Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment
Abstract
:1. Introduction
2. Results
2.1. The PBM Treatment Accelerated Wound Healing
2.2. Histological Analysis
2.3. Tracing the Progress of RNA and Protein Change during Wound Healing
3. Discussion
4. Materials and Methods
4.1. Skin or Oral Wound Animal Model and Groups
4.2. Photobiomodulation (PBM) Treatment
4.3. Histological Analysis
4.3.1. Tissue Preparation
4.3.2. Hematoxylin and Eosin Staining
4.3.3. Collagen Staining in Masson’s Trichrome Staining
4.4. Real-Time Polymerase Chain Reaction (RT-PCR)
4.5. Western Blot
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016, 17, 2085. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Abueva, C.D.; Ryu, H.S.; Park, S.Y.; Lee, H.; Padalhin, A.R.; Min, J.W.; Chung, P.-S.; Woo, S.H. Trimethyl chitosan postoperative irrigation solution modulates inflammatory cytokines related to adhesion formation. Carbohydr. Polym. 2022, 288, 119380. [Google Scholar] [CrossRef]
- Weissenbach, M.; Clahsen, T.; Weber, C.; Spitzer, D.; Wirth, D.; Vestweber, D.; Heinrich, P.C.; Schaper, F. Interleukin-6 is a direct mediator of T cell migration. Eur. J. Immunol. 2004, 34, 2895–2906. [Google Scholar] [CrossRef]
- Wright, H.L.; Cross, A.L.; Edwards, S.W.; Moots, R.J. Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology 2014, 53, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Kanji, S.; Das, H. Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediat. Inflamm. 2017, 2017, 5217967. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.-X.; Cui, Y.-R.; Sun, G.-Y.; Yu, F.; Tang, C.-Y.; Li, Y.-C.; Liu, H.-J.; Fang, X. Role of CREB in vasoactive intestinal peptide-mediated wound healing in human bronchial epithelial cells. Regul. Pept. 2009, 153, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Khan, K.; Hoyles, R.K.; Shiwen, X.; Leoni, P.; Chen, Y.; Eastwood, M.; Abraham, D.J. Inducible lineage-specific deletion of TbetaRII in fibroblasts defines a pivotal regulatory role during adult skin wound healing. J. Investig. Dermatol. 2009, 129, 194–204. [Google Scholar] [CrossRef]
- Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010, 185, 6413–6419. [Google Scholar] [CrossRef]
- Steven, A.; Friedrich, M.; Jank, P.; Heimer, N.; Budczies, J.; Denkert, C.; Seliger, B. What turns CREB on? And off? And why does it matter? Cell. Mol. Life Sci. 2020, 77, 4049–4067. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics 2016, 9, 1122–1124. [Google Scholar] [CrossRef]
- Arany, P.R. Photobiomodulation: Poised from the fringes. Photomed. Laser Surg. 2012, 30, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Serrage, H.; Heiskanen, V.; Palin, W.M.; Cooper, P.R.; Milward, M.R.; Hadis, M.; Hamblin, M.R. Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochem. Photobiol. Sci. 2019, 18, 1877–1909. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Magni, G.; Tatini, F.; Banchelli, M.; Cherchi, F.; Rossi, M.; Coppi, E.; Pugliese, A.M.; Rossi degl’Innocenti, D.; Alfieri, D.; et al. Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing. Biomedicines 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.L.; Alcantara, P.S.; Kamamoto, F.; Cressoni, M.D.; Casarotto, R.A. Effects of low-level laser therapy on pain and scar formation after inguinal herniation surgery: A randomized controlled single-blind study. Photomed. Laser Surg. 2010, 28, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Dhlamini, T.; Houreld, N.N. Clinical Effect of Photobiomodulation on Wound Healing of Diabetic Foot Ulcers: Does Skin Color Needs to Be Considered? J. Diabetes Res. 2022, 2022, 3312840. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.S.; Lim, N.K.; Padalhin, A.R.; Abueva, C.; Park, S.Y.; Chung, P.; Woo, S.H. Improved healing and macrophage polarization in oral ulcers treated with photobiomodulation (PBM). Lasers Surg. Med. 2022, 54, 600–610. [Google Scholar] [CrossRef]
- Kong, X.; Fu, J.; Shao, K.; Wang, L.; Lan, X.; Shi, J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019, 100, 255–269. [Google Scholar] [CrossRef]
- Ashcroft, G.S.; Jeong, M.; Ashworth, J.J.; Hardman, M.; Jin, W.; Moutsopoulos, N.; Wild, T.; McCartney-Francis, N.; Sim, D.; McGrady, G.; et al. Tumor necrosis factor-alpha (TNF-alpha) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 2012, 20, 38–49. [Google Scholar] [CrossRef]
- Ramirez, H.; Patel, S.B.; Pastar, I. The Role of TGFbeta Signaling in Wound Epithelialization. Adv. Wound Care 2014, 3, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.J.; Leibovich, S.J. Regulation of Macrophage Polarization and Wound Healing. Adv. Wound Care 2012, 1, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Pakyari, M.; Farrokhi, A.; Maharlooei, M.K.; Ghahary, A. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Adv. Wound Care 2013, 2, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Roy, S.; Gordillo, G. Wound healing. In Neligan Plastic Surgery, 4th ed.; Elsevier: Amsteridam, The Netherlands, 2017; Volume 1, 172p. [Google Scholar]
- Houreld, N.N.; Sekhejane, P.R.; Abrahamse, H. Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg. Med. 2010, 42, 494–502. [Google Scholar] [CrossRef]
- Karkada, G.; Maiya, G.A.; Houreld, N.N.; Arany, P.; Kg, M.R.; Adiga, S.; Kamath, S.U.; Shetty, S. Effect of photobiomodulation therapy on inflammatory cytokines in healing dynamics of diabetic wounds: A systematic review of preclinical studies. Arch. Physiol. Biochem. 2023, 129, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.; Bidin, N.; Islam, S.; Shukri, W.N.B.W.M.; Zakaria, N.; Musa, N.; Krishnan, G. Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers Surg. Med. 2017, 49, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Chen, Z.; Yang, Z.; Yang, W.; Chu, W.; Tu, Y.; Xie, J.; Cao, D. Evaluation of the red & blue LED effects on cutaneous refractory wound healing in male Sprague-Dawley rat using 3 different multi-drug resistant bacteria. Lasers Surg. Med. 2022, 54, 725–736. [Google Scholar]
- de Souza Costa, M.; de Brito, T.V.; de Oliveira, S.B.; Souza Brauna, I.D.; Neto, J.C.R.M.; Teles, R.H.G.; Dutra, Y.M.; de Aguiar Magalhães, D.; Sousa, S.G.; de Sousa, J.A.; et al. Photobiomodulation exerts anti-inflammatory effects on the vascular and cellular phases of experimental inflammatory models. Lasers Med. Sci. 2022, 37, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Fiorio, F.B.; Dos Santos, S.A.; de Melo Rambo, C.S.; Dalbosco, C.G.; Serra, A.J.; de Melo, B.L.; Leal-Junior, E.C.P.; de Tarso Camillo de Carvalho, P. Photobiomodulation therapy action in wound repair skin induced in aged rats old: Time course of biomarkers inflammatory and repair. Lasers Med. Sci. 2017, 32, 1769–1782. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Mohamed, T.; Moustafa, H.; Hamdy, H.; Ahmed, R.R.; Aboud, E. Quercetin and low level laser therapy promot wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed. Pharmacother. 2018, 101, 58–73. [Google Scholar] [CrossRef]
- Hattori, N.; Mochizuki, S.; Kishi, K.; Nakajima, T.; Takaishi, H.; D’Armiento, J.; Okada, Y. MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am. J. Pathol. 2009, 175, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Flechner, L.; Montminy, M.; Berdeaux, R. CREB is activated by muscle injury and promotes muscle regeneration. PLoS ONE 2011, 6, e24714. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Karelina, K.; Obrietan, K. CREB: A multifaceted regulator of neuronal plasticity and protection. J. Neurochem. 2011, 116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Finkbeiner, S.; Tavazoie, S.F.; Maloratsky, A.; Jacobs, K.M.; Harris, K.M.; Greenberg, M.E. CREB: A major mediator of neuronal neurotrophin responses. Neuron 1997, 19, 1031–1047. [Google Scholar] [CrossRef] [PubMed]
- Brightwell, J.J.; Gallagher, M.; Colombo, P.J. Hippocampal CREB1 but not CREB2 is decreased in aged rats with spatial memory impairments. Neurobiol. Learn. Mem. 2004, 81, 19–26. [Google Scholar] [CrossRef]
- Han, X.-R.; Wen, X.; Wang, Y.-J.; Wang, S.; Shen, M.; Zhang, Z.-F.; Fan, S.-H.; Shan, Q.; Wang, L.; Li, M.-Q.; et al. Effects of CREB1 gene silencing on cognitive dysfunction by mediating PKA-CREB signaling pathway in mice with vascular dementia. Mol. Med. 2018, 24, 18. [Google Scholar] [CrossRef] [PubMed]
- Dutto, I.; Scalera, C.; Prosperi, E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell. Mol. Life Sci. 2018, 75, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Dyson, H.J.; Wright, P.E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J. Biol. Chem. 2016, 291, 6714–6722. [Google Scholar] [CrossRef]
- Akinsiku, O.E.; Soremekun, O.S.; Soliman, M.E.S. Update and potential opportunities in CBP [Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-binding protein] research using computational techniques. Protein J. 2021, 40, 19–27. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.-H.; Jin, L. Macrophage polarization in physiological and pathological pregnancy. Front. Immunol. 2019, 10, 792. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Cen, R.; Yue, C.; Xiao, T.; Deng, Y.; Li, L.; Sun, K.; Lei, X. ALA-PDT regulates macrophage M1 polarization via ERK/MAPK-NLRP3 pathway to promote the early inflammatory response. Lasers Surg. Med. 2022, 54, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
Relative Wound Size (%) | 3 Days | 7 Days | 14 Days | |
---|---|---|---|---|
Oral | Natural healing | 93.7 15.2 | 64.5 4.6 | 6.1 4.1 |
PBM treatment | 78.8 6.1 | 47.7 4.9 | 3.9 3.1 | |
p value | <0.0001 | <0.0001 | 0.9438 | |
Skin | Natural healing | 91.5 4.1 | 81.2 10.1 | 7.1 4.9 |
PBM treatment | 80.4 8.9 | 52.5 5.4 | 4.0 3.7 | |
p value | <0.0001 | <0.0001 | 0.2443 | |
Epidermis thickness (μm) | 3 days | 7 days | 14 days | |
Oral | Natural healing | 29.2 3.2 | 95.8 12.9 | 96.3 38.1 |
PBM treatment | 64.8 12.4 | 124.4 66.1 | 145.6 29.5 | |
p value | 0.8627 | 0.8134 | 0.1249 | |
Skin | Natural healing | 17.2 5.5 | 46.3 2.9 | 35.6 8.9 |
PBM treatment | 40.9 8.9 | 61.6 14.5 | 25.2 8.4 | |
p value | 0.0032 | 0.1727 | 0.1384 | |
Collagen deposition area (μm2) | 3 days | 7 days | 14 days | |
Oral | Natural healing | 140.8 8.3 | 143.4 6.3 | 171.0 10.1 |
PBM treatment | 152.7 3.9 | 165.4 15.1 | 165.5 6.5 | |
p value | 0.3408 | 0.0020 | 0.7096 | |
Skin | Natural healing | 155.1 5.2 | 155.5 2.4 | 167.7 3.5 |
PBM treatment | 166.9 0.3 | 172.6 11.9 | 177.9 8.6 | |
p value | 0.0167 | 0.0007 | 0.0260 | |
Relative mRNA level | 3 days | 7 days | 14 days | |
TNF-α | Natural healing | 0.4 0.2 | 0.5 0.1 | 1.6 1.0 |
PBM treatment | 0.7 0.8 | 1.2 0.7 | 1.7 1.0 | |
p value | 0.9246 | 0.3604 | 0.9975 | |
TGF-β | Natural healing | 0.2 0.1 | 0.4 0.1 | 0.9 0.7 |
PBM treatment | 0.5 0.2 | 0.6 0.3 | 2.5 0.4 | |
p value | 0.7913 | 0.8580 | <0.0001 | |
TGF-β /TNF-α | Natural healing | 0.6 0.1 | 0.9 0.2 | 0.5 0.1 |
PBM treatment | 1.2 0.5 | 0.5 0.1 | 1.7 0.4 | |
p value | 0.4193 | 0.8278 | 0.0116 | |
MMP13 | Natural healing | 1.1 0.3 | 1.0 0.2 | 1.2 0.6 |
PBM treatment | 1.0 0.2 | 0.7 0.4 | 1.5 0.4 | |
p value | 0.9982 | 0.6260 | 0.5314 | |
CREB | Natural healing | 1.0 0.3 | 1.0 0.1 | 1.1 0.5 |
PBM treatment | 1.3 0.1 | 0.8 0.1 | 1.3 0.2 | |
p value | 0.2789 | 0.6801 | 0.7441 | |
Folded protein level (p-CREB/CREB) | 3 days | 7 days | 14 days | |
p-CREB /CREB | Natural healing | 1 | 1 | 1 |
PBM treatment | 2.6 0.7 | 0.6 0.1 | 1.2 0.04 | |
p value | 0.0638 | 0.0081 | 0.0289 |
Parameter | Value |
---|---|
Wavelength (nm) | 808 |
Power output (mW) | 50 |
Energy output (J/s) | 0.05 |
Energy density (mW/cm2) | 63.69 |
Spot size (mm) | 10 |
Frequency (Hz) | 10 |
Pulse duration (ms) | 1 |
Duration of irradiation (s) | 240 |
Pulse energy per session (J) | 12 |
Pulse energy density per session (mW/cm2) | 15.28 |
Number of sessions | 5 |
Total irradiated energy (J) | 60 |
Total energy density (J/cm2) | 76.4 |
Gene | Forward Primers | Reverse Primers |
---|---|---|
TNF-α | GACCCTCACACTCAGATCATCTTCT | CGTAGCCCACGTCGTAGCA |
TGF-β | AGGGCTACCATGCCAACTTC | CCACGTAGTAGACGATGGGC |
MMP13 | ACCATCCTGTGACTCTTGCG | TTCACCCACATCAGGCACT |
CREB | AGCTGCCACTCAGCCGGGTA | TGGTGCTAGTGGGTGCTGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, J.; Choi, Y.; Jeon, H.; Lim, N. Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment. Int. J. Mol. Sci. 2024, 25, 4838. https://doi.org/10.3390/ijms25094838
Kim S, Park J, Choi Y, Jeon H, Lim N. Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment. International Journal of Molecular Sciences. 2024; 25(9):4838. https://doi.org/10.3390/ijms25094838
Chicago/Turabian StyleKim, Sungyeon, Jion Park, Younghoon Choi, Hongbae Jeon, and Namkyu Lim. 2024. "Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment" International Journal of Molecular Sciences 25, no. 9: 4838. https://doi.org/10.3390/ijms25094838
APA StyleKim, S., Park, J., Choi, Y., Jeon, H., & Lim, N. (2024). Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment. International Journal of Molecular Sciences, 25(9), 4838. https://doi.org/10.3390/ijms25094838