CrossRef]
- Linari, M.; Bottinelli, R.; Pellegrino, M.A.; Reconditi, M.; Reggiani, C.; Lombardi, V. The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. J. Physiol. 2004, 554 Pt 2, 335–352. [Google Scholar] [CrossRef]
- Rossmanith, G.H.; Tjokorda, O.B. Relationships between isometric and isotonic mechanical parameters and cross-bridge kinetics. Clin. Exp. Pharmacol. Physiol 1998, 25, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.H.; Hoh, J.F. Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers. J. Histochem. Cytochem. 2011, 59, 849–863. [Google Scholar] [CrossRef]
- Chin, E.R.; Olson, E.N.; Richardson, J.A.; Yang, Q.; Humphries, C.; Shelton, J.M.; Wu, H.; Zhu, W.; Bassel-Duby, R.; Williams, R.S. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998, 12, 2499–2509. [Google Scholar] [CrossRef]
- Naya, F.J.; Mercer, B.; Shelton, J.; Richardson, J.A.; Williams, R.S.; Olson, E.N. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem. 2000, 275, 4545–4548. [Google Scholar] [CrossRef]
- McCullagh, K.J.; Calabria, E.; Pallafacchina, G.; Ciciliot, S.; Serrano, A.L.; Argentini, C.; Kalhovde, J.M.; Lomo, T.; Schiaffino, S. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc. Natl. Acad. Sci. USA 2004, 101, 10590–10595. [Google Scholar] [CrossRef]
- Calabria, E.; Ciciliot, S.; Moretti, I.; Garcia, M.; Picard, A.; Dyar, K.A.; Pallafacchina, G.; Tothova, J.; Schiaffino, S.; Murgia, M. NFAT isoforms control activity-dependent muscle fiber type specification. Proc. Natl. Acad. Sci. USA 2009, 106, 13335–13340. [Google Scholar] [CrossRef]
- Dos Santos, M.; Shah, A.M.; Zhang, Y.; Bezprozvannaya, S.; Chen, K.; Xu, L.; Lin, W.; McAnally, J.R.; Bassel-Duby, R.; Liu, N.; et al. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat. Commun. 2023, 14, 4333. [Google Scholar] [CrossRef] [PubMed]
- Sadaki, S.; Fujita, R.; Hayashi, T.; Nakamura, A.; Okamura, Y.; Fuseya, S.; Hamada, M.; Warabi, E.; Kuno, A.; Ishii, A.; et al. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep. 2023, 42, 112289. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.A.; Karabina, A.; Broadwell, L.J.; Leinwand, L.A. The ancient sarcomeric myosins found in specialized muscles. Skelet. Muscle 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Sciote, J.J.; Rowlerson, A. Skeletal fiber types and spindle distribution in limb and jaw muscles of the adult and neonatal opossum, monodelphis domestica. Anat. Rec. 1998, 251, 548–562. [Google Scholar] [CrossRef]
- Hoh, J.F.; Kang, L.H.; Sieber, L.G.; Lim, J.H.; Zhong, W.W. Myosin isoforms and fibre types in jaw-closing muscles of Australian marsupials. J. Comp. Physiol. B 2006, 176, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.H.D.; Hughes, S.; Pettigrew, J.D.; Hoh, J.F.Y. Jaw-specific myosin heavy chain gene expression in sheep, dog, monkey, flying fox and microbat jaw-closing muscles. Basic Appl. Myol. 1994, 4, 381–392. [Google Scholar]
- Reiser, P.J.; Bicer, S.; Chen, Q.; Zhu, L.; Quan, N. Masticatory (‘superfast’) myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles. J. Exp. Biol. 2009, 212 Pt 16, 2511–2519. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.E.; Briggs, M.M.; Huq, E.; Hylander, W.L.; Schachat, F. Regional variation in IIM myosin heavy chain expression in the temporalis muscle of female and male baboons (Papio anubis). Arch. Oral Biol. 2013, 58, 435–443. [Google Scholar] [CrossRef]
- Bicer, S.; Patel, R.J.; Williams, J.B.; Reiser, P.J. Patterns of tropomyosin and troponin-T isoform expression in jaw-closing muscles of mammals and reptiles that express masticatory myosin. J. Exp. Biol. 2011, 214 Pt 7, 1077–1085. [Google Scholar] [CrossRef]
- Wall, C.E.; Holmes, M.; Soderblom, E.J.; Taylor, A.B. Proteomics and immunohistochemistry identify the expression of alpha-cardiac myosin heavy chain in the jaw-closing muscles of sooty mangabeys (order Primates). Arch. Oral Biol. 2018, 91, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Bredman, J.J.; Wessels, A.; Weijs, W.A.; Korfage, J.A.M.; Soffers, C.A.S.; Moorman, A.F.M. Demonstration of cardiac-specific myosin heavy chain in masticatory muscles of human and rabbit. Histochem. J. 1991, 23, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Korfage, J.A.; Van Eijden, T.M. Myosin isoform composition of the human medial and lateral pterygoid muscles. J. Dent. Res. 2000, 79, 1618–1625. [Google Scholar] [CrossRef]
- Osterlund, C.; Lindström, M.; Thornell, L.E.; Eriksson, P.O. Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii. Histochem. Cell Biol. 2012, 138, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Stedman, H.H.; Kozyak, B.W.; Nelson, A.; Thesier, D.M.; Su, L.T.; Low, D.W.; Bridges, C.R.; Shrager, J.B.; Minugh-Purvis, N.; Mitchell, M.A. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 2004, 428, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Stal, P.; Eriksson, P.O.; Schiaffino, S.; Butler-Browne, G.S.; Thornell, L.E. Differences in myosin composition between human oro-facial, masticatory and limb muscles: Enzyme-, immunohisto- and biochemical studies. J. Muscle Res. Cell Motil. 1994, 15, 517–534. [Google Scholar] [CrossRef]
- Suzuki, A. A comparative histochemical study of the masseter muscle of the cattle, sheep, swine, dog, guinea pig and rat. Histochemistry 1977, 51, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Mascarello, F.; Aureli, G.; Vegetti, A. Muscoli masticatori: Determinazione istochimica dei tipi di fibre muscolari. Quad. Anat. Prat. 1979, 35, 193–213. [Google Scholar]
- Hoh, J.F.; Kim, Y.; Sieber, L.G.; Zhong, W.W.; Lucas, C.A. Jaw-closing muscles of kangaroos express alpha-cardiac myosin heavy chain. J. Muscle Res. Cell Motil. 2000, 21, 673–680. [Google Scholar] [CrossRef]
- Dawson, T.J. Kangaroos—Biology of the Largest Marsupials; University of New South Wales Press: Sydney, Australia, 1995. [Google Scholar]
- Sfondrini, G.; Reggiani, C.; Gandini, P.; Bovenzi, R.; Pellegrino, M.A. Adaptations of masticatory muscles to a hyperpropulsive appliance in the rat. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 612–617. [Google Scholar] [CrossRef]
- Lindman, R.; Eriksson, P.O.; Thornell, L.E. Histochemical enzyme profile of the masseter, temporal and lateral pterygoid muscles of the European hedgehog (Erinaceus europeaus). Arch. Oral Biol. 1986, 31, 51–55. [Google Scholar] [CrossRef]
- English, A.W.; Eason, J.; Schwartz, G.; Shirley, A.; Carrasco, D.I. Sexual dimorphism in the rabbit masseter muscle: Myosin heavy chain composition of neuromuscular compartments. Cells Tissues Organs 1999, 164, 179–191. [Google Scholar] [CrossRef]
- Hall, S. The diets of two coexisting species of Antechinus (Marsupialian: Dasyuridae). Aust. Wildl. Res. 1980, 7, 365–378. [Google Scholar] [CrossRef]
- Morton, S.R.; Denny, M.J.S.; Read, D.G. Habitat preferences and diets of sympatric Sminthopsis crassicaudata and S. macroura. (Marsupialia: Dasyuridae). Aust. Mammal. 1983, 6, 29–34. [Google Scholar] [CrossRef]
- Hume, I.D. Marsupial Nutrition; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Thomson, J.A.; Qowen, W.H. A field study of the Australian ringtail possum Pseudocheirus peregrinus (Marsupialia: Phalangeridae). Ecol. Monogr. 1964, 34, 27–52. [Google Scholar] [CrossRef]
- Kiliaridis, S.; Engström, C.; Thilander, B. Histochemical analysis of masticatory muscle in the growing rat after prolonged alteration in the consistency of the diet. Arch. Oral Biol. 1988, 33, 187–193. [Google Scholar] [CrossRef]
- Kawai, N.; Sano, R.; Korfage, J.A.; Nakamura, S.; Kinouchi, N.; Kawakami, E.; Tanne, K.; Langenbach, G.E.; Tanaka, E. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: An immunohistochemical and electromyographic study. J. Anat. 2010, 216, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Ohnuki, Y.; Yamane, A.; Saeki, Y. Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development. Arch. Oral Biol. 2002, 47, 109–115. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Mitera, K.; Ogasawara, T.; Nojyo, Y.; Miyauchi, K.; Sano, K. Alterations in enzyme histochemical characteristics of the masseter muscle caused by long-term soft diet in growing rabbits. Oral Dis. 2004, 10, 271–276. [Google Scholar] [CrossRef]
- Vreeke, M.; Langenbach, G.E.; Korfage, J.A.; Zentner, A.; Grünheid, T. The masticatory system under varying functional load. Part 1: Structural adaptation of rabbit jaw muscles to reduced masticatory load. Eur. J. Orthod. 2011, 33, 359–364. [Google Scholar] [CrossRef]
- Ohnuki, Y.; Saeki, Y.; Yamane, A.; Yanagisawa, K. Quantitative changes in the mRNA for contractile proteins and metabolic enzymes in masseter muscle of bite-opened rats. Arch. Oral Biol. 2000, 45, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Ohnuki, Y.; Kawai, N.; Tanaka, E.; Langenbach, G.E.; Tanne, K.; Saeki, Y. Effects of increased occlusal vertical dimension on daily activity and myosin heavy chain composition in rat jaw muscle. Arch. Oral Biol. 2009, 54, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Arai, C.; Ohnuki, Y.; Umeki, D.; Saeki, Y. Effects of bite-opening and cyclosporin A on the mRNA levels of myosin heavy chain and the muscle mass in rat masseter. Jap. J. Physiol. 2005, 55, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Saeki, Y.; Ohnuki, Y. Effect of an increase in occlusal vertical dimension on the rate of cyclic actin-myosin interaction in guinea-pig masseter muscle. Arch. Oral Biol. 1997, 42, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Eason, J.M.; Schwartz, G.A.; Pavlath, G.K.; English, A.W. Sexually dimorphic expression of myosin heavy chains in the adult mouse masseter. J. Appl. Physiol. 2000, 89, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.W.; Tian, Z.; Barton, E.R. Sexual dimorphism of murine masticatory muscle function. Arch. Oral Biol. 2008, 53, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Reader, M.; Schwartz, G.; English, A.W. Brief exposure to testosterone is sufficient to induce sex differences in the rabbit masseter muscle. Cells Tissues Organs 2001, 169, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Lyons, G.E.; Kelly, A.M.; Rubinstein, N.A. Testosterone-induced changes in contractile protein isoforms in the sexually dimorphic temporalis muscle of the guinea pig. J. Biol. Chem. 1986, 261, 13278–13284. [Google Scholar] [CrossRef] [PubMed]
- Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology 2015, 30, 30–39. [Google Scholar] [CrossRef]
- Mariuba, M.V.; Goulart-Silva, F.; Bordin, S.; Nunes, M.T. Effect of triiodothyronine on the maxilla and masseter muscles of the rat stomatognathic system. Braz. J. Med. Biol. Res. 2011, 44, 694–699. [Google Scholar] [CrossRef]
- Cairns, S.P.; Dulhunty, A.F. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat. Br. J. Pharmacol. 1993, 110, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Grassi, C.; Deriu, F.; Artusio, E.; Passatore, M. Modulation of the jaw jerk reflex by the sympathetic nervous system. Arch. Ital. Biol. 1993, 131, 213–226. [Google Scholar] [PubMed]
- Ohnuki, Y.; Umeki, D.; Cai, W.; Kawai, N.; Mototani, Y.; Shiozawa, K.; Jin, H.L.; Fujita, T.; Tanaka, E.; Saeki, Y.; et al. Role of masseter muscle β₂-adrenergic signaling in regulation of muscle activity, myosin heavy chain transition, and hypertrophy. J. Pharmacol. Sci. 2013, 123, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Ohnuki, Y.; Umeki, D.; Mototani, Y.; Jin, H.; Cai, W.; Shiozawa, K.; Suita, K.; Saeki, Y.; Fujita, T.; Ishikawa, Y.; et al. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation. J. Physiol. 2014, 592, 5461–5475. [Google Scholar] [CrossRef] [PubMed]
- Umeki, D.; Ohnuki, Y.; Mototani, Y.; Shiozawa, K.; Fujita, T.; Nakamura, Y.; Saeki, Y.; Okumura, S. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle. J. Pharmacol. Sci. 2013, 122, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Noden, D.M.; Marcucio, R.; Borycki, A.G.; Emerson, C.P.J. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev. Dyn. 1999, 216, 96–112. [Google Scholar] [CrossRef]
- Lucas, C.A.; Rughani, A.; Hoh, J.F. Expression of extraocular myosin heavy chain in rabbit laryngeal muscle. J. Muscle Res. Cell Motil. 1995, 16, 368–378. [Google Scholar] [CrossRef]
- DelGaudio, J.M.; Sciote, J.J.; Carroll, W.R.; Escalmado, R.M. Atypical myosin heavy chain in rat laryngeal muscle. Ann. Otol. Rhinol. Laryngol. 1995, 104, 237–245. [Google Scholar] [CrossRef]
- Briggs, M.M.; Schachat, F. Early specialization of the superfast myosin in extraocular and laryngeal muscles. J. Exp. Biol. 2000, 203 Pt 16, 2485–2494. [Google Scholar] [CrossRef]
- Hangai, K.; Kobayashi, Y.; Nonaka, S. Developmental changes in histochemical properties of intrinsic laryngeal muscles in rats. Auris Nasus Larynx 1999, 26, 467–478. [Google Scholar] [CrossRef]
- Shiotani, A.; Flint, P.W. Expression of extraocular-superfast-myosin heavy chain in rat laryngeal muscles. Neuroreport 1998, 9, 3639–3642. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.H.; Lieber, R.L.; Ryan, A.F. Quantification of myosin heavy chain mRNA in somatic and branchial arch muscles using competitive PCR. Am. J. Physiol. 1998, 275 Pt 1, C68–C74. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, R.; Marques, M.J.; Pertille, A.; Santo Neto, H. Sarcoplasmic-endoplasmic-reticulum Ca2+-ATPase and calsequestrin are overexpressed in spared intrinsic laryngeal muscles of dystrophin-deficient mdx mice. Muscle Nerve 2009, 39, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, L.; Maccatrozzo, L.; Patruno, M.; Caliaro, F.; Mascarello, F.; Reggiani, C. Expression of eight distinct MHC isoforms in bovine striated muscles: Evidence for MHC-2B presence only in extraocular muscles. J. Exp. Biol. 2005, 208 Pt 22, 4243–4253. [Google Scholar] [CrossRef] [PubMed]
- Brandon, C.A.; Rosen, C.; Georgelis, G.; Horton, M.J.; Mooney, M.P.; Sciote, J.J. Staining of human thyroarytenoid muscle with myosin antibodies reveals some unique extrafusal fibers, but no muscle spindles. J. Voice 2003, 17, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.J.; Rosen, C.; Close, J.M.; Sciote, J.J. Quantification of myosin heavy chain RNA in human laryngeal muscles: Differential expression in the vertical and horizontal posterior cricoarytenoid and thyroarytenoid. Laryngoscope 2008, 118, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, J.; Fischman, D.A.; Biller, H.F.; Sanders, I. Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds; a possible specialization for speech. Anat. Rec. 1999, 256, 146–157. [Google Scholar] [CrossRef]
- Sokoloff, A.J.; Li, H.; Burkholder, T.J. Limited expression of slow tonic myosin heavy chain in human cranial muscles. Muscle Nerve 2007, 36, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Hoh, J.F.Y. Laryngeal muscles as highly specialized organs in airway protection, respiration and phonation. In Handbook of Mammalian Vocalization: An Integrated Neuroscience Approach; Brudzynski, S.M., Ed.; Academic Press: London, UK, 2010; pp. 13–22. [Google Scholar]
- Ibebunjo, C. Histochemical and morphometric properties of muscles of the upper airway of goats. Res.Vet. Sci. 1993, 55, 215–223. [Google Scholar] [CrossRef]
- Li, Z.B.; Lehar, M.; Nakagawa, H.; Hoh, J.F.; Flint, P.W. Differential expression of myosin heavy chain isoforms between abductor and adductor muscles in the human larynx. Otolaryngol. Head Neck Surg. 2004, 130, 217–222. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Baker, M.J.; Crumley, R.L.; Caiozzo, V.J. Single-fiber myosin heavy-chain isoform composition of rodent laryngeal muscle: Modulation by thyroid hormone. Arch. Otolaryngol. Head Neck Surg. 2000, 126, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.S.; Lucas, C.A.; Hoh, J.F. Fiber types in rat laryngeal muscles and their transformations after denervation and reinnervation. J. Histochem. Cytochem. 2004, 52, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Crumley, R.L.; Caiozzo, V.J. Are hybrid fibers a common motif of canine laryngeal muscles? Single-fiber analyses of myosin heavy-chain isoform composition. Arch. Otolaryngol. Head Neck Surg. 2000, 126, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.S.; Steel, C.M.; Derksen, F.J.; Robinson, N.E.; Hoh, J.F. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy. J. Histochem Cytochem. 2009, 57, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Sciote, J.J.; Morris, T.J.; Brandon, C.A.; Horton, M.J.; Rosen, C. Unloaded shortening velocity and myosin heavy chain variations in human laryngeal muscle fibers. Ann. Otol. Rhinol. Laryngol. 2002, 111, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Crumley, R.L.; Armstrong, W.B.; Caiozzo, V.J. New perspectives about human laryngeal muscle: Single-fiber analyses and interspecies comparisons. Arch. Otolaryngol. Head Neck Surg. 2000, 126, 857–864. [Google Scholar] [CrossRef] [PubMed]
- D‘Antona, G.; Megighian, A.; Bortolotto, S.; Pellegrino, M.A.; Ragona, R.M.; Staffieri, A.; Bottinelli, R.; Reggiani, C. Contractile properties and myosin heavy chain isoform composition in single fibre of human laryngeal muscles. J. Muscle Res. Cell Motil. 2002, 23, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, L.; Macchi, V.; Porzionato, A.; Paoli, A.; Marchese-Ragona, R.; De Caro, R.; Reggiani, C. Myosin heavy chain isoforms in human laryngeal muscles: An expression study based on gel electrophoresis. Int. J. Mol. Med. 2008, 22, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Smerdu, V.; Cvetko, E. Myosin heavy chain-2b transcripts and isoform are expressed in human laryngeal muscles. Cells Tissues Organs 2013, 198, 75–86. [Google Scholar] [CrossRef]
- Perie, S.; Agbulut, O.; Lacau St Guily, J.; Butler-Browne, G.S. Myosin heavy chain expression in human laryngeal muscle fibers. A biochemical study. Ann. Otol. Rhinol. Laryngol. 2000, 109, 216–220. [Google Scholar] [CrossRef]
- Luschei, E.S.; Ramig, L.O.; Baker, K.L.; Smith, M.E. Discharge characteristics of laryngeal single motor units during phonation in young and older adults and in persons with parkinson disease. J. Neurophysiol. 1999, 81, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Green, J.H.; Neil, E. The respiratory function of the laryngeal muscles. J. Physiol. 1955, 129, 134–141. [Google Scholar] [CrossRef]
- Gunn, H.M. Histochemical observations on laryngeal skeletal muscle fibres in ‘normal’ horses. Equine Vet. J. 1972, 4, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Carraro, U.; Catani, C.; Saggin, L.; Zrunek, M.; Szabolcs, M.; Gruber, H.; Streinzer, W.; Mayr, W.; Thoma, H. Isomyosin changes after functional electrostimulation of denervated sheep muscle. Muscle Nerve 1988, 11, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- DelGaudio, J.M.; Sciote, J.J. Changes in myosin expression in denervated laryngeal muscle. Ann. Otol. Rhinol. Laryngol. 1997, 106, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Baker, M.J.; Marie, J.P.; Crumley, R.; Caiozzo, V.J. The plasticity of denervated and reinnervated laryngeal muscle: Focus on single-fiber myosin heavy-chain isoform expression. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Chen, D.; Li, M.; Gao, Y.; Liu, F.; Zheng, H.; Chen, S. Transition of myosin heavy chain isoforms in human laryngeal abductors following denervation. Eur. Arch. Otorhinolaryngol. 2015, 272, 2915–2923. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.J.; Macefield, G.; Nail, B.S. Laryngeal motoneurone activity in the rabbit during asphyxic gasping. Respir. Physiol. 1987, 70, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Inagi, K.; Connor, N.P.; Schultz, E.; Ford, C.N.; Cook, C.H.; Heisey, D.M. Muscle fiber-type changes induced by botulinum toxin injection in the rat larynx. Otolaryngol.—Head Neck Surg. 1999, 120, 876–883. [Google Scholar] [CrossRef]
- Paniello, R.C.; West, S.E.; Lee, P. Laryngeal reinnervation with the hypoglossal nerve. I. Physiology, histochemistry, electromyography, and retrograde labeling in a canine model. Ann. Otol. Rhinol. Laryngol. 2001, 110, 532–542. [Google Scholar] [CrossRef]
- Dawson, T.J.; Hulbert, A.J. Standard metabolism, body temperature, and surface areas of Australian marsupials. Am. J. Physiol. 1970, 218, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Kleiber, M. The Fire of Life. An Introduction to Animal Energetics; Wiley: New York, NY, USA, 1961; p. 454. [Google Scholar]
- Schmidt-Nielsen, K. Scaling. Why Is Animal Size so Important; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Savage, V.M.; Gillooly, J.F.; Woodruff, W.H.; West, G.B.; Allen, A.P.; Enquist, B.J.; Brown, J.H. The predominance of quarter-power scaling in biology. Funct. Ecol. 2004, 18, 257–282. [Google Scholar] [CrossRef]
- McMahon, T. Size and shape in biology. Science 1973, 179, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.R. Scaling of respiratory variables in mammals. J. Appl. Physiol. 1967, 22, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.S.; Shindo, M.; Sinha, U.; Hast, M.H.; Rice, D.H. Dynamic properties of the posterior cricoarytenoid muscle. Ann. Otol. Rhinol. Laryngol. 1994, 103, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, J.; Vornanen, M. Fiber types and myosin heavy chain composition in muscles of common shrew (Sorex araneus). J. Exp. Zool. 1995, 271, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chikuni, K.; Muroya, S.; Nakajima, I. Absence of the functional myosin heavy chain 2b isoform in equine skeletal muscles. Zoolog. Sci. 2004, 21, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.A.; Kontrogianni-Konstantopoulos, A. Myosin binding protein-C slow is a novel substrate for protein kinase A (PKA) and C (PKC) in skeletal muscle. J. Proteome Res. 2011, 10, 4547–4555. [Google Scholar] [CrossRef]
- Hoh, J.F.Y. Mechanism of post-tetanic depression of slow muscle fibres. J. Comp. Physiol. B 2024, 194, 41–45. [Google Scholar] [CrossRef]
EXTRAOCULAR MUSCLES | |||
Source of Myogenic Progenitor Cells | Transcription Factors | Muscle | Nerve Supply |
Prechordal plate mesoderm | Pitx2 | Medial rectus Inferior rectus Superior rectus Inferior oblique | Oculomotor nerve (cranial nerve III) |
Cranial paraxial mesoderm (1st branchial arch) | Pitx2 Tbx1 | Superior oblique | Trochlear nerve (cranial nerve IV) |
Pitx2 Tbx1 | Lateral rectus | Abducens nerve (cranial nerve VI) | |
JAW MUSCLES | |||
Source of Myogenic Progenitor Cells | Transcription Factors | Muscle | Nerve Supply |
Cranial paraxial mesoderm (dorsal part of 1st branchial arch) | Pitx2 Tbx1 Capsulin/MyoR | Temporalis Masseter Medial pterygoid Lateral pterygoid (superior head) | Mandibular branch of the trigeminal nerve (cranial nerve V) |
Lateral splanchnic mesoderm (ventral part of 1st branchial arch) | Pitx2 Tbx1 | Mylohyoid Anterior digastric Lateral pterygoid (inferior head) | Mandibular branch of the trigeminal nerve (cranial nerve V) |
LARYNGEAL MUSCLES | |||
Source of Myogenic Progenitor Cells | Transcription Factor | Muscle | Nerve Supply |
Rostral somitic mesoderm (4th branchial arch) | Tbx1 | Cricothyroid | Superior laryngeal nerve (branch of the vagus/cranial nerve X) |
Rostral somitic mesoderm (6th branchial arch) | Tbx1 | Thyroarytenoid Interarytenoid Lateral cricoarytenoid Posterior cricoarytenoid | Recurrent laryngeal nerve (branch of the vagus/cranial nerve X) |
Myosin Heavy-Chain Isoform | Extraocular Allotype | Masticatory Allotype | Laryngeal Allotype | Cricothyroid and Limb Allotype |
---|---|---|---|---|
EO | X | X | ||
2B | X | X | X | X |
2X | X | X | X | X |
2A | X | X | X | X |
Masticatory | X | |||
α-cardiac | X | X | ||
β-slow | X | X | X | X |
Neonatal | X | X | X | |
Embryonic | X | |||
Slow B | X | |||
Slow tonic | X | |||
nmMyH IIB | X |
Myotube Type | Fibre Type | MyHC Composition |
---|---|---|
Primary | oMIF Central segment End segments | α-cardiac α-cardiac, β-slow, emb, slow B and slow tonic |
Secondary | oSIF Central segment End segments | EO 2A, emb, slow B and (neo) |
Primary | gMIF Central segment End segments | α-cardiac and β-slow, α-cardiac, β-slow, emb, slow tonic and nmMyH IIB |
Secondary | gSIF-red | (2X), 2A and (neo) |
Secondary | gSIF-intermediate | (2B), 2X and (2A and neo) |
Secondary | gSIF-white | EO, 2B and (2X) |
Myotube Type | MyHCs in Myotube | MyHC in Mature Fibre |
---|---|---|
Slow primary | Emb and β-slow, | β-slow |
Masticatory primary | Emb, Neo and β-slow | Masticatory |
Slow secondary | Emb, Neo and β-slow, (Masticatory) | β-slow |
Masticatory secondary | Emb and Neo | Masticatory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoh, J.F.Y. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int. J. Mol. Sci. 2024, 25, 4546. https://doi.org/10.3390/ijms25084546
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. International Journal of Molecular Sciences. 2024; 25(8):4546. https://doi.org/10.3390/ijms25084546
Chicago/Turabian StyleHoh, Joseph Foon Yoong. 2024. "Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles" International Journal of Molecular Sciences 25, no. 8: 4546. https://doi.org/10.3390/ijms25084546
APA StyleHoh, J. F. Y. (2024). Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. International Journal of Molecular Sciences, 25(8), 4546. https://doi.org/10.3390/ijms25084546