Nutraceuticals in Psychiatric Disorders: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Schizophrenia
4.2. Autism Spectrum Disorders
4.3. Major Depression
4.4. Bipolar Disorder
4.5. Personality Disorders
4.6. Reviews and Meta-Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.; Gura, K.M.; Kim, S.; Arsenault, D.A.; Bistrian, B.R.; Puder, M. Current Clinical Applications of Ω-6 and Ω-3 Fatty Acids. Nutr. Clin. Pract. 2006, 21, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Sinn, N.; Milte, C.; Howe, P.R.C. Oiling the Brain: A Review of Randomized Controlled Trials of Omega-3 Fatty Acids in Psychopathology across the Lifespan. Nutrients 2010, 2, 128–170. [Google Scholar] [CrossRef] [PubMed]
- Pusceddu, M.M.; Nolan, Y.M.; Green, H.F.; Robertson, R.C.; Stanton, C.; Kelly, P.; Cryan, J.F.; Dinan, T.G. The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid (DHA) Reverses Corticosterone-Induced Changes in Cortical Neurons. Int. J. Neuropsychopharmacol. 2016, 19, pyv130. [Google Scholar] [CrossRef]
- Calder, P.C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M.J.; Recker, T.; Salvioli, S.; et al. Health Relevance of the Modification of Low Grade Inflammation in Ageing (Inflammageing) and the Role of Nutrition. Ageing Res. Rev. 2017, 40, 95–119. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; El Marroun, H.; Voortman, T.; Hillegers, M.; White, T.; Tiemeier, H. Maternal Polyunsaturated Fatty Acids during Pregnancy and Offspring Brain Development in Childhood. Am. J. Clin. Nutr. 2021, 114, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-León, A.M.; Lapuente, M.; Estruch, R.; Casas, R. Clinical Advances in Immunonutrition and Atherosclerosis: A Review. Front. Immunol. 2019, 10, 451812. [Google Scholar] [CrossRef]
- de la Presa Owens, S.; Innis, S.M. Docosahexaenoic and Arachidonic Acid Prevent a Decrease in Dopaminergic and Serotoninergic Neurotransmitters in Frontal Cortex Caused by a Linoleic and Alpha-Linolenic Acid Deficient Diet in Formula-Fed Piglets. J. Nutr. 1999, 129, 2088–2093. [Google Scholar] [CrossRef]
- Bozzatello, P.; Brignolo, E.; De Grandi, E.; Bellino, S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J. Clin. Med. 2016, 5, 67. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Essential Fatty Acids in Health and Chronic Disease. Am. J. Clin. Nutr. 1999, 70, 560S–569S. [Google Scholar] [CrossRef]
- Ergas, D.; Eilat, E.; Mendlovic, S.; Sthoeger, Z.M. N-3 Fatty Acids and the Immune System in Autoimmunity. Isr. Med. Assoc. J. 2002, 4, 34–38. [Google Scholar]
- Saunders, E.F.H.; Ramsden, C.E.; Sherazy, M.S.; Gelenberg, A.J.; Davis, J.M.; Rapoport, S.I. Omega-3 and Omega-6 Polyunsaturated Fatty Acids in Bipolar Disorder: A Review of Biomarker and Treatment Studies. J. Clin. Psychiatry 2016, 77, e1301–e1308. [Google Scholar] [CrossRef]
- Mischoulon, D.; Freeman, M.P. Omega-3 Fatty Acids in Psychiatry. Psychiatr. Clin. N. Am. 2013, 36, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Farooq, R.K.; Alamoudi, W.; Alhibshi, A.; Rehman, S.; Sharma, A.R.; Abdulla, F.A. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022, 10, 705. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Mahony, S.M. The Microbiome-Gut-Brain Axis: From Bowel to Behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Yun, K.E.; Kim, M.-H.; Kim, J.; Chang, Y.; Ryu, S.; Kim, H.-L.; Kim, H.-N.; Jung, S.-C. Correlation between Gut Microbiota and Six Facets of Neuroticism in Korean Adults. J. Pers. Med. 2021, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the Gut-Brain Axis: Regulation by the Microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef]
- Singhal, G.; Jaehne, E.J.; Corrigan, F.; Toben, C.; Baune, B.T. Inflammasomes in Neuroinflammation and Changes in Brain Function: A Focused Review. Front. Neurosci. 2014, 8, 315. [Google Scholar] [CrossRef]
- Skaper, S.D.; Facci, L.; Zusso, M.; Giusti, P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front. Cell. Neurosci. 2018, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Hallahan, B.; Garland, M.R. Essential Fatty Acids and Mental Health. Br. J. Psychiatry 2005, 186, 275–277. [Google Scholar] [CrossRef]
- Gören, J.L.; Tewksbury, A.T. The Use of Omega-3 Fatty Acids in Mental Illness. J. Pharm. Pract. 2011, 24, 452–471. [Google Scholar] [CrossRef]
- Cooper, R.E.; Tye, C.; Kuntsi, J.; Vassos, E.; Asherson, P. Omega-3 Polyunsaturated Fatty Acid Supplementation and Cognition: A Systematic Review and Meta-Analysis. J. Psychopharmacol. 2015, 29, 753–763. [Google Scholar] [CrossRef]
- Bozzatello, P.; Rocca, P.; Mantelli, E.; Bellino, S. Polyunsaturated Fatty Acids: What Is Their Role in Treatment of Psychiatric Disorders? Int. J. Mol. Sci. 2019, 20, 5257. [Google Scholar] [CrossRef]
- Bozzatello, P.; Blua, C.; Rocca, P.; Bellino, S. Mental Health in Childhood and Adolescence: The Role of Polyunsaturated Fatty Acids. Biomedicines 2021, 9, 850. [Google Scholar] [CrossRef]
- Brainard, J.S.; Jimoh, O.F.; Deane, K.H.O.; Biswas, P.; Donaldson, D.; Maas, K.; Abdelhamid, A.S.; Hooper, L.; PUFAH group. Omega-3, Omega-6, and Polyunsaturated Fat for Cognition: Systematic Review and Meta-Analysis of Randomized Trials. J. Am. Med. Dir. Assoc. 2020, 21, 1439–1450.e21. [Google Scholar] [CrossRef]
- Kraguljac, N.V.; Montori, V.M.; Pavuluri, M.; Chai, H.S.; Wilson, B.S.; Unal, S.S. Efficacy of Omega-3 Fatty Acids in Mood Disorders—A Systematic Review and Metaanalysis. Psychopharmacol. Bull. 2009, 42, 39–54. [Google Scholar]
- Agostoni, C.; Nobile, M.; Ciappolino, V.; Delvecchio, G.; Tesei, A.; Turolo, S.; Crippa, A.; Mazzocchi, A.; Altamura, C.A.; Brambilla, P. The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD. Int. J. Mol. Sci. 2017, 18, 2608. [Google Scholar] [CrossRef]
- Bozzatello, P.; De Rosa, M.L.; Rocca, P.; Bellino, S. Effects of Omega-3 Fatty Acids on Main Dimensions of Psychopathology. Int. J. Mol. Sci. 2020, 21, 6042. [Google Scholar] [CrossRef]
- Smesny, S.; Milleit, B.; Hipler, U.-C.; Milleit, C.; Schäfer, M.R.; Klier, C.M.; Holub, M.; Holzer, I.; Berger, G.E.; Otto, M.; et al. Omega-3 Fatty Acid Supplementation Changes Intracellular Phospholipase A2 Activity and Membrane Fatty Acid Profiles in Individuals at Ultra-High Risk for Psychosis. Mol. Psychiatry 2014, 19, 317–324. [Google Scholar] [CrossRef]
- Amminger, G.P.; Mechelli, A.; Rice, S.; Kim, S.W.; Klier, C.M.; McNamara, R.K.; Berk, M.; McGorry, P.D.; Schäfer, M.R. Predictors of Treatment Response in Young People at Ultra-High Risk for Psychosis Who Received Long-Chain Omega-3 Fatty Acids. Transl. Psychiatry 2015, 5, e495. [Google Scholar] [CrossRef]
- McGorry, P.D.; Nelson, B.; Markulev, C.; Yuen, H.P.; Schäfer, M.R.; Mossaheb, N.; Schlögelhofer, M.; Smesny, S.; Hickie, I.B.; Berger, G.E.; et al. Effect of ω-3 Polyunsaturated Fatty Acids in Young People at Ultrahigh Risk for Psychotic Disorders: The NEURAPRO Randomized Clinical Trial. JAMA Psychiatry 2017, 74, 19–27. [Google Scholar] [CrossRef]
- Alqarni, A.; Mitchell, T.W.; McGorry, P.D.; Nelson, B.; Markulev, C.; Yuen, H.P.; Schäfer, M.R.; Berger, M.; Mossaheb, N.; Schlögelhofer, M.; et al. Supplementation with the Omega-3 Long Chain Polyunsaturated Fatty Acids: Changes in the Concentrations of Omega-3 Index, Fatty Acids and Molecular Phospholipids of People at Ultra High Risk of Developing Psychosis. Schizophr. Res. 2020, 226, 52–60. [Google Scholar] [CrossRef]
- Susai, S.R.; Mongan, D.; Healy, C.; Cannon, M.; Nelson, B.; Markulev, C.; Schäfer, M.R.; Berger, M.; Mossaheb, N.; Schlögelhofer, M.; et al. The Association of Plasma Inflammatory Markers with Omega-3 Fatty Acids and Their Mediating Role in Psychotic Symptoms and Functioning: An Analysis of the NEURAPRO Clinical Trial. Brain Behav. Immun. 2022, 99, 147–156. [Google Scholar] [CrossRef]
- Emsley, R.; Chiliza, B.; Asmal, L.; du Plessis, S.; Phahladira, L.; van Niekerk, E.; van Rensburg, S.J.; Harvey, B.H. A Randomized, Controlled Trial of Omega-3 Fatty Acids plus an Antioxidant for Relapse Prevention after Antipsychotic Discontinuation in First-Episode Schizophrenia. Schizophr. Res. 2014, 158, 230–235. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow-Grabka, M.; Kotlicka-Antczak, M.; Trafalska, E.; Pawełczyk, A. A Randomized Controlled Study of the Efficacy of Six-Month Supplementation with Concentrated Fish Oil Rich in Omega-3 Polyunsaturated Fatty Acids in First Episode Schizophrenia. J. Psychiatr. Res. 2016, 73, 34–44. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow-Grabka, M.; Trafalska, E.; Szemraj, J.; Pawełczyk, A. Oxidative Stress Reduction Related to the Efficacy of N-3 Polyunsaturated Fatty Acids in First Episode Schizophrenia: Secondary Outcome Analysis of the OFFER Randomized Trial. Prostaglandins Leukot Essent Fat. Acids 2017, 121, 7–13. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow-Grabka, M.; Trafalska, E.; Szemraj, J.; Żurner, N.; Pawełczyk, A. Telomerase Level Increase Is Related to N-3 Polyunsaturated Fatty Acid Efficacy in First Episode Schizophrenia: Secondary Outcome Analysis of the OFFER Randomized Clinical Trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 83, 142–148. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow-Grabka, M.; Trafalska, E.; Szemraj, J.; Żurner, N.; Pawełczyk, A. An Increase in Plasma Brain Derived Neurotrophic Factor Levels Is Related to N-3 Polyunsaturated Fatty Acid Efficacy in First Episode Schizophrenia: Secondary Outcome Analysis of the OFFER Randomized Clinical Trial. Psychopharmacology 2019, 236, 2811–2822. [Google Scholar] [CrossRef]
- Allott, K.; McGorry, P.D.; Yuen, H.P.; Firth, J.; Proffitt, T.-M.; Berger, G.; Maruff, P.; O’Regan, M.K.; Papas, A.; Stephens, T.C.B.; et al. The Vitamins in Psychosis Study: A Randomized, Double-Blind, Placebo-Controlled Trial of the Effects of Vitamins B12, B6, and Folic Acid on Symptoms and Neurocognition in First-Episode Psychosis. Biol. Psychiatry 2019, 86, 35–44. [Google Scholar] [CrossRef]
- Mullier, E.; Roine, T.; Griffa, A.; Xin, L.; Baumann, P.S.; Klauser, P.; Cleusix, M.; Jenni, R.; Alemàn-Gómez, Y.; Gruetter, R.; et al. N-Acetyl-Cysteine Supplementation Improves Functional Connectivity within the Cingulate Cortex in Early Psychosis: A Pilot Study. Int. J. Neuropsychopharmacol. 2019, 22, 478–487. [Google Scholar] [CrossRef]
- Szeszko, P.R.; McNamara, R.K.; Gallego, J.A.; Malhotra, A.K.; Govindarajulu, U.; Peters, B.D.; Robinson, D.G. Longitudinal Investigation of the Relationship between Omega-3 Polyunsaturated Fatty Acids and Neuropsychological Functioning in Recent-Onset Psychosis: A Randomized Clinical Trial. Schizophr. Res. 2021, 228, 180–187. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow-Grabka, M.; Żurner, N.; Pawełczyk, A. Omega-3 Fatty Acids Reduce Cardiometabolic Risk in First-Episode Schizophrenia Patients Treated with Antipsychotics: Findings from the OFFER Randomized Controlled Study. Schizophr. Res. 2021, 230, 61–68. [Google Scholar] [CrossRef]
- Gaughran, F.; Stringer, D.; Wojewodka, G.; Landau, S.; Smith, S.; Gardner-Sood, P.; Taylor, D.; Jordan, H.; Whiskey, E.; Krivoy, A.; et al. Effect of Vitamin D Supplementation on Outcomes in People with Early Psychosis: The DFEND Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2140858. [Google Scholar] [CrossRef]
- Lyall, A.E.; Nägele, F.L.; Pasternak, O.; Gallego, J.A.; Malhotra, A.K.; McNamara, R.K.; Kubicki, M.; Peters, B.D.; Robinson, D.G.; Szeszko, P.R. A 16-Week Randomized Placebo-Controlled Trial Investigating the Effects of Omega-3 Polyunsaturated Fatty Acid Treatment on White Matter Microstructure in Recent-Onset Psychosis Patients Concurrently Treated with Risperidone. Psychiatry Res. Neuroimaging 2021, 307, 111219. [Google Scholar] [CrossRef]
- Huang, J.; Kang, D.; Zhang, F.; Yang, Y.; Liu, C.; Xiao, J.; Long, Y.; Lang, B.; Peng, X.; Wang, W.; et al. Probiotics Plus Dietary Fiber Supplements Attenuate Olanzapine-Induced Weight Gain in Drug-Naïve First-Episode Schizophrenia Patients: Two Randomized Clinical Trials. Schizophr. Bull. 2022, 48, 850–859. [Google Scholar] [CrossRef]
- Jamilian, H.; Solhi, H.; Jamilian, M. Randomized, Placebo-Controlled Clinical Trial of Omega-3 as Supplemental Treatment in Schizophrenia. Glob. J. Health Sci. 2014, 6, 103–108. [Google Scholar] [CrossRef]
- Sanders, L.L.O.; de Souza Menezes, C.E.; Chaves Filho, A.J.M.; de Almeida Viana, G.; Fechine, F.V.; Rodrigues de Queiroz, M.G.; Gonçalvez da Cruz Fonseca, S.; Mendes Vasconcelos, S.M.; Amaral de Moraes, M.E.; Gama, C.S.; et al. α-Lipoic Acid as Adjunctive Treatment for Schizophrenia: An Open-Label Trial. J. Clin. Psychopharmacol. 2017, 37, 697–701. [Google Scholar] [CrossRef]
- Qiao, Y.; Mei, Y.; Han, H.; Liu, F.; Yang, X.M.; Shao, Y.; Xie, B.; Long, B. Effects of Omega-3 in the Treatment of Violent Schizophrenia Patients. Schizophr. Res. 2018, 195, 283–285. [Google Scholar] [CrossRef]
- Robinson, D.G.; Gallego, J.A.; John, M.; Hanna, L.A.; Zhang, J.P.; Birnbaum, M.L.; Greenberg, J.; Naraine, M.; Peters, B.D.; McNamara, R.K.; et al. A Potential Role for Adjunctive Omega-3 Polyunsaturated Fatty Acids for Depression and Anxiety Symptoms in Recent Onset Psychosis: Results from a 16 week Randomized Placebo-Controlled Trial for Participants Concurrently Treated with Risperidone. Schizophr. Res. 2019, 204, 295–303. [Google Scholar] [CrossRef]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.-A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and Metabolic Response to Vitamin D plus Probiotic in Schizophrenia Patients. BMC Psychiatry 2019, 19, 77. [Google Scholar] [CrossRef]
- Xu, F.; Fan, W.; Wang, W.; Tang, W.; Yang, F.; Zhang, Y.; Cai, J.; Song, L.; Zhang, C. Effects of Omega-3 Fatty Acids on Metabolic Syndrome in Patients with Schizophrenia: A 12-Week Randomized Placebo-Controlled Trial. Psychopharmacology 2019, 236, 1273–1279. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Y.; Xu, F.; Fan, W.; Zhang, Y.; Fan, K.; Wang, W.; Zhang, Y.; Zhang, C. Omega-3 Fatty Acids Ameliorate Cognitive Dysfunction in Schizophrenia Patients with Metabolic Syndrome. Brain Behav. Immun. 2020, 88, 529–534. [Google Scholar] [CrossRef]
- Maguire, Á.; Mooney, C.; Flynn, G.; Ferguson, Y.; O’Keane, V.; O’Rourke, D.; McMonagle, T.; Heaton, R.; Phillips, S.; Hargreaves, I.; et al. No Effect of Coenzyme Q10 on Cognitive Function, Psychological Symptoms, and Health-Related Outcomes in Schizophrenia and Schizoaffective Disorder: Results of a Randomized, Placebo-Controlled Trial. J. Clin. Psychopharmacol. 2021, 41, 53–57. [Google Scholar] [CrossRef]
- Jamilian, H.; Ghaderi, A. The Effects of Probiotic and Selenium Co-Supplementation on Clinical and Metabolic Scales in Chronic Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2021, 199, 4430–4438. [Google Scholar] [CrossRef]
- Mishra, A.; Reeta, K.H.; Sarangi, S.C.; Maiti, R.; Sood, M. Effect of Add-on Alpha Lipoic Acid on Psychopathology in Patients with Treatment-Resistant Schizophrenia: A Pilot Randomized Double-Blind Placebo-Controlled Trial. Psychopharmacology 2022, 239, 3525–3535. [Google Scholar] [CrossRef]
- Sevillano-Jiménez, A.; Romero-Saldaña, M.; García-Mellado, J.A.; Carrascal-Laso, L.; García-Rodríguez, M.; Molina-Luque, R.; Molina-Recio, G. Impact of High Prebiotic and Probiotic Dietary Education in the SARS-CoV-2 Era: Improved Cardio-Metabolic Profile in Schizophrenia Spectrum Disorders. BMC Psychiatry 2022, 22, 781. [Google Scholar] [CrossRef]
- De Lima, D.N.; Costa Filho, C.W.L.; Frota, I.J.; de Oliveira, A.L.B.; Menezes, C.E. de S.; Chaves Filho, A.J.M.; Viana, G. de A.; Campos, E. de M.; Collares, M.; de Queiroz, M.G.R.; et al. α-Lipoic Acid as Adjunctive Treatment for Schizophrenia: A Randomized Double-Blind Study. J. Clin. Psychopharmacol. 2023, 43, 39–45. [Google Scholar] [CrossRef]
- Kalejahi, P.; Kheirouri, S.; Noorazar, S.G. A Randomized Controlled Trial of Vitamin D Supplementation in Iranian Patients with Schizophrenia: Effects on Serum Levels of Glycogen Synthase Kinase-3β and Symptom Severity. Int. J. Psychiatry Med. 2023, 58, 559–575. [Google Scholar] [CrossRef]
- Bent, S.; Hendren, R.L.; Zandi, T.; Law, K.; Choi, J.-E.; Widjaja, F.; Kalb, L.; Nestle, J.; Law, P. Internet-Based, Randomized, Controlled Trial of Omega-3 Fatty Acids for Hyperactivity in Autism. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 658–666. [Google Scholar] [CrossRef]
- Voigt, R.G.; Mellon, M.W.; Katusic, S.K.; Weaver, A.L.; Matern, D.; Mellon, B.; Jensen, C.L.; Barbaresi, W.J. Dietary Docosahexaenoic Acid Supplementation in Children with Autism. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 715–722. [Google Scholar] [CrossRef]
- Mankad, D.; Dupuis, A.; Smile, S.; Roberts, W.; Brian, J.; Lui, T.; Genore, L.; Zaghloul, D.; Iaboni, A.; Marcon, P.M.A.; et al. A Randomized, Placebo Controlled Trial of Omega-3 Fatty Acids in the Treatment of Young Children with Autism. Mol. Autism 2015, 6, 18. [Google Scholar] [CrossRef]
- Ooi, Y.P.; Weng, S.-J.; Jang, L.Y.; Low, L.; Seah, J.; Teo, S.; Ang, R.P.; Lim, C.G.; Liew, A.; Fung, D.S.; et al. Omega-3 Fatty Acids in the Management of Autism Spectrum Disorders: Findings from an Open-Label Pilot Study in Singapore. Eur. J. Clin. Nutr. 2015, 69, 969–971. [Google Scholar] [CrossRef]
- Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal Microbiota in Children with Autism in Slovakia. Physiol. Behav. 2015, 138, 179–187. [Google Scholar] [CrossRef]
- Grossi, E.; Melli, S.; Dunca, D.; Terruzzi, V. Unexpected Improvement in Core Autism Spectrum Disorder Symptoms after Long-Term Treatment with Probiotics. SAGE Open Med. Case Rep. 2016, 4, 2050313X16666231. [Google Scholar] [CrossRef]
- Sheppard, K.W.; Boone, K.M.; Gracious, B.; Klebanoff, M.A.; Rogers, L.K.; Rausch, J.; Bartlett, C.; Coury, D.L.; Keim, S.A. Effect of Omega-3 and -6 Supplementation on Language in Preterm Toddlers Exhibiting Autism Spectrum Disorder Symptoms. J. Autism Dev. Disord. 2017, 47, 3358–3369. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; et al. Microbiota Transfer Therapy Alters Gut Ecosystem and Improves Gastrointestinal and Autism Symptoms: An Open-Label Study. Microbiome 2017, 5, 10. [Google Scholar] [CrossRef]
- Parellada, M.; Llorente, C.; Calvo, R.; Gutierrez, S.; Lázaro, L.; Graell, M.; Guisasola, M.; Dorado, M.L.; Boada, L.; Romo, J.; et al. Randomized Trial of Omega-3 for Autism Spectrum Disorders: Effect on Cell Membrane Composition and Behavior. Eur. Neuropsychopharmacol. 2017, 27, 1319–1330. [Google Scholar] [CrossRef]
- Keim, S.A.; Gracious, B.; Boone, K.M.; Klebanoff, M.A.; Rogers, L.K.; Rausch, J.; Coury, D.L.; Sheppard, K.W.; Husk, J.; Rhoda, D.A. ω-3 and ω-6 Fatty Acid Supplementation May Reduce Autism Symptoms Based on Parent Report in Preterm Toddlers. J. Nutr. 2018, 148, 227–235. [Google Scholar] [CrossRef]
- Mazahery, H.; Conlon, C.A.; Beck, K.L.; Mugridge, O.; Kruger, M.C.; Stonehouse, W.; Camargo, C.A.; Meyer, B.J.; Jones, B.; von Hurst, P.R. A Randomised Controlled Trial of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids in the Treatment of Irritability and Hyperactivity among Children with Autism Spectrum Disorder. J. Steroid Biochem. Mol. Biol. 2019, 187, 9–16. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Liong, M.T.; Chung, Y.-C.E.; Huang, H.-Y.; Peng, W.-S.; Cheng, Y.-F.; Lin, Y.-S.; Wu, Y.-Y.; Tsai, Y.-C. Effects of Lactobacillus Plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2019, 11, 820. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Yang, J.-J.; Zhao, D.-M.; Chen, B.; Zhang, G.-Q.; Chen, S.; Cao, R.-F.; Yu, H.; Zhao, C.-Y.; et al. Probiotics and Fructo-Oligosaccharide Intervention Modulate the Microbiota-Gut Brain Axis to Improve Autism Spectrum Reducing Also the Hyper-Serotonergic State and the Dopamine Metabolism Disorder. Pharmacol. Res. 2020, 157, 104784. [Google Scholar] [CrossRef]
- Javadfar, Z.; Abdollahzad, H.; Moludi, J.; Rezaeian, S.; Amirian, H.; Foroughi, A.A.; Nachvak, S.M.; Goharmehr, N.; Mostafai, R. Effects of Vitamin D Supplementation on Core Symptoms, Serum Serotonin, and Interleukin-6 in Children with Autism Spectrum Disorders: A Randomized Clinical Trial. Nutrition 2020, 79–80, 110986. [Google Scholar] [CrossRef]
- Boone, K.M.; Parrott, A.; Rausch, J.; Yeates, K.O.; Klebanoff, M.A.; Norris Turner, A.; Keim, S.A. Fatty Acid Supplementation and Socioemotional Outcomes: Secondary Analysis of a Randomized Trial. Pediatrics 2020, 146, e20200284. [Google Scholar] [CrossRef]
- Renard, E.; Leheup, B.; Guéant-Rodriguez, R.-M.; Oussalah, A.; Quadros, E.V.; Guéant, J.-L. Folinic Acid Improves the Score of Autism in the EFFET Placebo-Controlled Randomized Trial. Biochimie 2020, 173, 57–61. [Google Scholar] [CrossRef]
- Kong, X.-J.; Liu, J.; Liu, K.; Koh, M.; Sherman, H.; Liu, S.; Tian, R.; Sukijthamapan, P.; Wang, J.; Fong, M.; et al. Probiotic and Oxytocin Combination Therapy in Patients with Autism Spectrum Disorder: A Randomized, Double-Blinded, Placebo-Controlled Pilot Trial. Nutrients 2021, 13, 1552. [Google Scholar] [CrossRef]
- Doaei, S.; Bourbour, F.; Teymoori, Z.; Jafari, F.; Kalantari, N.; Abbas Torki, S.; Ashoori, N.; Nemat Gorgani, S.; Gholamalizadeh, M. The Effect of Omega-3 Fatty Acids Supplementation on Social and Behavioral Disorders of Children with Autism: A Randomized Clinical Trial. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 12–18. [Google Scholar] [CrossRef]
- Batebi, N.; Moghaddam, H.S.; Hasanzadeh, A.; Fakour, Y.; Mohammadi, M.R.; Akhondzadeh, S. Folinic Acid as Adjunctive Therapy in Treatment of Inappropriate Speech in Children with Autism: A Double-Blind and Placebo-Controlled Randomized Trial. Child Psychiatry Hum. Dev. 2021, 52, 928–938. [Google Scholar] [CrossRef]
- Boone, K.M.; Klebanoff, M.A.; Rogers, L.K.; Rausch, J.; Coury, D.L.; Keim, S.A. Effects of Omega-3-6-9 Fatty Acid Supplementation on Behavior and Sleep in Preterm Toddlers with Autism Symptomatology: Secondary Analysis of a Randomized Clinical Trial. Early Hum. Dev. 2022, 169, 105588. [Google Scholar] [CrossRef]
- Keim, S.A.; Jude, A.; Smith, K.; Khan, A.Q.; Coury, D.L.; Rausch, J.; Udaipuria, S.; Norris, M.; Bartram, L.R.; Narayanan, A.R.; et al. Randomized Controlled Trial of Omega-3 and -6 Fatty Acid Supplementation to Reduce Inflammatory Markers in Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2022, 52, 5342–5355. [Google Scholar] [CrossRef]
- Schmitt, L.M.; Smith, E.G.; Pedapati, E.V.; Horn, P.S.; Will, M.; Lamy, M.; Barber, L.; Trebley, J.; Meyer, K.; Heiman, M.; et al. Results of a Phase Ib Study of SB-121, an Investigational Probiotic Formulation, a Randomized Controlled Trial in Participants with Autism Spectrum Disorder. Sci. Rep. 2023, 13, 5192. [Google Scholar] [CrossRef]
- Ginty, A.T.; Conklin, S.M. Short-Term Supplementation of Acute Long-Chain Omega-3 Polyunsaturated Fatty Acids May Alter Depression Status and Decrease Symptomology among Young Adults with Depression: A Preliminary Randomized and Placebo Controlled Trial. Psychiatry Res. 2015, 229, 485–489. [Google Scholar] [CrossRef]
- Mischoulon, D.; Nierenberg, A.A.; Schettler, P.J.; Kinkead, B.L.; Fehling, K.; Martinson, M.A.; Hyman Rapaport, M. A Double-Blind, Randomized Controlled Clinical Trial Comparing Eicosapentaenoic Acid versus Docosahexaenoic Acid for Depression. J. Clin. Psychiatry 2015, 76, 54–61. [Google Scholar] [CrossRef]
- Park, Y.; Park, Y.-S.; Kim, S.H.; Oh, D.H.; Park, Y.-C. Supplementation of N-3 Polyunsaturated Fatty Acids for Major Depressive Disorder: A Randomized, Double-Blind, 12-Week, Placebo-Controlled Trial in Korea. Ann. Nutr. Metab. 2015, 66, 141–148. [Google Scholar] [CrossRef]
- Rapaport, M.H.; Nierenberg, A.A.; Schettler, P.J.; Kinkead, B.; Cardoos, A.; Walker, R.; Mischoulon, D. Inflammation as a Predictive Biomarker for Response to Omega-3 Fatty Acids in Major Depressive Disorder: A Proof-of-Concept Study. Mol. Psychiatry 2016, 21, 71–79. [Google Scholar] [CrossRef]
- Young, A.S.; Arnold, L.E.; Wolfson, H.L.; Fristad, M.A. Psychoeducational Psychotherapy and Omega-3 Supplementation Improve Co-Occurring Behavioral Problems in Youth with Depression: Results from a Pilot RCT. J. Abnorm. Child Psychol. 2017, 45, 1025–1037. [Google Scholar] [CrossRef]
- Gabbay, V.; Freed, R.D.; Alonso, C.M.; Senger, S.; Stadterman, J.; Davison, B.A.; Klein, R.G. A Double-Blind Placebo-Controlled Trial of Omega-3 Fatty Acids as a Monotherapy for Adolescent Depression. J. Clin. Psychiatry 2018, 79, 17m11596. [Google Scholar] [CrossRef]
- Jahangard, L.; Sadeghi, A.; Ahmadpanah, M.; Holsboer-Trachsler, E.; Sadeghi Bahmani, D.; Haghighi, M.; Brand, S. Influence of Adjuvant Omega-3-Polyunsaturated Fatty Acids on Depression, Sleep, and Emotion Regulation among Outpatients with Major Depressive Disorders—Results from a Double-Blind, Randomized and Placebo-Controlled Clinical Trial. J. Psychiatr. Res. 2018, 107, 48–56. [Google Scholar] [CrossRef]
- Hansen, J.P.; Pareek, M.; Hvolby, A.; Schmedes, A.; Toft, T.; Dahl, E.; Nielsen, C.T. Vitamin D3 Supplementation and Treatment Outcomes in Patients with Depression (D3-Vit-Dep). BMC Res. Notes 2019, 12, 203. [Google Scholar] [CrossRef]
- Tayama, J.; Ogawa, S.; Nakaya, N.; Sone, T.; Hamaguchi, T.; Takeoka, A.; Hamazaki, K.; Okamura, H.; Yajima, J.; Kobayashi, M.; et al. Omega-3 Polyunsaturated Fatty Acids and Psychological Intervention for Workers with Mild to Moderate Depression: A Double-Blind Randomized Controlled Trial. J. Affect. Disord. 2019, 245, 364–370. [Google Scholar] [CrossRef]
- Chahwan, B.; Kwan, S.; Isik, A.; van Hemert, S.; Burke, C.; Roberts, L. Gut Feelings: A Randomised, Triple-Blind, Placebo-Controlled Trial of Probiotics for Depressive Symptoms. J. Affect. Disord. 2019, 253, 317–326. [Google Scholar] [CrossRef]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-Style Dietary Intervention Supplemented with Fish Oil Improves Diet Quality and Mental Health in People with Depression: A Randomized Controlled Trial (HELFIMED). Nutr. Neurosci. 2019, 22, 474–487. [Google Scholar] [CrossRef]
- Karakula-Juchnowicz, H.; Rog, J.; Juchnowicz, D.; Łoniewski, I.; Skonieczna-Żydecka, K.; Krukow, P.; Futyma-Jedrzejewska, M.; Kaczmarczyk, M. The Study Evaluating the Effect of Probiotic Supplementation on the Mental Status, Inflammation, and Intestinal Barrier in Major Depressive Disorder Patients Using Gluten-Free or Gluten-Containing Diet (SANGUT Study): A 12-Week, Randomized, Double-Blind, and Placebo-Controlled Clinical Study Protocol. Nutr. J. 2019, 18, 50. [Google Scholar] [CrossRef]
- Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of Probiotic and Prebiotic vs Placebo on Psychological Outcomes in Patients with Major Depressive Disorder: A Randomized Clinical Trial. Clin. Nutr. 2019, 38, 522–528. [Google Scholar] [CrossRef]
- de Koning, E.J.; Lips, P.; Penninx, B.W.J.H.; Elders, P.J.M.; Heijboer, A.C.; den Heijer, M.; Bet, P.M.; van Marwijk, H.W.J.; van Schoor, N.M. Vitamin D Supplementation for the Prevention of Depression and Poor Physical Function in Older Persons: The D-Vitaal Study, a Randomized Clinical Trial. Am. J. Clin. Nutr. 2019, 110, 1119–1130. [Google Scholar] [CrossRef]
- Alavi, N.M.; Khademalhoseini, S.; Vakili, Z.; Assarian, F. Effect of Vitamin D Supplementation on Depression in Elderly Patients: A Randomized Clinical Trial. Clin. Nutr. 2019, 38, 2065–2070. [Google Scholar] [CrossRef]
- Saccarello, A.; Montarsolo, P.; Massardo, I.; Picciotto, R.; Pedemonte, A.; Castagnaro, R.; Brasesco, P.C.; Guida, V.; Picco, P.; Fioravanti, P.; et al. Oral Administration of S-Adenosylmethionine (SAMe) and Lactobacillus Plantarum HEAL9 Improves the Mild-To-Moderate Symptoms of Depression: A Randomized, Double-Blind, Placebo-Controlled Study. Prim. Care Companion CNS Disord. 2020, 22, 19m02578. [Google Scholar] [CrossRef]
- Trebatická, J.; Hradečná, Z.; Surovcová, A.; Katrenčíková, B.; Gushina, I.; Waczulíková, I.; Sušienková, K.; Garaiova, I.; Šuba, J.; Ďuračková, Z. Omega-3 Fatty-Acids Modulate Symptoms of Depressive Disorder, Serum Levels of Omega-3 Fatty Acids and Omega-6/Omega-3 Ratio in Children. A Randomized, Double-Blind and Controlled Trial. Psychiatry Res. 2020, 287, 112911. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Platzer, M.; Kohlhammer-Dohr, A.; Hamm, C.; Mörkl, S.; Bengesser, S.A.; Fellendorf, F.T.; Lahousen-Luxenberger, T.; Leitner-Afschar, B.; Schöggl, H.; et al. PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression-A Randomized Controlled Trial. Nutrients 2020, 12, 3422. [Google Scholar] [CrossRef]
- Reiter, A.; Bengesser, S.A.; Hauschild, A.-C.; Birkl-Töglhofer, A.-M.; Fellendorf, F.T.; Platzer, M.; Färber, T.; Seidl, M.; Mendel, L.-M.; Unterweger, R.; et al. Interleukin-6 Gene Expression Changes after a 4-Week Intake of a Multispecies Probiotic in Major Depressive Disorder-Preliminary Results of the PROVIT Study. Nutrients 2020, 12, 2575. [Google Scholar] [CrossRef]
- Kaviani, M.; Nikooyeh, B.; Zand, H.; Yaghmaei, P.; Neyestani, T.R. Effects of Vitamin D Supplementation on Depression and Some Involved Neurotransmitters. J. Affect. Disord. 2020, 269, 28–35. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Wang, T.; Lin, Y.; Yu, J.; Xia, Q.; Zhu, P.; Zhu, D.-M. Vitamin D Supplementation Improves Anxiety but Not Depression Symptoms in Patients with Vitamin D Deficiency. Brain Behav. 2020, 10, e01760. [Google Scholar] [CrossRef]
- Libuda, L.; Timmesfeld, N.; Antel, J.; Hirtz, R.; Bauer, J.; Führer, D.; Zwanziger, D.; Öztürk, D.; Langenbach, G.; Hahn, D.; et al. Effect of Vitamin D Deficiency on Depressive Symptoms in Child and Adolescent Psychiatric Patients: Results of a Randomized Controlled Trial. Eur. J. Nutr. 2020, 59, 3415–3424. [Google Scholar] [CrossRef]
- Ho, Y.-T.; Tsai, Y.-C.; Kuo, T.B.J.; Yang, C.C.H. Effects of Lactobacillus Plantarum PS128 on Depressive Symptoms and Sleep Quality in Self-Reported Insomniacs: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Nutrients 2021, 13, 2820. [Google Scholar] [CrossRef]
- Lee, H.J.; Hong, J.K.; Kim, J.-K.; Kim, D.-H.; Jang, S.W.; Han, S.-W.; Yoon, I.-Y. Effects of Probiotic NVP-1704 on Mental Health and Sleep in Healthy Adults: An 8-Week Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2660. [Google Scholar] [CrossRef]
- Mischoulon, D.; Dunlop, B.W.; Kinkead, B.; Schettler, P.J.; Lamon-Fava, S.; Rakofsky, J.J.; Nierenberg, A.A.; Clain, A.J.; Mletzko Crowe, T.; Wong, A.; et al. Omega-3 Fatty Acids for Major Depressive Disorder with High Inflammation: A Randomized Dose-Finding Clinical Trial. J. Clin. Psychiatry 2022, 83, 21m14074. [Google Scholar] [CrossRef]
- Kaviani, M.; Nikooyeh, B.; Etesam, F.; Behnagh, S.J.; Kangarani, H.M.; Arefi, M.; Yaghmaei, P.; Neyestani, T.R. Effects of Vitamin D Supplementation on Depression and Some Selected Pro-Inflammatory Biomarkers: A Double-Blind Randomized Clinical Trial. BMC Psychiatry 2022, 22, 694. [Google Scholar] [CrossRef]
- Schaub, A.-C.; Schneider, E.; Vazquez-Castellanos, J.F.; Schweinfurth, N.; Kettelhack, C.; Doll, J.P.K.; Yamanbaeva, G.; Mählmann, L.; Brand, S.; Beglinger, C.; et al. Clinical, Gut Microbial and Neural Effects of a Probiotic Add-on Therapy in Depressed Patients: A Randomized Controlled Trial. Transl. Psychiatry 2022, 12, 227. [Google Scholar] [CrossRef]
- Ullah, H.; Di Minno, A.; Esposito, C.; El-Seedi, H.R.; Khalifa, S.A.M.; Baldi, A.; Greco, A.; Santonastaso, S.; Cioffi, V.; Sperandeo, R.; et al. Efficacy of a Food Supplement Based on S-Adenosyl Methionine and Probiotic Strains in Subjects with Subthreshold Depression and Mild-to-Moderate Depression: A Monocentric, Randomized, Cross-over, Double-Blind, Placebo-Controlled Clinical Trial. Biomed. Pharmacother. 2022, 156, 113930. [Google Scholar] [CrossRef]
- Schneider, E.; Doll, J.P.K.; Schweinfurth, N.; Kettelhack, C.; Schaub, A.-C.; Yamanbaeva, G.; Varghese, N.; Mählmann, L.; Brand, S.; Eckert, A.; et al. Effect of Short-Term, High-Dose Probiotic Supplementation on Cognition, Related Brain Functions and BDNF in Patients with Depression: A Secondary Analysis of a Randomized Controlled Trial. J. Psychiatry Neurosci. 2023, 48, E23–E33. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Cleare, A.J.; Young, A.H.; Stone, J.M. Acceptability, Tolerability, and Estimates of Putative Treatment Effects of Probiotics as Adjunctive Treatment in Patients with Depression: A Randomized Clinical Trial. JAMA Psychiatry 2023, 80, 842–847. [Google Scholar] [CrossRef]
- Zhu, R.; Fang, Y.; Li, H.; Liu, Y.; Wei, J.; Zhang, S.; Wang, L.; Fan, R.; Wang, L.; Li, S.; et al. Psychobiotic Lactobacillus Plantarum JYLP-326 Relieves Anxiety, Depression, and Insomnia Symptoms in Test Anxious College via Modulating the Gut Microbiota and Its Metabolism. Front. Immunol. 2023, 14, 1158137. [Google Scholar] [CrossRef]
- Sharpley, A.L.; Hockney, R.; McPeake, L.; Geddes, J.R.; Cowen, P.J. Folic Acid Supplementation for Prevention of Mood Disorders in Young People at Familial Risk: A Randomised, Double Blind, Placebo Controlled Trial. J. Affect. Disord. 2014, 167, 306–311. [Google Scholar] [CrossRef]
- Fristad, M.A.; Young, A.S.; Vesco, A.T.; Nader, E.S.; Healy, K.Z.; Gardner, W.; Wolfson, H.L.; Arnold, L.E. A Randomized Controlled Trial of Individual Family Psychoeducational Psychotherapy and Omega-3 Fatty Acids in Youth with Subsyndromal Bipolar Disorder. J. Child Adolesc. Psychopharmacol. 2015, 25, 764–774. [Google Scholar] [CrossRef]
- Wozniak, J.; Faraone, S.; Chan, J.; Tarko, L.; Hernandez, M.; Davis, J.; Woodworth, Y.; Biederman, J. Correction: A Randomized Clinical Trial of High Eicosapentaenoic Acid Omega-3 Fatty Acids and Inositol as Monotherapy and in Combination in the Treatment of Pediatric Bipolar Spectrum Disorders: A Pilot Study. J. Clin. Psychiatry 2016, 77, e1153. [Google Scholar] [CrossRef]
- Marsh, W.K.; Penny, J.L.; Rothschild, A.J. Vitamin D Supplementation in Bipolar Depression: A Double Blind Placebo Controlled Trial. J. Psychiatr. Res. 2017, 95, 48–53. [Google Scholar] [CrossRef]
- Nierenberg, A.A.; Montana, R.; Kinrys, G.; Deckersbach, T.; Dufour, S.; Baek, J.H. L-Methylfolate For Bipolar I Depressive Episodes: An Open Trial Proof-of-Concept Registry. J. Affect. Disord. 2017, 207, 429–433. [Google Scholar] [CrossRef]
- Dickerson, F.; Adamos, M.; Katsafanas, E.; Khushalani, S.; Origoni, A.; Savage, C.; Schweinfurth, L.; Stallings, C.; Sweeney, K.; Goga, J.; et al. Adjunctive Probiotic Microorganisms to Prevent Rehospitalization in Patients with Acute Mania: A Randomized Controlled Trial. Bipolar. Disord. 2018, 20, 614–621. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Yasrebifar, F.; Haghighi, M.; Mohammadi, Y.; Jahangard, L. Evaluating the Effect of Coenzyme Q10 Augmentation on Treatment of Bipolar Depression: A Double-Blind Controlled Clinical Trial. J. Clin. Psychopharmacol. 2018, 38, 460–466. [Google Scholar] [CrossRef]
- Vesco, A.T.; Young, A.S.; Arnold, L.E.; Fristad, M.A. Omega-3 Supplementation Associated with Improved Parent-Rated Executive Function in Youth with Mood Disorders: Secondary Analyses of the Omega-3 and Therapy (OATS) Trials. J. Child Psychol. Psychiatry Allied Discip. 2018, 59, 628–636. [Google Scholar] [CrossRef]
- Toniolo, R.A.; Silva, M.; Fernandes, F. de B.F.; Amaral, J.A. de M.S.; Dias, R. da S.; Lafer, B. A Randomized, Double-Blind, Placebo-Controlled, Proof-of-Concept Trial of Creatine Monohydrate as Adjunctive Treatment for Bipolar Depression. J. Neural. Transm. 2018, 125, 247–257. [Google Scholar] [CrossRef]
- McNamara, R.K.; Strawn, J.R.; Tallman, M.J.; Welge, J.A.; Patino, L.R.; Blom, T.J.; DelBello, M.P. Effects of Fish Oil Monotherapy on Depression and Prefrontal Neurochemistry in Adolescents at High Risk for Bipolar I Disorder: A 12-Week Placebo-Controlled Proton Magnetic Resonance Spectroscopy Trial. J. Child Adolesc. Psychopharmacol. 2020, 30, 293–305. [Google Scholar] [CrossRef]
- Ashton, M.M.; Mohebbi, M.; Turner, A.; Marx, W.; Berk, M.; Malhi, G.S.; Ng, C.H.; Cotton, S.M.; Dodd, S.; Sarris, J.; et al. Physical Activity as a Predictor of Clinical Trial Outcomes in Bipolar Depression: A Subanalysis of a Mitochondrial-Enhancing Nutraceutical Randomized Controlled Trial. Can. J. Psychiatry 2020, 65, 306–318. [Google Scholar] [CrossRef] [PubMed]
- McPhilemy, G.; Byrne, F.; Waldron, M.; Hibbeln, J.R.; Davis, J.; McDonald, C.; Hallahan, B. A 52-Week Prophylactic Randomised Control Trial of Omega-3 Polyunsaturated Fatty Acids in Bipolar Disorder. Bipolar. Disord. 2021, 23, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Badrfam, R.; Mostafavi, S.-A.; Khaleghi, A.; Akhondzadeh, S.; Zandifar, A.; Farid, M.; Mohammadian Khonsari, N.; Mohammadi, M.R. The Efficacy of Vitamin B6 as an Adjunctive Therapy to Lithium in Improving the Symptoms of Acute Mania in Patients with Bipolar Disorder, Type 1; a Double-Blind, Randomized, Placebo-Controlled, Clinical Trial. Brain Behav. 2021, 11, e2394. [Google Scholar] [CrossRef] [PubMed]
- Fristad, M.A.; Roley-Roberts, M.E.; Black, S.R.; Arnold, L.E. Moody Kids Years Later: Long-Term Outcomes of Youth from the Omega-3 and Therapy (OATS) Studies. J. Affect. Disord. 2021, 281, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Sabouri, S.; Esmailzadeh, M.; Sadeghinejad, A.; Eslami Shahrbabaki, M.; Asadikaram, G.; Nikvarz, N. The Effect of Adjunctive Probiotics on Markers of Inflammation and Oxidative Stress in Bipolar Disorder: A Double-Blind, Randomized, Controlled Trial. J. Psychiatr. Pract. 2022, 28, 373–382. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Li, W.; Lei, D.; Tallman, M.J.; Welge, J.A.; Strawn, J.R.; Patino, L.R.; DelBello, M.P. Fish Oil Supplementation Alters Emotion-Generated Corticolimbic Functional Connectivity in Depressed Adolescents at High-Risk for Bipolar I Disorder: A 12-Week Placebo-Controlled fMRI Trial. Bipolar Disord. 2022, 24, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Saunders, E.F.H.; Mukherjee, D.; Myers, T.; Wasserman, E.; Hameed, A.; Bassappa Krishnamurthy, V.; MacIntosh, B.; Domenichiello, A.; Ramsden, C.E.; Wang, M. Adjunctive Dietary Intervention for Bipolar Disorder: A Randomized, Controlled, Parallel-Group, Modified Double-Blinded Trial of a High n-3 plus Low n-6 Diet. Bipolar. Disord. 2022, 24, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, J.; Farrell, A.; DiSalvo, M.; Ceranoglu, A.; Uchida, M.; Vaudreuil, C.; Joshi, G.; Faraone, S.V.; Cook, E.; Biederman, J. A Randomized, Double-Blind, Controlled Clinical Trial of Omega-3 Fatty Acids and Inositol as Monotherapies and in Combination for the Treatment of Pediatric Bipolar Spectrum Disorder in Children Age 5-12. Psychopharmacol. Bull. 2022, 52, 31–51. [Google Scholar] [PubMed]
- Eslahi, H.; Shakiba, M.; Saravani, M.; Payandeh, A.; Shahraki, M. The Effects of Omega-3 Fatty Acids on the Serum Concentrations of pro Inflammatory Cytokines Anddepression Status in Patients with Bipolar Disorder: A Randomized Double-Blind Controlled Clinical Trial. J. Res. Med. Sci. 2023, 28, 36. [Google Scholar] [CrossRef]
- Zailani, H.; Wu, S.-K.; Yang, K.-J.; Malau, I.A.; Liao, H.-F.; Chung, Y.-L.; Chang, J.P.-C.; Chiu, W.-C.; Su, K.-P. Omega-3 Polyunsaturated Fatty Acids in the Prevention of Relapse in Patients with Stable Bipolar Disorder: A 6-Month Pilot Randomized Controlled Trial. Psychiatry Res. 2024, 331, 115633. [Google Scholar] [CrossRef]
- Zandifar, A.; Mousavi, S.; Schmidt, N.B.; Badrfam, R.; Seif, E.; Qorbani, M.; Mehrabani Natanzi, M. Efficacy of Vitamins B1 and B6 as an Adjunctive Therapy to Lithium in Bipolar-I Disorder: A Double-Blind, Randomized, Placebo-Controlled, Clinical Trial. J. Affect. Disord. 2024, 345, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Bellino, S.; Bozzatello, P.; Rocca, G.; Bogetto, F. Efficacy of Omega-3 Fatty Acids in the Treatment of Borderline Personality Disorder: A Study of the Association with Valproic Acid. J. Psychopharmacol. 2014, 28, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Bozzatello, P.; Rocca, P.; Bellino, S. Combination of Omega-3 Fatty Acids and Valproic Acid in Treatment of Borderline Personality Disorder: A Follow-Up Study. Clin. Drug Investig. 2018, 38, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Raine, A.; Fung, A.L.C.; Gao, Y.; Lee, T.M.C. Omega-3 Supplementation, Child Antisocial Behavior, and Psychopathic Personality: A Randomized, Double-Blind, Placebo-Controlled, Stratified, Parallel Group Trial. Eur. Child Adolesc. Psychiatry 2021, 30, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, N.C.; Flaum, M. Schizophrenia: The Characteristic Symptoms. Schizophr. Bull. 1991, 17, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Campana, M.; Falkai, P.; Siskind, D.; Hasan, A.; Wagner, E. Characteristics and Definitions of Ultra-Treatment-Resistant Schizophrenia—A Systematic Review and Meta-Analysis. Schizophr. Res. 2021, 228, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, S.P.; Van Rheenen, T.E.; Karantonis, J.A.; Rossell, S.L. Characterising Demographic, Clinical and Functional Features of Cognitive Subgroups in Schizophrenia Spectrum Disorders: A Systematic Review. Neuropsychol. Rev. 2022, 32, 807–827. [Google Scholar] [CrossRef] [PubMed]
- Wolkin, A.; Segarnick, D.; Sierkierski, J.; Manku, M.; Horrobin, D.; Rotrosen, J. Essential Fatty Acid Supplementation during Early Alcohol Abstinence. Alcohol. Clin. Exp. Res. 1987, 11, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Fenton, W.S.; Hibbeln, J.; Knable, M. Essential Fatty Acids, Lipid Membrane Abnormalities, and the Diagnosis and Treatment of Schizophrenia. Biol. Psychiatry 2000, 47, 8–21. [Google Scholar] [CrossRef]
- Berger, M.; Nelson, B.; Markulev, C.; Yuen, H.P.; Schäfer, M.R.; Mossaheb, N.; Schlögelhofer, M.; Smesny, S.; Hickie, I.B.; Berger, G.E.; et al. Relationship between Polyunsaturated Fatty Acids and Psychopathology in the NEURAPRO Clinical Trial. Front. Psychiatry 2019, 10, 14. [Google Scholar] [CrossRef]
- Glen, A.I.; Glen, E.M.; Horrobin, D.F.; Vaddadi, K.S.; Spellman, M.; Morse-Fisher, N.; Ellis, K.; Skinner, F.S. A Red Cell Membrane Abnormality in a Subgroup of Schizophrenic Patients: Evidence for Two Diseases. Schizophr. Res. 1994, 12, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Assies, J.; Lieverse, R.; Vreken, P.; Wanders, R.J.A.; Dingemans, P.M.J.A.; Linszen, D.H. Significantly Reduced Docosahexaenoic and Docosapentaenoic Acid Concentrations in Erythrocyte Membranes from Schizophrenic Patients Compared with a Carefully Matched Control Group. Biol. Psychiatry 2001, 49, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.D.; Keshavan, M.S.; Yao, J.K. Reduced Red Blood Cell Membrane Essential Polyunsaturated Fatty Acids in First Episode Schizophrenia at Neuroleptic-Naive Baseline. Schizophr. Bull. 2004, 30, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Schlögelhofer, M.; Amminger, G.P.; Schaefer, M.R.; Fusar-Poli, P.; Smesny, S.; McGorry, P.; Berger, G.; Mossaheb, N. Polyunsaturated Fatty Acids in Emerging Psychosis: A Safer Alternative? Early Interv. Psychiatry 2014, 8, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Cadenhead, K.S.; Minichino, A.; Kelsven, S.; Addington, J.; Bearden, C.; Cannon, T.D.; Cornblatt, B.A.; Mathalon, D.; McGlashan, T.H.; Perkins, D.O.; et al. Metabolic Abnormalities and Low Dietary Omega-3 Are Associated with Symptom Severity and Worse Functioning Prior to the Onset of Psychosis: Findings from the North American Prodrome Longitudinal Studies Consortium. Schizophr. Res. 2019, 204, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Sethom, M.M.; Fares, S.; Bouaziz, N.; Melki, W.; Jemaa, R.; Feki, M.; Hechmi, Z.; Kaabachi, N. Polyunsaturated Fatty Acids Deficits Are Associated with Psychotic State and Negative Symptoms in Patients with Schizophrenia. Prostaglandins Leukot. Essent. Fat. Acids 2010, 83, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, T.; Higuchi, Y.; Matsui, M.; Itoh, H.; Uehara, T.; Itoh, T.; Arai, H.; Takamiya, C.; Suzuki, M.; Kurachi, M. Membrane Fatty Acid Levels as a Predictor of Treatment Response in Chronic Schizophrenia. Psychiatry Res. 2011, 186, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Tessier, C.; Sweers, K.; Frajerman, A.; Bergaoui, H.; Ferreri, F.; Delva, C.; Lapidus, N.; Lamaziere, A.; Roiser, J.P.; De Hert, M.; et al. Membrane Lipidomics in Schizophrenia Patients: A Correlational Study with Clinical and Cognitive Manifestations. Transl. Psychiatry 2016, 6, e906. [Google Scholar] [CrossRef]
- Yao, J.; Vankammen, D. Red Blood Cell Membrane Dynamics in Schizophrenia I. Membrane Fluidity. Schizophr. Res. 1994, 11, 209–216. [Google Scholar] [CrossRef]
- Marshall, M.; Rathbone, J. Early Intervention for Psychosis. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Rapado-Castro, M.; McGorry, P.D.; Yung, A.; Calvo, A.; Nelson, B. Sources of Clinical Distress in Young People at Ultra High Risk of Psychosis. Schizophr. Res. 2015, 165, 15–21. [Google Scholar] [CrossRef]
- Power, L.; Polari, A.R.; Yung, A.R.; Mcgorry, P.D.; Nelson, B. Distress in Relation to Attenuated Psychotic Symptoms in the Ultra-High-Risk Population Is Not Associated with Increased Risk of Psychotic Disorder. Early Interv. Psychiatry 2016, 10, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Ziermans, T.B.; Schothorst, P.F.; Sprong, M.; van Engeland, H. Transition and Remission in Adolescents at Ultra-High Risk for Psychosis. Schizophr. Res. 2011, 126, 58–64. [Google Scholar] [CrossRef]
- McGlashan, T.H.; Zipursky, R.B.; Perkins, D.; Addington, J.; Miller, T.; Woods, S.W.; Hawkins, K.A.; Hoffman, R.E.; Preda, A.; Epstein, I.; et al. Randomized, Double-Blind Trial of Olanzapine versus Placebo in Patients Prodromally Symptomatic for Psychosis. Am. J. Psychiatry 2006, 163, 790–799. [Google Scholar] [CrossRef]
- Anderson, G.; Maes, M. Schizophrenia: Linking Prenatal Infection to Cytokines, the Tryptophan Catabolite (TRYCAT) Pathway, NMDA Receptor Hypofunction, Neurodevelopment and Neuroprogression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 42, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson Rosenberg, C.; White, T.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef]
- Majhi, S.; Kumar, S.; Singh, L. A Review on Autism Spectrum Disorder: Pathogenesis, Biomarkers, Pharmacological and Non-Pharmacological Interventions. CNS Neurol. Disord. Drug Targets 2023, 22, 659–677. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Francavilla, R.; Piccolo, M.; De Giacomo, A.; Gobbetti, M. Autism Spectrum Disorders and Intestinal Microbiota. Gut Microbes 2015, 6, 207–213. [Google Scholar] [CrossRef]
- Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; Cannell, J.J.; Bjørklund, G.; Abdel-Reheim, M.K.; Othman, H.A.K.; El-Houfey, A.A.; Abd El-Aziz, N.H.R.; et al. Vitamin D Status in Autism Spectrum Disorders and the Efficacy of Vitamin D Supplementation in Autistic Children. Nutr. Neurosci. 2016, 19, 346–351. [Google Scholar] [CrossRef]
- Hu, T.; Dong, Y.; He, C.; Zhao, M.; He, Q. The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). Oxid. Med. Cell. Longev. 2020, 2020, 8396708. [Google Scholar] [CrossRef]
- Karhu, E.; Zukerman, R.; Eshraghi, R.S.; Mittal, J.; Deth, R.C.; Castejon, A.M.; Trivedi, M.; Mittal, R.; Eshraghi, A.A. Nutritional Interventions for Autism Spectrum Disorder. Nutr. Rev. 2020, 78, 515–531. [Google Scholar] [CrossRef]
- Jiang, Y.; Dang, W.; Nie, H.; Kong, X.; Jiang, Z.; Guo, J. Omega-3 Polyunsaturated Fatty Acids and/or Vitamin D in Autism Spectrum Disorders: A Systematic Review. Front. Psychiatry 2023, 14, 1238973. [Google Scholar] [CrossRef]
- Horvath, A.; Łukasik, J.; Szajewska, H. ω-3 Fatty Acid Supplementation Does Not Affect Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. J. Nutr. 2017, 147, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Glozier, N.; Dale, R.; Guastella, A.J. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder. Neurosci. Bull. 2017, 33, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Quadros, E.V.; Sequeira, J.M. Role of Folate Receptor Autoantibodies in Infantile Autism. Mol. Psychiatry 2013, 18, 270–271. [Google Scholar] [CrossRef]
- Lintas, C. Linking Genetics to Epigenetics: The Role of Folate and Folate-Related Pathways in Neurodevelopmental Disorders. Clin. Genet. 2019, 95, 241–252. [Google Scholar] [CrossRef]
- Johnson, C.R.; Handen, B.L.; Zimmer, M.; Sacco, K. Polyunsaturated Fatty Acid Supplementation in Young Children with Autism. J. Dev. Phys. Disabil. 2010, 22, 1–10. [Google Scholar] [CrossRef]
- Kuzniewicz, M.W.; Wi, S.; Qian, Y.; Walsh, E.M.; Armstrong, M.A.; Croen, L.A. Prevalence and Neonatal Factors Associated with Autism Spectrum Disorders in Preterm Infants. J. Pediatr. 2014, 164, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, M.A.; de Dassel, T.; Beller, E.; Bogossian, F.; Johnston, L.; Paynter, J.; Russo, S.; Scott, J. Autism in Toddlers Born Very Preterm. Pediatrics 2016, 137, e20151949. [Google Scholar] [CrossRef]
- Verhaeghe, L.; Dereu, M.; Warreyn, P.; De Groote, I.; Vanhaesebrouck, P.; Roeyers, H. Extremely Preterm Born Children at Very High Risk for Developing Autism Spectrum Disorder. Child Psychiatry Hum. Dev. 2016, 47, 729–739. [Google Scholar] [CrossRef]
- Girone, N.; Benatti, B.; Molteni, L.; Cassina, N.; Giacovelli, L.; Arici, C.; Dell’Osso, B. Partial Response to Antidepressant Treatment: The Role of Nutraceutical Compounds. Clin. Neuropsychiatry 2023, 20, 183–192. [Google Scholar] [CrossRef]
- Peet, M.; Murphy, B.; Shay, J.; Horrobin, D. Depletion of Omega-3 Fatty Acid Levels in Red Blood Cell Membranes of Depressive Patients. Biol. Psychiatry 1998, 43, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Huang, S.Y.; Su, K.P. A Meta-Analytic Review of Polyunsaturated Fatty Acid Compositions in Patients with Depression. Biol. Psychiatry 2010, 68, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hoffmire, C.A.; Block, R.C.; Thevenet-Morrison, K.; van Wijngaarden, E. Associations between Omega-3 Poly-Unsaturated Fatty Acids from Fish Consumption and Severity of Depressive Symptoms: An Analysis of the 2005-2008 National Health and Nutrition Examination Survey. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Fanelli Kuczmarski, M.T.; Beydoun, H.A.; Hibbeln, J.R.; Evans, M.K.; Zonderman, A.B. ω-3 Fatty Acid Intakes Are Inversely Related to Elevated Depressive Symptoms among United States Women. J. Nutr. 2013, 143, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Lotrich, F.E. Inflammatory Cytokine-Associated Depression. Brain Res. 2015, 1617, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Shieh, C.-H.; Wu, Y.-S.; Kalueff, A.; Gaikwad, S.; Su, K.-P. The Role of Omega-3 Polyunsaturated Fatty Acids Eicosapentaenoic and Docosahexaenoic Acids in the Treatment of Major Depression and Alzheimer’s Disease: Acting Separately or Synergistically? Prog. Lipid Res. 2016, 62, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Chhetry, B.T.; Hezghia, A.; Miller, J.M.; Lee, S.; Rubin-Falcone, H.; Cooper, T.B.; Oquendo, M.A.; Mann, J.J.; Sublette, M.E. Omega-3 Polyunsaturated Fatty Acid Supplementation and White Matter Changes in Major Depression. J. Psychiatr. Res. 2016, 75, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Villegas, A.; Álvarez-Pérez, J.; Toledo, E.; Salas-Salvadó, J.; Ortega-Azorín, C.; Zomeño, M.D.; Vioque, J.; Martínez, J.A.; Romaguera, D.; Pérez-López, J.; et al. Seafood Consumption, Omega-3 Fatty Acids Intake, and Life-Time Prevalence of Depression in the PREDIMED-Plus Trial. Nutrients 2018, 10, 2000. [Google Scholar] [CrossRef]
- Twenge, J.M.; Gentile, B.; DeWall, C.N.; Ma, D.; Lacefield, K.; Schurtz, D.R. Birth Cohort Increases in Psychopathology among Young Americans, 1938-2007: A Cross-Temporal Meta-Analysis of the MMPI. Clin. Psychol. Rev. 2010, 30, 145–154. [Google Scholar] [CrossRef]
- Logan, A.C.; Jacka, F.N. Nutritional Psychiatry Research: An Emerging Discipline and Its Intersection with Global Urbanization, Environmental Challenges and the Evolutionary Mismatch. J. Physiol. Anthropol. 2014, 33, 22. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Salem, N. Dietary Polyunsaturated Fatty Acids and Depression: When Cholesterol Does Not Satisfy. Am. J. Clin. Nutr. 1995, 62, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Hahn, C.G.; Jandacek, R.; Rider, T.; Tso, P.; Stanford, K.E.; Richtand, N.M. Selective Deficits in the Omega-3 Fatty Acid Docosahexaenoic Acid in the Postmortem Orbitofrontal Cortex of Patients with Major Depressive Disorder. Biol. Psychiatry 2007, 62, 17–24. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Nandagopal, J.J.; Strakowski, S.M.; DelBello, M.P. Preventative Strategies for Early-Onset Bipolar Disorder: Towards a Clinical Staging Model. CNS Drugs 2010, 24, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Pajak, A.; Marventano, S.; Castellano, S.; Galvano, F.; Bucolo, C.; Drago, F.; Caraci, F. Role of Omega-3 Fatty Acids in the Treatment of Depressive Disorders: A Comprehensive Meta-Analysis of Randomized Clinical Trials. PLoS ONE 2014, 9, e96905. [Google Scholar] [CrossRef]
- Sublette, M.E.; Galfalvy, H.C.; Hibbeln, J.R.; Keilp, J.G.; Malone, K.M.; Oquendo, M.A.; Mann, J.J. Polyunsaturated Fatty Acid Associations with Dopaminergic Indices in Major Depressive Disorder. Int. J. Neuropsychopharmacol. 2014, 17, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Kelaiditis, C.F.; Gibson, E.L.; Dyall, S.C. Effects of Long-Chain Omega-3 Polyunsaturated Fatty Acids on Reducing Anxiety and/or Depression in Adults; A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Prostaglandins Leukot. Essent. Fat. Acids 2023, 192, 102572. [Google Scholar] [CrossRef]
- Song, J.; Ma, W.; Gu, X.; Zhao, L.; Jiang, J.; Xu, Y.; Zhang, L.; Zhou, M.; Yang, L. Metabolomic Signatures and Microbial Community Profiling of Depressive Rat Model Induced by Adrenocorticotrophic Hormone. J. Transl. Med. 2019, 17, 224. [Google Scholar] [CrossRef] [PubMed]
- Nierenberg, A.A.; Agustini, B.; Köhler-Forsberg, O.; Cusin, C.; Katz, D.; Sylvia, L.G.; Peters, A.; Berk, M. Diagnosis and Treatment of Bipolar Disorder: A Review. JAMA 2023, 330, 1370–1380. [Google Scholar] [CrossRef]
- Rutkofsky, I.H.; Khan, A.S.; Sahito, S.; Kumar, V. The Psychoneuroimmunological Role of Omega-3 Polyunsaturated Fatty Acids in Major Depressive Disorder and Bipolar Disorder. Adv. Mind Body Med. 2017, 31, 8–16. [Google Scholar]
- Mcnamara, R.K.; Jandacek, R.; Tso, P.; Blom, T.J.; Welge, J.A.; Strawn, J.R.; Adler, C.M.; Strakowski, S.M.; Delbello, M.P. Adolescents with or at Ultra-High Risk for Bipolar Disorder Exhibit Erythrocyte Docosahexaenoic Acid and Eicosapentaenoic Acid Deficits: A Candidate Prodromal Risk Biomarker. Early Interv. Psychiatry 2016, 10, 203–211. [Google Scholar] [CrossRef]
- Bach, B.; Kramer, U.; Doering, S.; di Giacomo, E.; Hutsebaut, J.; Kaera, A.; De Panfilis, C.; Schmahl, C.; Swales, M.; Taubner, S.; et al. The ICD-11 Classification of Personality Disorders: A European Perspective on Challenges and Opportunities. Borderline Pers. Disord. Emot. Dysregul. 2022, 9, 12. [Google Scholar] [CrossRef]
- Gajos, J.M.; Beaver, K.M. The Effect of Omega-3 Fatty Acids on Aggression: A Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 69, 147–158. [Google Scholar] [CrossRef]
- Bègue, L.; Zaalberg, A.; Shankland, R.; Duke, A.; Jacquet, J.; Kaliman, P.; Pennel, L.; Chanove, M.; Arvers, P.; Bushman, B.J. Omega-3 Supplements Reduce Self-Reported Physical Aggression in Healthy Adults. Psychiatry Res. 2018, 261, 307–311. [Google Scholar] [CrossRef]
- Choy, O.; Raine, A. Omega-3 Supplementation as a Dietary Intervention to Reduce Aggressive and Antisocial Behavior. Curr. Psychiatry Rep. 2018, 20, 32. [Google Scholar] [CrossRef]
- Zanarini, M.C.; Frankenburg, F.R. Omega-3 Fatty Acid Treatment of Women with Borderline Personality Disorder: A Double-Blind, Placebo-Controlled Pilot Study. Am. J. Psychiatry 2003, 160, 167–169. [Google Scholar] [CrossRef]
- Lieb, K.; Völlm, B.; Rücker, G.; Timmer, A.; Stoffers, J.M. Pharmacotherapy for Borderline Personality Disorder: Cochrane Systematic Review of Randomised Trials. Br. J. Psychiatry 2010, 196, 4–12. [Google Scholar] [CrossRef]
- Johnson, K.V.-A. Gut Microbiome Composition and Diversity Are Related to Human Personality Traits. Hum. Microb. J. 2020, 15, 100069. [Google Scholar] [CrossRef]
- Vernice, N.A.; Shah, N.; Lam, E.; Herd, P.; Reiss, A.B.; Kasselman, L.J. The Gut Microbiome and Psycho-Cognitive Traits. Prog. Mol. Biol. Transl. Sci. 2020, 176, 123–140. [Google Scholar] [CrossRef]
- Anderson, G. Pathoetiology and Pathophysiology of Borderline Personality: Role of Prenatal Factors, Gut Microbiome, Mu- and Kappa-Opioid Receptors in Amygdala-PFC Interactions. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 98, 109782. [Google Scholar] [CrossRef]
- Cullen, K.R.; Vizueta, N.; Thomas, K.M.; Han, G.J.; Lim, K.O.; Camchong, J.; Mueller, B.A.; Bell, C.H.; Heller, M.D.; Schulz, S.C. Amygdala Functional Connectivity in Young Women with Borderline Personality Disorder. Brain Connect. 2011, 1, 61–71. [Google Scholar] [CrossRef]
- Rössler, H.; Flasbeck, V.; Gatermann, S.; Brüne, M. Alterations of the Gut Microbiota in Borderline Personality Disorder. J. Psychosom. Res. 2022, 158, 110942. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, A.V.; Balneaves, L.G.; Faulkner, G.; Ortiz, A.; McIntosh, D.; Morehouse, R.L.; Ravindran, L.; Yatham, L.N.; Kennedy, S.H.; Lam, R.W.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 5. Complementary and Alternative Medicine Treatments. Can. J. Psychiatry 2016, 61, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Appleton, K.M.; Sallis, H.M.; Perry, R.; Ness, A.R.; Churchill, R. Omega-3 Fatty Acids for Depression in Adults. Cochrane Database Syst. Rev. 2015, 2015, CD004692. [Google Scholar] [CrossRef] [PubMed]
- Appleton, K.M.; Sallis, H.M.; Perry, R.; Ness, A.R.; Churchill, R. ω-3 Fatty Acids for Major Depressive Disorder in Adults: An Abridged Cochrane Review. BMJ Open 2016, 6, e010172. [Google Scholar] [CrossRef] [PubMed]
- Hallahan, B.; Ryan, T.; Hibbeln, J.R.; Murray, I.T.; Glynn, S.; Ramsden, C.E.; SanGiovanni, J.P.; Davis, J.M. Efficacy of Omega-3 Highly Unsaturated Fatty Acids in the Treatment of Depression. Br. J. Psychiatry 2016, 209, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Mocking, R.J.T.; Harmsen, I.; Assies, J.; Koeter, M.W.J.; Ruhé, H.G.; Schene, A.H. Meta-Analysis and Meta-Regression of Omega-3 Polyunsaturated Fatty Acid Supplementation for Major Depressive Disorder. Transl. Psychiatry 2016, 6, e756. [Google Scholar] [CrossRef] [PubMed]
- Schefft, C.; Kilarski, L.L.; Bschor, T.; Köhler, S. Efficacy of Adding Nutritional Supplements in Unipolar Depression: A Systematic Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2017, 27, 1090–1109. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.Z.; Wu, S.-K.; Zailani, H.; Chiu, W.-C.; Liu, W.-C.; Su, K.-P.; Lee, S.-D. Effects of Omega-3 Polyunsaturated Fatty Acids Intake on Vasomotor Symptoms, Sleep Quality and Depression in Postmenopausal Women: A Systematic Review. Nutrients 2023, 15, 4231. [Google Scholar] [CrossRef]
- Gabriel, F.C.; Oliveira, M.; Martella, B.D.M.; Berk, M.; Brietzke, E.; Jacka, F.N.; Lafer, B. Nutrition and Bipolar Disorder: A Systematic Review. Nutr. Neurosci. 2023, 26, 637–651. [Google Scholar] [CrossRef]
- Karaszewska, D.M.; Ingenhoven, T.; Mocking, R.J.T. Marine Omega-3 Fatty Acid Supplementation for Borderline Personality Disorder. J. Clin. Psychiatry 2021, 82, 32819. [Google Scholar] [CrossRef]
- Chang, J.P.-C.; Tseng, P.-T.; Zeng, B.-S.; Chang, C.-H.; Su, H.; Chou, P.-H.; Su, K.-P. Safety of Supplementation of Omega-3 Polyunsaturated Fatty Acids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Soh, A.Y.S.; Yeo, W.S. A Systematic Review of the Role of Prebiotics and Probiotics in Autism Spectrum Disorders. Medicina 2019, 55, 129. [Google Scholar] [CrossRef]
- Tan, Q.; Orsso, C.E.; Deehan, E.C.; Kung, J.Y.; Tun, H.M.; Wine, E.; Madsen, K.L.; Zwaigenbaum, L.; Haqq, A.M. Probiotics, Prebiotics, Synbiotics, and Fecal Microbiota Transplantation in the Treatment of Behavioral Symptoms of Autism Spectrum Disorder: A Systematic Review. Autism Res. 2021, 14, 1820–1836. [Google Scholar] [CrossRef]
- Song, J.; Zhou, B.; Kan, J.; Liu, G.; Zhang, S.; Si, L.; Zhang, X.; Yang, X.; Ma, J.; Cheng, J.; et al. Gut Microbiota: Linking Nutrition and Perinatal Depression. Front. Cell. Infect. Microbiol. 2022, 12, 932309. [Google Scholar] [CrossRef]
- Martínez-González, A.E.; Andreo-Martínez, P. Prebiotics, Probiotics and Fecal Microbiota Transplantation in Autism: A Systematic Review. Rev. Psiquiatr. Salud Ment. 2020, 13, 150–164. [Google Scholar] [CrossRef]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut Microbiota’s Effect on Mental Health: The Gut-Brain Axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef]
- McKean, J.; Naug, H.; Nikbakht, E.; Amiet, B.; Colson, N. Probiotics and Subclinical Psychological Symptoms in Healthy Participants: A Systematic Review and Meta-Analysis. J. Altern. Complement. Med. 2017, 23, 249–258. [Google Scholar] [CrossRef]
- Smith, K.S.; Greene, M.W.; Babu, J.R.; Frugé, A.D. Psychobiotics as Treatment for Anxiety, Depression, and Related Symptoms: A Systematic Review. Nutr. Neurosci. 2021, 24, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and Probiotics for Depression and Anxiety: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Zagórska, A.; Marcinkowska, M.; Jamrozik, M.; Wiśniowska, B.; Paśko, P. From Probiotics to Psychobiotics—The Gut-Brain Axis in Psychiatric Disorders. Benef. Microbes 2020, 11, 717–732. [Google Scholar] [CrossRef]
- Sanada, K.; Nakajima, S.; Kurokawa, S.; Barceló-Soler, A.; Ikuse, D.; Hirata, A.; Yoshizawa, A.; Tomizawa, Y.; Salas-Valero, M.; Noda, Y.; et al. Gut Microbiota and Major Depressive Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2020, 266, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Grau-Del Valle, C.; Fernández, J.; Solá, E.; Montoya-Castilla, I.; Morillas, C.; Bañuls, C. Association between Gut Microbiota and Psychiatric Disorders: A Systematic Review. Front. Psychol. 2023, 14, 1215674. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.B.; Lagier, J.-C.; Honore, S.; Lancon, C.; Korchia, T.; Sunhary De Verville, P.-L.; Llorca, P.-M.; Auquier, P.; Guedj, E.; Boyer, L. Microbiota-Orientated Treatments for Major Depression and Schizophrenia. Nutrients 2020, 12, 1024. [Google Scholar] [CrossRef] [PubMed]
- Knuesel, T.; Mohajeri, M.H. The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients 2021, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Alli, S.R.; Gorbovskaya, I.; Liu, J.C.W.; Kolla, N.J.; Brown, L.; Müller, D.J. The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies. Int. J. Mol. Sci. 2022, 23, 4494. [Google Scholar] [CrossRef] [PubMed]
- Halemani, K.; Shetty, A.P.; Thimmappa, L.; Issac, A.; Dhiraaj, S.; Radha, K.; Mishra, P.; Mathias, E.G. Impact of Probiotic on Anxiety and Depression Symptoms in Pregnant and Lactating Women and Microbiota of Infants: A Systematic Review and Meta-Analysis. J. Glob. Health 2023, 13, 04038. [Google Scholar] [CrossRef]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.-S. A Meta-Analysis of the Use of Probiotics to Alleviate Depressive Symptoms. J. Affect. Disord. 2018, 228, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Le Morvan de Sequeira, C.; Hengstberger, C.; Enck, P.; Mack, I. Effect of Probiotics on Psychiatric Symptoms and Central Nervous System Functions in Human Health and Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 621. [Google Scholar] [CrossRef]
- Ng, Q.X.; Lim, Y.L.; Yaow, C.Y.L.; Ng, W.K.; Thumboo, J.; Liew, T.M. Effect of Probiotic Supplementation on Gut Microbiota in Patients with Major Depressive Disorders: A Systematic Review. Nutrients 2023, 15, 1351. [Google Scholar] [CrossRef]
- Ciobanu, A.M.; Petrescu, C.; Anghele, C.; Manea, M.C.; Ciobanu, C.A.; Petrescu, D.M.; Antonia, M.O.; Riga, S. Severe Vitamin D Deficiency-A Possible Cause of Resistance to Treatment in Psychiatric Pathology. Medicina 2023, 59, 2056. [Google Scholar] [CrossRef]
- Seiler, N.; Tsiglopoulos, J.; Keem, M.; Das, S.; Waterdrinker, A. Prevalence of Vitamin D Deficiency among Psychiatric Inpatients: A Systematic Review. Int. J. Psychiatry Clin. Pract. 2022, 26, 330–336. [Google Scholar] [CrossRef]
- Cui, X.; McGrath, J.J.; Burne, T.H.J.; Eyles, D.W. Vitamin D and Schizophrenia: 20 Years On. Mol. Psychiatry 2021, 26, 2708–2720. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, R.; Wang, J. The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients 2020, 13, 86. [Google Scholar] [CrossRef]
- Tirani, S.A.; Balali, A.; Askari, G.; Saneei, P. Maternal Serum 25-Hydroxy Vitamin D Levels and Risk of Autism Spectrum and Attention-Deficit Hyperactivity Disorders in Offspring: A Systematic Review and Dose-Response Meta-Analysis. Psychiatry Res. 2023, 319, 114977. [Google Scholar] [CrossRef]
- Mikola, T.; Marx, W.; Lane, M.M.; Hockey, M.; Loughman, A.; Rajapolvi, S.; Rocks, T.; O’Neil, A.; Mischoulon, D.; Valkonen-Korhonen, M.; et al. The Effect of Vitamin D Supplementation on Depressive Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2023, 63, 11784–11801. [Google Scholar] [CrossRef]
- Srifuengfung, M.; Srifuengfung, S.; Pummangura, C.; Pattanaseri, K.; Oon-Arom, A.; Srisurapanont, M. Efficacy and Acceptability of Vitamin D Supplements for Depressed Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrition 2023, 108, 111968. [Google Scholar] [CrossRef]
- Sarris, J.; Ravindran, A.; Yatham, L.N.; Marx, W.; Rucklidge, J.J.; McIntyre, R.S.; Akhondzadeh, S.; Benedetti, F.; Caneo, C.; Cramer, H.; et al. Clinician Guidelines for the Treatment of Psychiatric Disorders with Nutraceuticals and Phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J. Biol. Psychiatry 2022, 23, 424–455. [Google Scholar] [CrossRef]
High-Risk Psychosis | |||||
---|---|---|---|---|---|
Study | Study Design | Drugs and Dose | Cohort | Treatment Duration | Results |
Smesny et al., 2014 [28] | Randomized, double-blind, placebo-controlled trial | 700 mg/day EPA + 480 mg/day DHA | 80 (13 to 25 years) | 12 weeks | Normalizing PLA2 activity and d-6-desaturase-mediated metabolism of omega-3 and omega-6 |
Amminger et al., 2015 [29] | Post hoc subgroup analysis (Amminger et al., 2010) | 700 mg/day EPA + 480 mg/day DHA | 81 (13 to 25 years) | 12 weeks | Reduced risk of progression to psychotic disorder and psychiatric morbidity |
McGorry et al., 2017 [30] | Randomized, double-blind, placebo-controlled trial | 840 mg/day EPA + 560 mg/day DHA + CBCM | 304 (13 to 40 years) | 24 weeks | No differences |
Alqarni et al., 2020 [31] | Randomized, double-blind, placebo-controlled, clinical replication trial (McGorry et al., 2017) | 840 mg/day EPA + 560 mg/day DHA | 304 (13 to 40 years) | 24 weeks | Increase of level of omega-3 in erythrocyte |
Susai et al., 2022 [32] | Randomized, clinical trial | 840 mg/day EPA + 560 mg/day DHA | 268 (18.47 ± 4.49 years) | 52 weeks | Reduced inflammatory profile No clinical effects |
First-Episode Psychosis | |||||
Study | Study Design | Drugs and Dose | Cohort | Treatment Duration | Results |
Emsley et al., 2014 [33] | Randomized, double-blind, placebo-controlled trial | 2 g/day EPA + 1 g/day DHA + α-LA 300 mg/day | 33 (18 to 48 years) | 104 weeks | Relapse prevention of psychotic symptoms |
Pawelzcyk et al., 2016 [34] | Randomized, double-blind, placebo-controlled trial | 2.2 g/day omega-3 (EPA + DHA) | 71 (16 to 35 years) | 26 weeks | ↓ psychotic symptoms ↓ depressive symptoms Increase in level of functioning |
Pawelzcyk et al., 2017 [35] | Secondary outcome analysis of a randomized trial (Pawelzcyk et al., 2016) | 2.2 g/day omega-3 (EPA + DHA) | 71 (16 to 35 years) | 26 weeks | ↓ psychotic symptoms |
Pawelzcyk et al., 2018 [36] | Secondary outcome analysis of a randomized trial (Pawelzcyk et al., 2016) | 2.2 g/day omega-3 (EPA + DHA) | 71 (16 to 35 years) | 26 weeks | Increase of level of telomerase in peripheral blood cells ↓ depressive symptoms |
Pawelzcyk et al., 2019 [37] | Secondary outcome analysis of a randomized trial (Pawelzcyk et al., 2016) | 2.2 g/day omega-3 (EPA + DHA) | 71 (16 to 35 years) | 26 weeks | Increase of BDNF level ↓ depressive symptoms |
Allott et al., 2019 [38] | Randomized, double-blind, placebo-controlled trial | 5 mg/day folic acid + 0.4 mg/day vit. B12 + 50 mg/day vit. B6 | 120 (15 to 25 years) | 12 weeks | Reduction of homocysteine levels neuroprotective in attention/ vigilance |
Mullier et al., 2019 [39] | Pilot randomized, placebo-controlled trial | 2700 mg/day N-acetyl-cysteine | 20 (25 ± 6 years) | 24 weeks | Increase of functional connectivity within the cingulate cortex |
Szeszko et al., 2021 [40] | Randomized, double-blind, placebo-controlled trial | 740 mg/day EPA + 400 mg/day DHA + risperidone (dosage not available) | 50 (average age: 21.5 years) | 16 weeks | Increase in social cognition |
Pawelzcyk et al., 2021 [41] | Findings from a randomized controlled study (Pawelzcyk et al., 2016) | 2.2 g/day omega-3 (EPA + DHA) | 71 (16 to 35 years) | 26 weeks | ↓ psychotic symptoms Reduction of TG level ↓ MetS risk |
Gaughran et al., 2021 [42] | Randomized, multisite, double-blind, placebo-controlled, parallel-group clinical trial | 120,000 UI/month vit. D | 149 (18 to 65 years) | 24 weeks | No differences |
Lyall et al., 2021 [43] | Randomized, double-blind, placebo-controlled trial | 740 mg/day EPA + 400 mg/day DHA + risperidone or placebo + risperidone (dosage not available) | 37 (MRI performed on 18) (average age: 21.8 years) | 16 weeks | ↓ MRI |
Huang et al., 2022 [44] | Randomized clinical trials | ≈ 5 × 107 CFU/day probiotics (Bifidobacteri, Lactobacilli, Enterococci) + 15–20 mg/day olanzapine | 90 (18 to 50 years) | 12 weeks | ↓ insulin resistance |
Huang et al., 2022 [44] | Randomized clinical trials | ≈ 5 × 107 CFU/day probiotics (Bifidobacteri, Lactobacilli, Enterococci) + 20 g/day dietary fibers + 15–20 mg/day olanzapine | 60 (18 to 50 years) | 12 weeks | ↓ metabolic profile |
Stable Schizophrenia | |||||
Study | Study Design | Drugs and Dose | Cohort | Treatment Duration | Results |
Jamilian et al., 2014 [45] | Randomized, double-blind, placebo-controlled trial | 1 g/day omega-3 | 60 (23 to 39 years) | 8 weeks | ↓ psychotic symptoms |
Sanders et al., 2017 [46] | Open-label trial | 100 mg/day ALA | 10 (38.5 ± 7.26 years) | 16 weeks | ↓ Brief Psychiatric Rating Scale ↓ neurocognitive parameters ↓ extrapyramidal symptoms ↓ lipid peroxidation |
Qiao et al., 2018 [47] | Randomized, double-blind, placebo-controlled trial | 540 mg/day EPA + 360 mg/day DHA | 50 (18 to 60 years) | 12 weeks | ↓ violence, but no improvement in positive and negative symptoms |
Robinson et al., 2019 [48] | Randomized, placebo-controlled trial | EPA 740 mg + DHA 400 mg/day | 50 (4 of them BD) (15 to 40 years) | 16 weeks | ↓ confusion, anxiety, depression, irritability, and tiredness/fatigue |
Ghaderi et al., 2019 [49] | Randomized, double-blind, placebo-controlled trial | 50,000 UI Vit. D/2 weeks + 8 × 109 CFU/day probiotic (L. acidophilus, B. bifidum, L. reuteri, L. fermentum) | 60 (25 to 65 years) | 12 weeks | ↓ psychotic symptoms ↓ metabolic profile |
Xu et al., 2019 [50] | Randomized, double-blind, placebo-controlled trial | 720 mg/day EPA + 480 mg/day DHA + olanzapine (dosage not available) | 80 patients with schizophrenia + MetS (24 to 33 years) | 12 weeks | ↓ TG metabolism |
Tang et al., 2020 [51] | Randomized, placebo-controlled trial | 360 mg/day EPA +240 mg/day DHA + olanzapine (dosage not available) | 80 (18 to 45 years) | 12 weeks | Increase in cognitive function |
Maguire et al., 2021 [52] | Randomized, placebo-controlled trial | 300 mg/day Coenzyme Q10 | 72 (age not available) | 24 weeks | No differences |
Jamilian et al., 2021 [53] | Randomized, double-blind, placebo-controlled trial | 8 × 109 CFU/day probiotics (L. acidophilus, B. lactis, B. bifidum, B. longum) + 200 μg/day selenium | 60 (18 to 60 years) | 12 weeks | ↓ psychotic symptoms ↓ metabolic profile |
Mishra et al., 2022 [54] | Randomized, double-blind, placebo-controlled trial | 300 mg/day ALA | 20 (18 to 65 years) | 8 weeks | ↓ positive symptoms |
Sevillano-Jiménez et al., 2022 [55] | Randomized clinical, double-blind, balanced-block | Probiotic + prebiotics (individual program) | 50 (18 to 65 years) | 26 weeks | ↓ MetS |
De Lima jr et al., 2023 [56] | Randomized, double-blind, placebo-controlled study | 100 mg/day ALA | Not available | 16 weeks | no differences |
Kalejahi et al., 2023 [57] | Randomized, controlled trial | 2000 UI/day vit. D | 48 (schizophrenia + hypovitaminosis D) (18 to 65 years) | 8 weeks | ↓ waist circumference ↓ psychotic symptoms Reduction of GSK-3β level ↓ metabolic profile |
Autism Spectrum Disorder | |||||
---|---|---|---|---|---|
Study | Study Design | Drugs and Dose | Cohort | Treatment Duration | Results |
Bent et al., 2014 [58] | Randomized, controlled trial | 1.3 g/day of omega-3 (and 1.1 g of EPA+ DHA) | 57 children (5 to 8 years) | 6 weeks | ↓ hyperactivity |
Voigt et al., 2014 [59] | Randomized, double-blind, placebo-controlled trial | 0.2 g/day DHA | 48 children (3 to 10 years) | 26 weeks | No differences |
Mankad et al., 2015 [60] | Randomized, placebo-controlled trial | 0.75–1.5 g/day EPA + DHA | 38 children (2 to 5 years) | 26 weeks | No differences |
Ooi et al., 2015 [61] | Open label trial | 192 mg/day EPA + 840 mg/day DHA | 41 patients (7 to 18 years) | 12 weeks | Improve SRS-2 ↓ Attention Problems Syndrome Scales of CBCL |
Tomova et al., 2015 [62] | Pilot study | 3 capsules of probiotics (Children Dophilus®: 3 stumps Lactobacilli 60% + 2 stumps Bifidumbacteria 25% + 1 stump Streptococci 15%) | 29 children (10 ASD children, their 9 non-ASD siblings, 10 non-ASD children) (2 to 17 years) | 16 weeks | ↓ Bacteroidetes/Firmicutes ratio Increase of Lactobacillus spp. |
Grossi et al., 2016 [63] | Case study | 9 × 10⁹ CFU/day Bifidobacteria + 8 × 1010 CFU/day Lactobacilli + 20 × 1010 CFU/day Streptococci | A 12-year-old child | 4 weeks | ↓ GI symptoms ↓ ASD symptoms ↓ ADOS-2 score |
Sheppard et al., 2017 [64] | Pilot randomized, controlled trial | 338 mg EPA + 225 mg DHA + 83 mg GLA + 306 mg Omega 9 | 31 children (18–38 months of age born at ≤29 weeks of gestation) | 12 weeks | ↓ early language development in children at risk for ASD |
Dae-Wook Kang et al., 2017 [65] | Open-label study | MTT treatment protocol (antibiotic + bowel cleanse + FMT) | 38 children (7 to 17 years) | 18 weeks (8 weeks follow up) | ↓ GI symptoms ↓ behavioral ASD symptoms |
Parellada et al., 2017 [66] | Randomized, crossover, placebo-controlled trial | 962 mg/day omega-3 for children or 1155 mg/day omega-3 for adolescents | 68 patients (5 to 17 years) | 8 weeks | No differences |
Keim et al., 2018 [67] | Randomized, double-blind, placebo-controlled trial | 338 mg/day EPA + 225 mg/day DHA + 83 mg/day GLA | 31 patients (18–38 months of age who were born at ≤29 weeks of gestation) | 12 weeks | ↓ ASD symptoms |
Mazahery et al., 2019 [68] | Randomized, controlled trial | 2000 UI/day Vit. D or 722 mg/day DHA or 2000 UI/day vit. D + 722 mg/day DHA | 117 (2.5 to 8 years) | 52 weeks | Vit. D and omega-3: ↓ irritability vit. D: ↓ hyperactivity |
Liu et al., 2019 [69] | Randomized, double-blind, placebo-controlled Trial | 3 × 1010 CFU/capsule/day (L. plantarum PS128) | 80 (7 to 15 years) | 4 weeks | ↓ disruptive and rule-breaking behaviors ↓ hyperactivity/impulsivity |
Wang et al., 2020 [70] | Controlled, clinical trial | 1010 CFU/pack/day probiotics (B. infantis, L. Rhamnosus, B. lactis, L. paracasei) + FOS | 26 (3 to 9 years) | 12 months | ↓ severity of autism ↓ GI symptoms |
Javadfar et al., 2020 [71] | Randomized, clinical trial | 300 UI/kg (max 6000 UI/day) vit. D | 43 (8.41 ± 2.87 years) | 15 weeks | Improved CARS Improved ATEC |
Boone et al., 2020 [72] | Secondary analysis of a randomized trial not available | 200 mg/day DHA + 200 mg/day AA | 377 (10–16 months of age born at ≤35 weeks of gestation) | 26 weeks | No differences (caregiver reported) |
Renard et al., 2020 [73] | Randomized, placebo-controlled trial | 10 mg/day folinic acid | 19 children (3 to 10 years) | 12 weeks | Improved ADOS score |
Kong et al., 2021 [74] | Randomized, double-blinded, placebo-controlled pilot trial | 6 × 10 10 CFU/day (L. plantarum PS128) + oxytocin (dosage not available) | 35 (3 to 20 years) | 28 weeks | ↓ ABC ↓ SRS ↓ CGI |
Doaei et al., 2021 [75] | Randomized, clinical trial | 1 g/day omega-3 | 54 children (5 to 15 years) | 8 weeks | ↓ stereotyped behaviors improve social communication ↓ GARS score |
Batebi et al., 2021 [76] | Randomized, double-blind, placebo-controlled trial | 2 mg/kg (up to 50 mg)/day folinic acid + risperidone (initiating dose of 0.5 mg/day with a dose increase of 0.5 mg per week, maximum 1.5 mg/day) | 55 children (4 to 12 years) | 10 weeks | ↓ inappropriate speech ↓ stereotypic behavior ↓ hyperactivity/noncompliance |
Boone et al., 2022 [77] | Secondary analysis of a randomized clinical trial not available | 338 mg EPA + 225 mg DHA + 83 mg GLA + 280 mg omega-6 + 306 mg omega-9 | 31 children (18–38 months of age born at ≤29 weeks of gestation) | 12 weeks | ↓ depressive behavior ↓ internalizing behavior ↓ interpersonal relationship adaptive behavior |
Keim et al., 2022 [78] | Randomized, double-blind, controlled trial | 112 mg EPA+ 67 mg DHA+ 122 mg omega-6 (included 32 mg GLA) + 83 mg omega-9 | 72 (2 to 6 years) | 12 weeks | Reduction of IL2 level |
Schmitt et al., 2023 [79] | Randomized, controlled trial | 2 × 10 10 CFU L. Reuteri + 200 mg Sepadex® (dextran microparticles) + 74 mM maltose/day | 15 (15 to 45 years) | 4 weeks | ↓ adaptive behavior ↓ social preference |
Major Depression Disorder | |||||
---|---|---|---|---|---|
Study | Study Design | Drugs and Dose | Cohort | Treatment Duration | Results |
Ginty et al., 2015 [80] | Preliminary randomized and placebo-controlled trial | 1.4 g/day omega-3 (EPA + DHA) monotherapy | 23 (18 to 21 years) | 3 weeks | ↓ BDI scores over time |
Mischoulon et al., 2015 [81] | Randomized, double-blind, placebo-controlled trial | 1 g/day EPA or 1 g/day DHA or placebo | 196 (age not available) | 8 weeks | No differences |
Park et al., 2015 [82] | Randomized, double-blind, placebo-controlled trial | 1140 g/day EPA + 0.6 g/day DHA + standard therapy | 35 (18 to 65 years) | 12 weeks | No differences |
Rapaport et al., 2016 [83] | Proof-of-concept study | 1060 mg/day EPA + 260 mg DHA or 180 mg EPA + 900 mg/day DHA or placebo | 155 (18 to 80 years) | 8 weeks | Subjects with MDD and a high number of inflammatory biomarkers had a better response to EPA than the placebo and a lower response to DHA than the placebo |
Young et al., 2017 [84] | Randomized, placebo-controlled trial | 1.4 g/day EPA + 0.2 g/day DHA + 0.4 g/day other omega-3 + IF-PEP | 72 (7 to 14 years) | 12 weeks | ↓ co-occurring behavior symptoms |
Gabbay et al., 2018 [85] | Double-blind, placebo-controlled trial | 2:1 ratio of EPA to DHA: Initial dose of 1.2 g/day. Doses were raised in increments of 0.6 g/day every 2 weeks (maximum possible dose of 3.6 g/day, combined 2.4 g EPA + 1.2 g DHA) | 51 psychotropic medication-free adolescents with MDD (12 to 19 years) | 10 weeks | No differences |
Jahangard et al., 2018 [86] | Randomized, double-blind, placebo-controlled trial | 1000 mg/day omega-3 + 50–200 mg/day sertraline | 50 (18 to 65 years) | 12 weeks | ↓ depression, anxiety, sleep, and patients’ competencies to regulate their emotions |
Hansen et al., 2019 [87] | Randomised, multicenter, double-blind, placebo-controlled trial | 2800 UI /day Vit. D | 62 (18 to 65 years) | 12 weeks (+12 weeks follow up) | No differences |
Tayama et al., 2019 [88] | Randomized, double-blind, placebo-controlled trial | 1000 mg/day EPA + 500 mg/day DHA | 20 (18 to 75 years) | 12 weeks | No differences |
Chahwan et al., 2019 [89] | Randomized, triple-blind, placebo-controlled trial | Ecologic®Barrier (B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, L. lactis W19 and L. lactis W58 (total cell count 1 × 1010 CFU/day) | 71 (23 to 48 years) | 8 weeks | No differences |
Parletta et al., 2019 [90] | Randomized, placebo-controlled trial | 200 mg/day EPA + 900 mg/day DHA + Mediterranean-style diet | 152 (18 to 65 years) | 26 weeks | ↓ depressive symptoms ↓ mental health |
Karakula-Juchnowicz et al., 2019 [91] | Double-blind, placebo-controlled clinical study protocol | 3 × 109 CFU L. helveticus Rosell®-52 + B. longum | 120 (18 to 60 years) | 12 weeks | ↓ GI symptoms ↓ depressive symptoms |
Kazemi et al., 2019 [92] | Randomized, controlled trial | L. helveticus + B. longum (probiotic) or galactooligosaccharides (prebiotics) or placebo | 110 (36.5 ± 8.03 years) | 8 weeks | Probiotics: ↓ BDI Prebiotics: no differences |
De Koning et al., 2019 [93] | Randomized, placebo-controlled trial | 1200 UI/day Vit. D | 155 (60 to 80 years) | 52 weeks | Increase of Vit. D serum level No clinical differences |
Alavi et al., 2019 [94] | Randomized clinical trial | 50,000 IU/week Vit. D | 78 older adults aged over 60 years | 8 weeks | Increase of Vit. D serum level ↓ GDS-15 |
Saccarello et al., 2020 [95] | Randomized, double-blind, placebo-controlled Study | 200 mg/day SAMe + 1 × 10⁹ CFU/day L. plantarum HEAL9 | 90 (18 to 60 years) | 6 weeks | ↓ Z-SDS |
Trebatickà et al., 2020 [96] | Randomized, double-blind, placebo-controlled trial | 2.4 g/day omega-3 (including 1 g EPA + 0.75 g DHA) or 2.467 g/day omega 6 (linoleic acid) | 60 children suffering from depressive disorder or mixed anxiety and depressive disorder (7 to 18 years) | 12 weeks | ↓ CDI score ↓ omega 6/omega-3 |
Reininghaus et al., 2020 [97] | Randomized, placebo-controlled trial | B. bifidum W23 + B. lactis W51 + B. lactis W52 + L. acidophilus W22 + L. casei W56 + L. paracasei W20 + L. plantarum W62 + L. salivarius W24 + L. lactis W19 daily | 82 (18 to 75 years) | 4 weeks | No differences |
Reiter et al., 2020 [98] | Monocentric, randomized, placebo-controlled trial | B. bifidum W23 + B. lactis W51+ B. lactis W52 + L. acidophilus W22 + L. casei W56 + L. paracasei W20 + L. plantarum W62 + L. salivarius W24 + L. lactis W19 daily | 61 (18 to 75 years) | 4 weeks | Reduction of IL6 level |
Kaviani et al., 2020 [99] | Randomized, double-blind, placebo-controlled trial | 50,000 IU/ 2 weeks vit. D | 56 (43 ± 11.15 years) | 8 weeks | ↓ depressive symptoms Increase of serum vit. D level |
Zhu et al., 2020 [100] | Randomized, placebo-controlled trial | 1600 mg/day Vit D | 158 with hypovitaminosis D (18 to 60 years) | 26 weeks | No differences in depression symptoms; improved anxiety symptoms |
Libuda et al., 2020 [101] | Randomized, placebo-controlled trial | 2640 UI vit. D/day | 113 with hypovitaminosis D (18 to 60 years) | 4 weeks | Increase of serum vit. D level ↓ DISYPS |
Ho et al., 2021 [102] | Randomized, double-blind, placebo-controlled pilot trial | 2 capsules (3 × 1010 CFU) L. Plantarum PS128 | 40 non-depressed patients with insomnia (20 to 40 years) | 4 weeks | ↓ BDI ↓ awakenings during the deep sleep stage |
Joo Lee et al., 2021 [103] | Randomized, double-blind, placebo-controlled Trial | 5 × 109 CFU probiotics (4.0 × 109 CFU for L. reuteri NK33 + 1 × 109 CFU for B. adolescentis NK98) | 156 healthy adults with subclinical symptoms of depression, anxiety, and insomnia (19 to 65 years) | 8 weeks | ↓ quality of sleep ↓ IL-6 ↓ depressive symptoms at 4 and 8 weeks of treatment ↓ anxiety symptoms at 4 weeks |
Mischoulon et al., 2022 [104] | Randomized, dose-finding clinical trial | 1 g/day or 2 g/day or 4 g/day EPA | 61 (age not available) | 12 weeks | 4 g/day EPA: ↓ depressive symptoms ↓ hs-CRP |
Kaviani et al., 2022 [105] | Randomized, double-blind, placebo-controlled trial | 50,000 IU cholecalciferol/2 weeks-1 | 56 (18 to 60 years) | 8 weeks | Increase of Vit. D serum level ↓ depressive symptoms |
Schaub et al., 2022 [106] | Randomized, placebo-controlled trial | 900 billion CFU/day (S. thermophilus + B. breve + B. longum + B. infantis + L. acidophilus + L. plantarum + L. paracasei + L. delbrueckii subsp. Bulgaricus) + treatment-as-usual | 47 (over 18 years) | 4 weeks | ↓ depressive symptoms |
Ullah et al., 2022 [107] | Monocentric, randomized, cross-over, double-blind, placebo-controlled clinical trial | 200 mg/day SAMe + 3 × 109 CFU/day L. helveticus Rosell®-52 + B. longum Rosell®-175 | 80 patients with SD or MDD (18 to 65 years) | 12 weeks | ↓ SD symptoms ↓ MDD symptoms |
Schneider et al., 2023 [108] | Secondary analysis of a randomized, placebo-controlled trial | Bifidobacteria 9 × 1010 CFU/g + Lactobacilli 8 × 1010 + S. salivarius subsp. Thermophilus 20 × 1010 resulting in a daily dose of 900 billion CFU/d + usual depression treatment | 60 (over 18 years) | 4 weeks | ↓ cognitive function (verbal episodic memory and working memory) |
Nikolova et al., 2023 [109] | Single-center, double-blind, placebo-controlled pilot randomized clinical trial | 2 × 109 CFU B. subtilis, B. bifidum, B. breve, B. infantis, B. longum, L. acidophilus, L. delbrueckii subsp bulgaricus, L. casei, L. plantarum, L. rhamnosus, L. helveticus, L. salivarius, L. lactis and S. thermophilus | 49 MDD taking antidepressant medication, but having an incomplete response were studied (18 to 55 years) | 8 weeks | ↓ depressive symptoms ↓ anxiety symptoms |
Zhu et al., 2023 [110] | Randomized, placebo-controlled trial | L. plantarum JYLP-326 2 vv/day | 60 anxious 22-year-old students | 3 weeks | ↓ depression ↓ anxiety ↓ insomnia |
Bipolar Disorder | |||||
---|---|---|---|---|---|
Study | Study Design | Drugs and Dose | Cohort | Treatment Duration | Results |
Sharpley et al., 2014 [111] | Randomized, double-blind, placebo-controlled trial | 2.5 mg/day folic acid | 112 with familial risk of mood disorder (14 to 24 years) | 156 weeks | No differences |
Fristad et al., 2015 [112] | Randomized, placebo-controlled trial | 2000 mg/day omega-3 (including 1400 mg EPA + 200 mg DHA) and IF-PEP vs. AM using a 2 × 2 design | 23 (7 to 14 years) | 12 weeks | Manic symptoms improved over time without significant treatment effects Effect of IF-PEP on child depression compared with AM was medium to large Effect of omega-3 on depression was medium |
Wozniak et al., 2016 [113] | Pilot study | 1650 mg/day EPA + DHA + 2000 mg inositol or 1650 mg/day EPA + DHA + placebo or 2000 mg inositol + placebo | 24 (5 to 12 years) | 12 weeks | Omega-3 + inositol: ↓ symptoms of mania and depression |
Marsh et al., 2017 [114] | Randomized, double-blind, placebo-controlled trial | 5000 UI/day Vit. D | 33 patients with vit. D deficiency (18 to 70 years) | 12 weeks | No differences in depressive symptoms |
Nierenberg et al., 2017 [115] | Open trial proof-of-concept registry | 15 mg/day L-methyl folate | 10 (18 to 75 years) | 6 weeks | ↓ MADRS ↓ Cohen’s d ↓ YMRS |
Dickerson et al., 2018 [116] | Randomized, parallel two-group, placebo-controlled trial | L. rhamnosus strain GG + B. animalis subsp. Lactis strain Bb12 (dosage not available) | 66 patients who have been recently discharged following hospitalization for mania (18 to 65 years) | 24 weeks | ↓ rehospitalization |
Mehrpooya et al., 2018 [117] | Double-blind placebo-controlled trial | 200 mg/day Coenzyme Q10 | 69 (18 to 65 years) | 8 weeks | ↓ depressive symptoms |
Vesco et al., 2018 [118] | Randomized controlled trial | 1.87 g/day omega-3 or PEP or PEP + omega-3 | 95 (7 to 14 years) | 12 weeks | Omega-3: ↓ executive functions ↓ dysphoric mood ↓ irritability ↓ self-esteem |
Toniolo et al., 2018 [119] | Double-blind, placebo-controlled trial | 6 g/day creatine monohydrate | 35 (18 to 59 years) | 6 weeks | No differences |
McNamara et al., 2020 [120] | Placebo-controlled proton magnetic resonance spectroscopy trial | 2130 mg/day omega-3 (EPA + DHA) | 42 children with depressive symptoms with at least one parent with DB (9 to 21 years) | 12 weeks | No clinical differences Increase of erythrocyte EPA + DHA levels |
Ashton et al., 2020 [121] | Sub-study, randomized, placebo-controlled trial | N-acetyl-cysteine or mitochondrial-enhancing nutraceuticals (including N-acetyl-cysteine) | 133 (21.3 to 72 years) | 16 weeks | Better diet quality (irrespective of treatment and time): ↓ general depression and bipolar depression symptoms Greater clinician-rated improvement |
McPhilemy et al., 2021 [122] | Randomized, placebo-controlled trial | 1 g/day EPA+ 1 g/day DHA | 80 (over 18 years) | 52 weeks | No differences |
Badrfam et al., 2021 [123] | Randomized, double-blind, placebo-controlled trial | 80 mg/day vit. B6 + lithium (gradually increased dose to a therapeutic level of 0.8–1.2) | 50 (18 to 65 years) | 8 weeks | No differences |
Fristad et al., 2021 [124] | Naturalistic follow-up study | 2000 mg/day omega-3 (including 1400 mg EPA + 200 mg DHA) and IF-PEP vs. AM using a 2 · 2 design | 38 (11 to 19 years) | 104–260 weeks | ↓ depressive symptoms ↓ youth emotion regulation skills and family communication |
Sabouri et al., 2022 [125] | Randomized, double-blind, placebo-controlled trial | Probiotics | 38 (age not available) | 8 weeks | No differences in markers of inflammation and oxidative stress |
McNamara et al., 2022 [126] | Placebo-controlled trial | 2130 mg/day omega-3 (EPA + DHA) | 39 depressed youth at high risk for developing BD type I (9 to 21 years) | 12 weeks | ↓ functional amygdala–right inferior temporal gyrus connectivity ↓ depressive symptoms Increase of erythrocyte EPA + DHA levels |
Saunders et al., 2022 [127] | Randomized, parallel-group, modified double-blind, controlled | 1.5 g omega-3 (EPA + DHA) + low omega-6 vs. control diet standardized (150 mg omega-3 + omega-6) | 82 (over 18 years) | 48 weeks (4-8-12 weeks of diet exposure) | No differences |
Wozniak et al., 2022 [128] | Randomized, double-blind, placebo-controlled trial | 1650 mg/day EPA + DHA + 2000 mg inositol or 1650 mg/day EPA + DHA + placebo or 2000 mg inositol + placebo | 69 (5 to 12 years) | 12 weeks | ↓ YMRS (inositol + omega-3) ↓ HDRS (inositol + omega-3) ↓ antimanic and antidepressant effects |
Eslahi et al., 2023 [129] | Randomized, double-blind, placebo-controlled trial | 2 g/day omega-3 (including 180 mg EPA + 120 mg DHA) | 60 (16 to 60 years) | 8 weeks | ↓ depression score ↓ TNF-α ↓ IL-6 ↓ hs-CRP |
Zailani et al., 2024 [130] | Pilot randomized, placebo-controlled trial | 420 mg/day EPA + 220 mg/day DHA + 0.2 mg/day tertiary-butylhydroquinone + 2.0 mg/day vit. E | 31 (18 to 65 years) | 26 weeks | ↓ recurrence of bipolar depression ↓ depressive symptoms |
Zandifar et., 2024 [131] | Randomized, placebo-controlled trial | 100 mg/day vit. B1 or 40 mg/day vit. B6 or placebo + 900–1200 mg lithium | 66 (18 to 65 years) | 8 weeks | B6: ↓ symptoms during a manic episode + ↓ sleep status B1: no mood improvement, ↓ sleep status |
Borderline Personality Disorder | |||||
---|---|---|---|---|---|
Study | Study Design | Drugs and Dose | Cohort | Treatment duration | Results |
Bellino et al., 2014 [132] | Randomized, controlled trial | 1.2 g/day EPA + 0.6 g/day DHA + 800–1300 mg/day valproic acid vs. 800–1300 mg/day valproic acid (plasma range: 50–100 μg/mL) | 43 BPD patients (18 to 50 years) | 12 weeks | ↓ severity of BPDSI ↓ impulsive behavioral dyscontrol ↓ anger ↓ self-mutilating conduct |
Bozzatello et al., 2018 [133] | Follow-up study to Bellino et al., 2014 | 1.2 g/day EPA + 0.6 g/day DHA + 800–1300 mg/day valproic acid vs. 800–1300 mg/day valproic acid (plasma range: 50–100 μg/mL) | 34 patients with BPD (18 to 50 years) | 24 weeks | ↓ outbursts of anger |
Raine et al., 2021 [134] | Randomized, double-blind, placebo-controlled Trial | 300 mg DHA + 300 mg EPA + 180 mg alpha-linolenic acid + 60 mg DPA | 324 children (11.89 years (SD 2.59)) | 52 weeks | ↓ aggression, ↓ antisocial behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzatello, P.; Novelli, R.; Montemagni, C.; Rocca, P.; Bellino, S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4824. https://doi.org/10.3390/ijms25094824
Bozzatello P, Novelli R, Montemagni C, Rocca P, Bellino S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(9):4824. https://doi.org/10.3390/ijms25094824
Chicago/Turabian StyleBozzatello, Paola, Roberta Novelli, Cristiana Montemagni, Paola Rocca, and Silvio Bellino. 2024. "Nutraceuticals in Psychiatric Disorders: A Systematic Review" International Journal of Molecular Sciences 25, no. 9: 4824. https://doi.org/10.3390/ijms25094824
APA StyleBozzatello, P., Novelli, R., Montemagni, C., Rocca, P., & Bellino, S. (2024). Nutraceuticals in Psychiatric Disorders: A Systematic Review. International Journal of Molecular Sciences, 25(9), 4824. https://doi.org/10.3390/ijms25094824