Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin
Abstract
:1. Introduction
2. Regulation of Melanogenesis in the Normal Skin by the Tissue Environment
2.1. Factors Derived from the Epidermis
2.2. Factors Derived from Dermal Fibroblasts
Factors | Species | Date * | Ref. | Skin/Cell | Effect |
---|---|---|---|---|---|
DKK-1 | Human | 2004 | [18] | PALM | MEL↓ |
DKK-1 | Human | 2007 | [19] | PALM/3D model | MEL↓MITF/DCT/TYR↓ |
IL-1α | Mouse | 2007 | [17] | MCC | MEL↑ |
KGF | Human | 2008 | [21] | Skin | MEL↑ |
EP | Mouse | 2008 | [27] | MCC | MEL↑ |
KGF | Human | 2010 | [22] | MCC | MEL↑TYR mRNA↑ |
NRG-1 | Human | 2010 | [20] | Skin | MEL↑ERBB-3↑ |
NRG-1 | Human | 2010 | [20] | MCC/3D model | MEL↑ |
bFGF | Mouse | 2011 | [1] | MCC | MEL↓ |
KGF | Human | 2013 | [15] | MCC | MEL↑D/DCT/TYR↑ |
ET-1 | Human | 2013 | [15] | MCC | MEL↑TYR↑ |
SCF | Human | 2013 | [15] | MCC | MEL↑TYR↑ |
HGF | Human | 2013 | [15] | MCC | MEL↑TYR↑ |
WIF-1 | Human | 2014 | [26] | MCC | MEL↑MITF/TYR↑ |
PTN | Human | 2015 | [23] | MCC | MEL↓ERK1/2↑MITF↓ |
sFRP-2 | Human | 2016 | [24] | Skin | MEL↑TYR↑ |
PDGF-BB | Human | 2016 | [28] | MCC | MEL↑D↑TYR↑ |
TGF-β1 | Human | 2016 | [29] | Skin | MEL↓ |
CCN-1 | Human | 2018 | [25] | MCC | MEL↑p38 ERK1/2↑MITF/TYR↑ |
EP | Human | 2022 | [30] | MC | EF↑MEL↑ |
2.3. Factors Derived from Dermal Cells Other than Fibroblasts
2.4. Factors Derived from Other Dermal Components
3. Regulation of Melanogenesis in UV-Exposed Skin
Factors from Dermis-Derived Cells
4. Regulation of Melanogenesis in Abnormal Skin
4.1. Role of Dermis-Derived Factors in Hyperpigmentary Disorders
Factors | Species | Date * | Ref. | Skin/Cell | Effect |
---|---|---|---|---|---|
SCF | Human | 2001 | [69] | DF | SCF↑ → MEL↑TYR↑ |
HGF | Human | 2001 | [69] | DF | HGF↑ → MEL↑TYR↑ |
ET-1 | Human | 2004 | [67] | SL | ET-1↑ → MEL↑ |
SCF | Human | 2004 | [67] | SL | SCF↑ → MEL↑ |
SCF | Human | 2006 | [65] | Melasma | SCF↑ → MEL↑ |
VEGF | Human | 2007 | [63] | Melasma | VEGF↑ → MEL↑ |
EF | Human | 2008 | [73] | VLS | EF↓ → MEL↓ |
KGF | Human | 2010 | [22] | SL | KGF↑ → MEL↑ |
KGF | Swine | 2010 | [22] | SL | KGF↑ → MEL↑ |
IL-1α | Human | 2010 | [22] | SL | IL-1α↑ → MEL↑ |
IL-1α | Swine | 2010 | [22] | SL | IL-1α↑ → MEL↑ |
SCF | Human | 2010 | [68] | SL | SCF↑ → MEL↑ |
KGF | Human | 2010 | [68] | SL | KGF↑ → MEL↑ |
EF | Human | 2010 | [74] | ELT | ELT↑ → EF↓MEL↓ |
HS | Human | 2011 | [62] | SL | HS↑ → MEL↑ |
sFRP-2 | Human | 2011 | [71] | SL | sFRP-2↑ → MEL↑Wnt↑ |
EP | Human | 2012 | [75] | Melanoma | EP↑ → MEL↑TYR↑ |
WIF-1 | Human | 2013 | [72] | Melasma | WIF-1↓ → MEL↑ |
EF | Human | 2013 | [76] | AEGCG | MMP-2↑ → EF↓MEL↓ |
EF | Human | 2014 | [77] | ELT | ELT↑ → EF↓MEL↓ |
KGF | Human | 2015 | [70] | Melasma | KGF↑ → MEL |
KGF | Human | 2015 | [70] | SL | KGF↑ → MEL↑ |
SCF | Human | 2016 | [66] | Melasma | SCF↑ → MEL↑ |
NGF | Human | 2016 | [66] | Melasma | NGF↑ → MEL↑ |
sFRP-2 | Human | 2016 | [24] | Melasma | sFRP-2↑ → MEL↑ |
sFRP-2 | Human | 2016 | [24] | SL | sFRP-2↑ → MEL↑ |
EF | Human | 2020 | [5] | VIT | EF↑ → MEL↑ |
HGF | Human | 2021 | [14] | SL | HGF↑ → MEL↑ |
EF | Human | 2022 | [78] | VIT | EF↑CSS↑ → MEL↑ |
EF | Human | 2022 | [49] | VIT | UV↑EF↑ → MELç |
EP | Human | 2023 | [79] | VIT | EP↑ → MEL↑ |
4.2. Role of Dermis-Derived Factors in Hypopigmentary Disorders
5. Conclusions
Funding
Conflicts of Interest
References
- Hirobe, T. How are proliferation and differentiation of melanocytes regulated? Pigment Cell Melanoma Res. 2011, 24, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Wakamatsu, K. Chemistry of mixed melanogenesis-pivotal roles of dopaquinone. Photochem. Photobiol. 2008, 84, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Steingrímsson, E.; Copeland, N.G.; Jenkins, N.A. Mouse coat color mutations: From fancy mice to functional genomics. Dev. Dyn. 2006, 235, 2401–2411. [Google Scholar] [CrossRef]
- Upadhyay, P.R.; Ho, T.; Abdel-Malek, Z.A. Participation of keratinocyte- and fibroblast-derived factors in melanocyte homeostasis, the response to UV, and pigmentary disorders. Pigment Cell Melanoma Res. 2021, 34, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T.; Enami, H.; Nakayama, A. Elastin fiber but not collagen fiber is decreased dramatically in the dermis of vitiligo patients. Int. J. Dermatol. 2020, 59, e369–e372. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004, 17, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 2005, 18, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Hearing, V.J. Physiological factors that regulate skin pigmentation. Biofactors 2009, 35, 193–199. [Google Scholar] [CrossRef]
- Hirobe, T. Keratinocytes regulate the function of melanocytes. Dermatol. Sin. 2014, 32, 200–204. [Google Scholar] [CrossRef]
- Hedley, S.J.; Layton, C.; Heaton, M.; Chakrabarty, K.H.; Dawson, R.A.; Gawkrodger, D.J.; MacNeil, S. Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from skin types I and II. Pigment Cell Res. 2002, 15, 49–56. [Google Scholar] [CrossRef]
- Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 2003, 13, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Tamm, I.; Kikuchi, T.; Zychlinsky, A. Acidic and basic fibroblast growth factors are survival factors with distinctive activity in quiescent BALB/c 3T3 murine fibroblasts. Proc. Natl. Acad. Sci. USA 1991, 88, 3372–3376. [Google Scholar] [CrossRef] [PubMed]
- Maas-Szabowski, N.; Shimotoyodome, A.; Fusenig, N.E. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J. Cell Sci. 1999, 111, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, D.; Cardinali, G.; Aspite, N.; Cota, C.; Luzi, F.; Bellei, B.; Briganti, S.; Amantea, A.; Torrisi, M.R.; Picardo, M. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br. J. Dermatol. 2021, 163, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T.; Hasegawa, K.; Furuya, R.; Fujiwara, R.; Sato, K. Effects of fibroblast-derived factors on the proliferation and differentiation of human melanocytes in culture. J. Dermatol. Sci. 2013, 71, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Mildner, M.; Mlitz, V.; Gruber, F.; Wojta, J.; Tschachler, E. Hepatocyte growth factor establishes autocrine and paracrine feedback loops for the protection of skin cells after UV irradiation. J. Investig. Dermatol. 2007, 127, 2637–2644. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T.; Ootaka, H. Interleukin-1α stimulates the differentiation of melanocytes but inhibits the proliferation of melanoblasts from neonatal mouse epidermis. Zool. Sci. 2007, 24, 959–970. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Itami, S.; Watabe, H.; Yasumoto, K.I.; Abdel-Malek, Z.A.; Kubo, T.; Rouzaud, F.; Tanemura, A.; Yoshikawa, K.; Hearing, V.J. Mesenchymal-epithelial interaction in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J. Cell Biol. 2004, 165, 275–285. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Passeron, T.; Watabe, H.; Yasumoto, K.; Rouzaud, F.; Hoashi, T.; Hearing, V.J. The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: Mechanisms underlying its suppression of melanocyte function and proliferation. J. Investig. Dermatol. 2007, 127, 1217–1225. [Google Scholar] [CrossRef]
- Choi, W.; Wolber, R.; Gerwat, W.; Mann, T.; Batzer, J.; Smuda, C.; Liu, H.; Kolbe, L.; Hearing, V.J. The fibroblast-derived paracrine factor neuregulin-1 has a novel role in regulating the constitutive color and melanocyte function in human skin. J. Cell Sci. 2010, 123, 3102–3111. [Google Scholar] [CrossRef]
- Cardinali, G.; Bolasco, G.; Aspite, N.; Lucania, G.; Lotti, L.V.; Torrisi, M.R.; Picardo, M. Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J. Investig. Dermatol. 2008, 128, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hu, Y.; Li, W.H.; Eisinger, M.; Seiberg, M.; Lin, C.B. The role of keratinocyte growth factor in melanogenesis: A possible mechanism for the initiation of solar lentigines. Exp. Dermatol. 2010, 19, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Kim, M.; Park, J.Y.; Park, T.J.; Kang, H.Y. Pleiotrophin inhibits melanogenesis via Erk1/2-MITF signaling in normal human melanocytes. Pigment Cell Melanoma Res. 2015, 28, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Han, J.H.; Kim, J.H.; Park, T.J.; Kang, H.Y. Secreted frizzled-related protein 2 (sFRP2) functions as a melanogenic stimulator; the role of sFRP2 in UV-induced hyperpigmentary disorders. J. Investig. Dermatol. 2016, 136, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, L.; Jiang, M.; Wang, Q.; Zhang, C.; Xiang, L.F. CCN1/Cyr61 stimulates melanogenesis through integrin a6b1, p38 MAPK, and ERK1/2 signaling pathways in human epidermal melanocytes. J. Investig. Dermatol. 2018, 138, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Park, T.J.; Kim, M.; Kim, H.; Park, S.Y.; Park, K.C.; Ortonne, J.P.; Kang, H.Y. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res. 2014, 27, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Kawa, Y.; Tsai, R.K.; Shieh, J.H.; Lee, J.W.; Watabe, H.; Kawakami, T.; Soma, Y.; Tajima, S.; Mizoguchi, M. Melanocyte precursors express elastin binding protein and elastin-derived peptide (VGVAPG) stimulates their melanogenesis and dendrite formation. J. Dermatol. Sci. 2008, 51, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T.; Shibata, T.; Fujiwara, R.; Sato, K. Platelet-derived growth factor regulates the proliferation and differentiation of human melanocytes in a differentiation-stage-specific manner. J. Dermatol. Sci. 2016, 83, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Kim, M.; Park, T.J.; Kang, H.Y. TGFβ1 derived from endothelial cells inhibits melanogenesis. Pigment Cell Melanoma Res. 2016, 29, 477–480. [Google Scholar] [CrossRef]
- Hirobe, T.; Enami, H. Elastin peptides with ferrous ferric chloride activate human melanocytes and elastin fibers. J. Skin Stem Cell 2022, 9, e127254. [Google Scholar] [CrossRef]
- Donovan, J.; Abraham, D.; Norman, J. Platelet-derived growth factor signaling in mesenchymal cells. Front. Biosci. 2013, 18, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Glomset, J.; Kariya, B.; Harker, L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Natl. Acad. Sci. USA 1974, 71, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.-H.; Westermark, B.; Wasteson, A. Platelet-derived growth factor: Purification and partial characterization. Proc. Natl. Acad. Sci. USA 1979, 76, 3722–3726. [Google Scholar] [CrossRef] [PubMed]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [PubMed]
- Ostendorf, T.; Boor, P.; van Roeyen, C.R.C.; Floege, J. Platelet-derived growth factors (PDGFs) in glomerular and tubulointestinal fibrosis. Kid. Int. Suppl. 2014, 4, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, H.N.; Pantazis, P. Platelet-derived growth factor: Purification and characterization. Meth. Enzymol. 1989, 169, 210–224. [Google Scholar]
- Festa, E.; Fretz, J.; Berry, R.; Schmidt, B.; Rodeheffer, M.; Horowitz, M.; Horsley, V. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 2011, 146, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, P.; Gerhardt, H.; Liebner, S.; Abramsson, A.; Enge, M.; Hellström, M.; Bäckström, G.; Fredriksson, S.; Landegren, U.; Nyström, H.C.; et al. Endothelial PDGF-B is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003, 17, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ortuno, R.; Kenny, R.A.; McManus, R. Collagens and elastin genetic variations and their potential role in aging-related diseases and longevity in humans. Exp. Gerontol. 2020, 129, 110781. [Google Scholar] [CrossRef]
- Rauscher, S.; Pomes, R. The liquid structure of elastin. eLife 2017, 6, e26526. [Google Scholar] [CrossRef]
- Ono, T.; Mah, K.; Hu, F. Dermal melanocytes and elastic fibers. J. Cutan. Pathol. 1985, 12, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Malek, Z.; Swope, V.B.; Suzuki, I.; Akcali, C.; Harriger, M.D.; Boyce, S.T.; Urabe, K.; Hearing, V.J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA 1995, 92, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Gilchrest, B.A.; Park, H.Y.; Eller, M.S.; Yaar, M. Mechanisms of ultraviolet light-induced pigmentation. Photochem. Photobiol. 1996, 63, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, H.; Wang, B.; Kondo, S.; Shivji, G.M.; Sauder, D.N. Costimulation with ultraviolet B and interleukin-1alpha dramatically increase tumor necrosis factor-alpha production in human dermal fibroblasts. J. Interferon Cytokine Res. 1997, 17, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, A.; Kobayashi, A.; Yoshida, Y.; Kitahara, T.; Takema, Y.; Imokawa, G. Bi phasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. Am. J. Pathol. 2004, 165, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.; Jacobs, S.; Leopardi, S.; Anthony, F.A.; Learn, D.; Malaviya, R.; Pentland, A. Effects of PGE2a on human melanocytes and regulation of the FP receptor by ultraviolet radiation. Exp. Cell Res. 2005, 304, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Miyamura, Y.; Wolber, R.; Smuda, C.; Reinhold, W.; Liu, H.; Kolbe, L.; Hearing, V.J. Regulation of human skin pigmentation in situ by repetitive UV exposure: Molecular characterization of responses to UVA and/or UVB. J. Investig. Dermatol. 2010, 130, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Park, K.H.; Hahn, J.-H. Alleviation of ultraviolet-B radiation-induced photoaging by a TNFR antagonistic peptide, TNFR2-SKE. Mol. Cell 2019, 42, 151–160. [Google Scholar]
- Hirobe, T.; Enami, H. Reduced elastin fibers and melanocyte loss in vitiliginous skin are restored after repigmentation by phototherapy and/or autologous minigraft transplantation. Int. J. Med. Sci. 2022, 23, 15361. [Google Scholar] [CrossRef]
- Bohm, M.; Wolff, I.; Scholzen, T.E.; Robinson, S.J.; Healy, E.; Luger, T.A.; Schwarz, T.; Schwarz, A. alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J. Biol. Chem. 2005, 280, 5795–5802. [Google Scholar] [CrossRef]
- Swope, V.; Alexander, C.; Starner, R.; Schwemberger, S.; Babcock, G.; Abdel-Malek, Z.A. Significance of the melanocortin 1 receptor in the DNA damage response of human melanocytes to ultraviolet radiation. Pigment Cell Melanoma Res. 2014, 27, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Kadekaro, A.L.; Leachman, S.; Kavanagh, R.J.; Swope, V.; Cassidy, P.; Supp, D.; Sartor, M.; Schwemberger, S.; Babcock, G.; Wakamatsu, K.; et al. Melanocortin 1 receptor genotype: An important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J. 2010, 24, 3850–3860. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, S.G.; Wolf Horrell, E.M.; Christian, P.A.; Vanover, J.C.; Boulanger, M.C.; Zou, Y.; D’Orazio, J.A. PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage. Mol. Cell 2014, 54, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Swope, V.B.; Starner, R.J.; Rauck, C.; Abdel-Malek, Z.A. Endothelin-1 and alpha-melanocortin have redundant effects on global genome repair in UV-irradiated human melanocytes despite distinct signaling pathways. Pigment Cell Melanoma Res. 2019, 33, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.H.; Reardon, J.T.; Sancar, A. Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein. Nucleic Acids Res. 2011, 39, 3176–3187. [Google Scholar] [CrossRef] [PubMed]
- Strub, T.; Giuliano, S.; Ye, T.; Bonet, C.; Keime, C.; Kobi, D.; Le Gras, S.; Cormont, M.; Ballotti, R.; Bertolotto, C.; et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011, 30, 2319–2332. [Google Scholar] [CrossRef] [PubMed]
- Wolf Horrell, E.M.; Jarrett, S.G.; Carter, K.M.; D’Orazio, J.A. Divergence of cAMP signaling pathways mediating augmented nucleotide excision repair and pigment induction in melanocytes. Exp. Dermatol. 2017, 26, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Chen, K.; Yao, X.; Xu, Y.; Yao, J.; Yan, J.; Shao, Z.; Wang, G. Mediator MED23 links pigmentation and DNA repair through the transcription factor MITF. Cell Rep. 2017, 20, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.Y.; Kang, W.H.; Lee, C. Endothelin-B receptor-mediated Ca2+ signaling in human melanocytes. Pflug. Arch. 1998, 435, 350–356. [Google Scholar] [CrossRef]
- Kadekaro, A.L.; Kavanagh, R.; Kanto, H.; Terzieva, S.; Hauser, J.; Kobayashi, N.; Schwemberger, S.; Cornelius, J.; Babcock, G.; Shertzer, H.G.; et al. α-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res. 2005, 65, 4292–4299. [Google Scholar] [CrossRef]
- Stefanato, C.M.; Yaar, M.; Bhawan, J.; Phillips, T.J.; Kosmadaki, M.G.; Botchkarev, V.; Gilchrest, B.A. Modulation of nerve growth factor and Bcl-2 in ultraviolet-irradiated human epidermis. J. Cutan. Pathol. 2003, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Iriyama, S.; Ono, T.; Aoki, H.; Amano, S. Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal-epidermal junction. J. Dermatol. Sci. 2011, 64, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Kim, Y.C.; Lee, E.-S.; Kang, H.Y. The vascular characteristics of melasma. J. Dermatol. Sci. 2007, 46, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Kajiya, K.; Sato, K.; Yoon, J.; Kang, H.Y. 3D microvascular analysis reveals irregularly branching blood vessels in the hyperpigmented skin of solar lentigo. Pigment Cell Melanoma Res. 2018, 31, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.Y.; Hwang, J.S.; Lee, J.Y.; Ahn, J.H.; Kim, J.Y.; Lee, E.S.; Kang, W.H. The dermal stem cell factor and c-kit are overexpressed in melasma. Brit. J. Dermatol. 2006, 154, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.W.; Park, I.S.; Choi, G.S.; Shin, J. Role of fibroblast-derived factors in the pathogenesis of melasma. Clin. Exp. Dermatol. 2016, 41, 601–609. [Google Scholar] [CrossRef]
- Hattori, H.; Kawashima, M.; Ichikawa, Y.; Imokawa, G. The epidermal stem cell factor is over-expressed in lentigo senilis: Implication for the mechanism of hyperpigmentation. J. Investig. Dermatol. 2004, 122, 1256–1265. [Google Scholar] [CrossRef]
- Lin, C.B.; Hu, Y.; Rossetti, D.; Chen, N.; David, C.; Slominski, A.; Seiberg, M. Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development. J. Dermatol Sci. 2010, 59, 91–97. [Google Scholar] [CrossRef]
- Shishido, E.; Kadono, S.; Manaka, I.; Kawashima, M.; Imokawa, G. The mechanism of epidermal hyperpigmentation in dermatofibroma is associated with stem cell factor and hepatocyte growth factor expression. J. Investig. Dermatol. 2001, 117, 627–633. [Google Scholar] [CrossRef]
- Hasegawa, K.; Fujiwara, R.; Sato, K.; Shin, J.; Kim, S.J.; Kim, M.; Kang, H.Y. Possible involvement of keratinocyte growth factor in the persistence of hyperpigmentation in both human facial solar lentigines and melasma. Ann. Dermatol. 2015, 27, 626–629. [Google Scholar] [CrossRef]
- Kang, H.Y.; Suzuki, I.; Lee, D.J.; Ha, J.; Reiniche, P.; Aubert, J.; Deret, S.; Zugaj, D.; Voegel, J.J.; Ortonne, J.P. Transcriptional profiling shows altered expression of wnt pathway-and lipid metabolism-related genes as well as melanogenesis-related genes in melasma. J. Investig. Dermatol. 2011, 131, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, T.R.; Lee, A.Y. Reduced WIF-1 expression stimulates skin hyperpigmentation in patients with melasma. J. Investig. Dermatol. 2013, 133, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Attili, V.R.; Attili, S.K. Vitiligoid lichen sclerosus: A reapraisal. Ind. J. Dermatol. Venereol. Leprol. 2008, 74, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Abbas, O.; Chatrath, V.; Goldberg, L.J. Elastophagocytosis in extragenital lichen sclerosus. J. Cutan. Pathol. 2010, 37, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; He, P.-Y.; Zhang, J.-Z.; Chen, Z. Effect of kappa elastin on melanogenesis in A375 human melanoma cells and its related mechanism. Chin. Med. J. 2012, 125, 4088–4092. [Google Scholar] [PubMed]
- Watabe, D.; Akasaka, T. Annular elastic giant cell granuloma developing on lesions of vitiligo. Int. J. Dermatol. 2013, 52, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, J.; Kurban, M.; Abbas, O. Elastophagocytosis: Underlying mechanisms and associated cutaneous entities. J. Am. Acad. Dermatol. 2014, 70, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T.; Enami, H. Mesenchymal stem cell-derived factors stimulate the differentiation of melanocytes in the vitiliginous skin in combination with phototherapy. J. Cosmet. Sci. 2022, 73, 391–403. [Google Scholar]
- Hirobe, T. Elastin is related to functions of melanocytes in normal and abnormal skin. J. Skin Stem Cell 2023, 10, e135902. [Google Scholar] [CrossRef]
- Le Poole, I.C.; Luiten, R.M. Autoimmune etiology of generalized vitiligo. Curr. Dir. Autoimmun. 2008, 10, 227–243. [Google Scholar]
- Ezzedine, K.; Eleftheriadou, V.; Whitton, M.; van Geel, N. Vitiligo. Lancet 2015, 386, 74–84. [Google Scholar] [CrossRef]
- Laddha, N.C.; Dwivedi, M.; Mansuri, M.S.; Gani, A.R.; Ansarullah, M.; Ramachandran, A.V.; Dalai, S.; Begum, R. Vitiligo: Interplay between oxidative stress and immune system. Exp. Dermatol. 2013, 22, 245–250. [Google Scholar] [CrossRef]
- Tobin, D.J.; Swanson, N.N.; Pittelkow, M.R.; Peters, E.M.; Schallreuter, K.U. Melanocytes are not absent in lesional skin of long duration vitiligo. J. Pathol. 2000, 191, 407–416. [Google Scholar] [CrossRef]
- Marchioro, H.Z.; de Castro, C.C.S.; Fava, V.M.; Sakiyama, P.H.; Dellatorre, G.; Miot, H.A. Update on the pathogenesis of vitiligo. An. Bras. Dermatol. 2022, 97, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Y.; Xiang, L.; Zhang, C. The fate of melanocytes: Mechanisms of cell death in vitiligo. Pigment Cell Melanoma Res. 2021, 34, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A. Vitiligo as an inflammatory skin disorder: A therapeutic perspective. Pigment Cell Melanoma Res. 2011, 25, 9–13. [Google Scholar] [CrossRef]
- Riding, R.L.; Harris, J.E. The role of memory CD8+ T cells in vitiligo. J. Immunol. 2019, 203, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.B.; Takahashi, A.; Mizutani, Y.; Takayama, S.; Ishitsuka, A.; Yang, L.; Yang, F.; Iddamalgoda, A.; Katayama, I.; Inoue, S. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci. Rep. 2020, 10, 4930. [Google Scholar] [CrossRef]
- Ntayi, C.; Labrousse, A.L.; Debret, R.; Birembaut, P.; Bellon, G.; Antonicelli, F.; Hornebeck, W.; Bernard, P. Elastin-derived peptides upregulate matrix metalloproteinase-2-mediated melanoma cell invasion through elastin-binding protein. J. Investig. Dermatol. 2004, 122, 256–265. [Google Scholar] [CrossRef]
- Langton, A.K.; Alessi, S.; Hann, M.; Chien, A.L.L.; Kang, S.; Griffiths, C.E.M.; Watson, R.E.B. Aging in skin of color: Disruption to elastic fiber organization is detrimental to skin’s biochemical function. J. Investig. Dermatol. 2019, 139, 779–788. [Google Scholar] [CrossRef]
- Wang, Y.; Song, E.C.; Resnick, M.B. Elastin in the tumor microenvironment. Adv. Exp. Med. Biol. 2020, 1272, 1–16. [Google Scholar] [PubMed]
Factors | Date * | Ref. | Skin/Cell | Effect |
---|---|---|---|---|
α-MSH | 1995 | [42] | Skin | MEL↑MITF↑TYR↑ |
NGF | 1996 | [43] | Skin | MEL↑D↑ |
IL-1α | 1997 | [44] | Skin | MEL↑ |
ET-1 | 2004 | [6] | MC, MCC | MEL↑MITF↑TYR↑TRP-1↑DCT↑ |
SCF | 2004 | [6] | MC, MCC | MEL↑MITF↑TYR↑TRP-1↑DCT↑ |
ET-1 | 2004 | [45] | Skin | MEL↑TYR↑ |
SCF | 2004 | [45] | Skin | MEL↑TYR↑ |
PGF2α | 2005 | [46] | Skin, MC, MCC | MEL↑ |
HGF | 2010 | [47] | MCC | MEL↑MITF↑TYR↑TRP-1↑DCT↑ |
sFRP-2 | 2016 | [24] | Skin | MEL↑MITF↑TYR↑ |
TNFα | 2019 | [48] | Skin | MEL↑ |
EF | 2022 | [49] | VIT | MEL↑TYR↑ |
Factors | Species | Normal | UV | Abnormal | Effect |
---|---|---|---|---|---|
SCF | Human | ○ | ○ | ○ | MEL↑TYR↑ |
HGF | Human | ○ | ○ | ○ | MEL↑TYR↑ |
ET-1 | Human | ○ | ○ | ○ | MEL↑TYR↑ |
IL-1α | Mouse/Human/Swine | ○ | ○ | ○ | MEL↑ |
sFRP-2 | Human | ○ | ○ | ○ | MEL↑TYR↑ |
NGF | Human | ○ | ○ | ○ | MEL↑D↑ |
KGF | Human/Swine | ○ | ○ | MEL↑ | |
PDGF-BB | Human | ○ | MEL↑TYR↑D↑ | ||
CCN-1 | Human | ○ | MEL↑TYR↑ | ||
NRG-1 | Human | ○ | MEL↑ | ||
WIF-1 | Human | ○ | MEL↑ | ||
PGF2α | Human | ○ | MEL↑ | ||
TNFα | Human | ○ | MEL↑ | ||
VEGF | Human | ○ | MEL↑ | ||
HS | Human | ○ | MEL↑ | ||
α-MSH | Human | ○ | MEL↑TYR↑MITF↑ | ||
EP | Mouse/Human | ○ | ○ | MEL↑TYR↑ | |
EF | Human | ○ | ○ | MEL↑TYR↑ | |
DKK-1 | Human | ○ | MEL↓TYR↓ | ||
PTN | Human | ○ | MEL↓MITF↓ | ||
bFGF | Mouse | ○ | MEL↓ | ||
TGF-β1 | Human | ○ | MEL↓ | ||
WIF-1 | Human | ○ | MEL↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirobe, T. Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin. Int. J. Mol. Sci. 2024, 25, 4560. https://doi.org/10.3390/ijms25084560
Hirobe T. Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin. International Journal of Molecular Sciences. 2024; 25(8):4560. https://doi.org/10.3390/ijms25084560
Chicago/Turabian StyleHirobe, Tomohisa. 2024. "Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin" International Journal of Molecular Sciences 25, no. 8: 4560. https://doi.org/10.3390/ijms25084560
APA StyleHirobe, T. (2024). Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin. International Journal of Molecular Sciences, 25(8), 4560. https://doi.org/10.3390/ijms25084560