Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism
Abstract
:1. Introduction
2. Results
2.1. Characterization of EPCs Isolated from Human Umbilical Cord Blood
2.2. DHT Increases EPCs Proliferation and Does Not Affect Cell Viability and Morphology
2.3. DHT Stimulation of EPCs Induces Robust Formation of Capillary-like Structures through an Androgen-Receptor-Dependent Signaling Pathway
2.4. Exposure of EPCs to DHT Stimulates Regulation of Gene Expression for AR, for the Genes Involved in Cell Migration, and for Pro-Angiogenic Genes, VEGFR-2 and PlGF
2.5. DHT Induces in EPCs a Significant Increase in the Protein Level of AR, VEGFR-2, PlGF, EMMPRIN and MMP-9
2.6. DHT Increases Secretion of EMMPRIN, MMP-9, Angiogenin and VEGF upon Indirect Contact between Stimulated EPCs and Murine Ventricular Slices
2.7. Migration of DHT-Stimulated EPCs Is Dependent on the Presence of Androgen Receptors
2.8. Migration of EPCs towards Cardiac Tissue Is Prompted by the Presence of DHT and Dependent on the Existence of Androgen Receptors
2.9. DHT Stimulation of EPCs Increases Their Adherence and Integration into Cardiac Tissue
2.10. Regulation of Proteins ‘Abundance Involved in Cellular Migration and Integration in DHT-Treated EPCs as Demonstrated by Mass Spectrometry
3. Discussion
4. Materials and Methods
4.1. EPCs Isolation and Characterization
4.2. Flow Cytometry Analysis
4.3. Characterization of Isolated EPCs: Formation of Tube-like Structures and the Uptake of Acetylated LDL
4.4. Assessment of the Effect of DHT on Cytotoxicity, Viability, and Proliferation of EPCs
4.5. Real-Time Analysis of Migration of DHT-Stimulated EPCs Using an Improved Patented ‘Scratch Assay’ System
4.6. Molecular Characterization of DHT Stimulated EPCs by qRT-PCR Technique
4.7. Analysis of Proteins in DHT-Stimulated EPCs by Western Blot
4.8. Preparation of Murine Cardiac Tissue Slices to Study, the Interaction with EPCs Ex Vivo
4.9. Real-Time Assessment of EPCs’ Chemotaxis to Heart Tissue Slices Using the xCELLigence System
4.10. Luminex Technique Analysis of EPCs-Secreted Proteins in Culture Media after Their Indirect Contact with Cardiac Tissue
4.11. Determination of the Adhesion/Integration Capacity of EPCs Placed in Direct Contact with Cardiac Tissue Sections by Immunohistochemistry
4.12. qRT-PCR Quantification of Human DNA for the Assessment of the Adhesion/Integration of Human EPCs upon Contact with Cardiac Tissue Sections
4.13. Analysis of EPCs Protein Profiles Stimulated or Not with DHT by Nano Liquid Chromatography- Mass Spectrometry (LC-MS)
5. Statistical Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; Van Der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275, 964–967. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9020076 (accessed on 1 September 2018). [CrossRef]
- Di Stefano, R.; Felice, F.; Feriani, R.; Balbarini, A. Endothelial progenitor cells, cardiovascular risk factors and lifestyle modifications. Intern. Emerg. Med. 2013, 8, 47–49. Available online: https://link.springer.com/content/pdf/10.1007%2Fs11739-013-0915-0.pdf (accessed on 23 April 2024). [CrossRef]
- Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001, 89, e1–e7. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11440984 (accessed on 2 September 2018). [CrossRef]
- Fadini, G.P.; Losordo, D.; Dimmeler, S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 2012, 110, 624–637. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22343557 (accessed on 24 September 2018). [CrossRef]
- Rosano, G.M.C.; Spoletini, I.; Vitale, C. Cardiovascular disease in women, is it different to men? The role of sex hormones. Climacteric 2017, 20, 125–128. Available online: https://www.tandfonline.com/doi/full/10.1080/13697137.2017.1291780 (accessed on 23 April 2024). [CrossRef]
- Lau, E.S.; Binek, A.; Parker, S.J.; Shah, S.H.; Zanni, M.V.; Van Eyk, J.E.; Ho, J.E. Sexual Dimorphism in Cardiovascular Biomarkers: Clinical and Research Implications. Circ. Res. 2022, 130, 578–592. [Google Scholar] [CrossRef]
- Foresta, C.; Zuccarello, D.; De Toni, L.; Garolla, A.; Caretta, N.; Ferlin, A. Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clin. Endocrinol. 2008, 8, 284–289. [Google Scholar] [CrossRef]
- Fadini, G.P.; Albiero, M.; Cignarella, A.; Bolego, C.; Pinna, C.; Boscaro, E.; Pagnin, E.; De Toni, R.; de Kreutzenberg, S.; Agostini, C.; et al. Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clin. Sci. 2009, 117, 355–364. [Google Scholar] [CrossRef]
- Cai, J.J.; Wen, J.; Jiang, W.H.; Lin, J.; Hong, Y.; Zhu, Y.S. Androgen actions on endothelium functions and cardiovascular diseases. J. Geriatr. Cardiol. 2016, 13, 183. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854959/ (accessed on 9 January 2024). [PubMed]
- Yoshida, S.; Ikeda, Y.; Aihara, K.I. Roles of the androgen–Androgen receptor system in vascular angiogenesis. J. Atheroscler. Thromb. 2016, 23, 257–265. Available online: https://www.jstage.jst.go.jp/article/jat/23/3/23_31047/_article (accessed on 23 April 2024). [CrossRef] [PubMed]
- Chen, J.F.; Lin, P.W.; Tsai, Y.R.; Yang, Y.C.; Kang, H.Y. Androgens and Androgen Receptor Actions on Bone Health and Disease: From Androgen Deficiency to Androgen Therapy. Cells 2019, 8, 1318. Available online: www.mdpi.com/journal/cells (accessed on 26 September 2023). [CrossRef]
- Zhang, H.; Shi, L.; Ren, G.Q.; Sun, W.W.; Wang YBin Chen, Y.K.; Yin, J.N. Dihydrotestosterone modulates endothelial progenitor cell function via RhoA/ROCK pathway. Am. J. Transl. Res. 2016, 8, 4300–4309. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27830013 (accessed on 23 April 2018).
- Ye, Y.; Li, X.; Zhang, Y.; Shen, Z.; Yang, J. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling. Stem Cells Int. 2016, 2016, 7057894. Available online: http://www.hindawi.com/journals/sci/2016/7057894/ (accessed on 23 April 2018). [CrossRef]
- Aversa, A.; Bruzziches, R.; Francomano, D.; Greco, E.A.; Migliaccio, S.; Lenzi, A. The role of steroids in endothelial function in the aging male. US Endocrinol. 2011, 7, 145–149. Available online: http://www.touchendocrinology.com/sites/www.touchendocrinology.com/files/lenzi.pdf (accessed on 10 May 2017). [CrossRef]
- Corotchi, M.C.; Popa, M.A.; Remes, A.; Sima, L.E.; Gussi, I.; Lupu Plesu, M. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res. Ther. 2013, 4, 81. Available online: http://stemcellres.com/content/4/4/81 (accessed on 8 March 2018). [CrossRef]
- Mihai, M.C.; Popa, M.A.; Șuică, V.I.; Antohe, F.; Jackson, E.K.; Leeners, B.; Simionescu, M.; Dubey, R.K. Proteomic analysis of estrogen-mediated enhancement of mesenchymal stem cell-induced angiogenesis in vivo. Cells 2021, 10, 2181. [Google Scholar] [CrossRef]
- Minamino, T.; Komuro, I. Vascular aging: Insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 637–648. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18762784 (accessed on 22 September 2018). [CrossRef]
- Topel, M.L.; Hayek, S.S.; Yi-An Ko Sandesara, P.B.; Tahhan, A.S.; Hesaroieh, I.; Mahar, E.; Martin, G.S.; Waller, E.K.; Quyyumi, A.A. Sex differences in circulating progenitor cells. J. Am. Heart Assoc. 2017, 6, e006245. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28974500 (accessed on 3 September 2018). [CrossRef]
- Matsubara, Y.; Matsubara, K. Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation. Reprod. Biol. Endocrinol. 2012, 10, 2. Available online: http://rbej.biomedcentral.com/articles/10.1186/1477-7827-10-2 (accessed on 17 September 2018). [CrossRef] [PubMed]
- Hsu, C.J.; Chow, R.; Simpson, P.; Dunn, L.; Chan, K.; Yong, A.; Sieveking, D.; Guillou, M.; Celermajer, D.; Ng, M. Androgens Stimulate Human Endothelial Progenitor Cell Function and Human Coronary Collateralization. J. Am. Coll. Cardiol. 2011, 57, E1520. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0735109711615209 (accessed on 23 April 2024). [CrossRef]
- Chia, W.K.; Cheah, F.C.; Abdul Aziz, N.H.; Kampan, N.C.; Shuib, S.; Khong, T.Y.; Tan, G.C.; Wong, Y.P. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front. Pediatr. 2021, 9, 615508. [Google Scholar] [CrossRef]
- Abdelgawad, M.E.; Desterke, C.; Uzan, G.; Naserian, S. Single-cell transcriptomic profiling and characterization of endothelial progenitor cells: New approach for finding novel markers. Stem Cell Res. Ther. 2021, 12, 145. Available online: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02185-0 (accessed on 1 April 2024). [CrossRef]
- Gumina, D.L.; Su, E.J. Endothelial progenitor cells of the human placenta and fetoplacental circulation: A potential link to fetal, neonatal, and long-term health. Front. Pediatr. 2017, 5, 246292. [Google Scholar] [CrossRef]
- Yu, J.; Akishita, M.; Eto, M.; Ogawa, S.; Son, B.K.; Kato, S.; Ouchi, Y.; Okabe, T. Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: Role of phosphatidylinositol 3-kinase/Akt pathway. Endocrinology 2010, 151, 1822–1828. Available online: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2009-1048 (accessed on 9 September 2018). [CrossRef]
- Ma, W.L.; Jeng LBin Lai, H.C.; Liao, P.Y.; Chang, C. Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells. Cancer Lett. 2014, 351, 64–71. [Google Scholar] [CrossRef]
- Popa, M.A.; Mihai, M.C.; Constantin, A.; Şuică, V.; Ţucureanu, C.; Costache, R.; Antohe, F.; Dubey, R.K.; Simionescu, M. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue. J. Mol. Endocrinol. 2018, 60, 1–15. [Google Scholar] [CrossRef]
- Lichtinghagen, R.; Musholt, P.B.; Lein, M.; Römer, A.; Rudolph, B.; Kristiansen, G.; Hauptmann, S.; Schnorr, D.; Loening, S.A.; Jung, K. Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. Eur. Urol. 2002, 42, 398–406. Available online: http://linkinghub.elsevier.com/retrieve/pii/S030228380200324X (accessed on 7 November 2018). [CrossRef] [PubMed]
- Chignalia, A.Z.; Schuldt, E.Z.; Camargo, L.L.; Montezano, A.C.; Callera, G.E.; Laurindo, F.R.; Lopes, L.R.; Avellar, M.C.W.; Carvalho, M.H.C.; Fortes, Z.B.; et al. Testosterone induces vascular smooth muscle cell migration by NADPH oxidase and c-Src-dependent pathways. Hypertension 2012, 59, 1263–1271. Available online: http://hyper.ahajournals.org/cgi/doi/10.1161/HYPERTENSIONAHA.111.180620 (accessed on 1 September 2018). [CrossRef] [PubMed]
- Gupta, V.; Bhasin, S.; Guo, W.; Singh, R.; Miki, R.; Chauhan, P.; Choong, K.; Tchkonia, T.; Lebrasseur, N.K.; Flanagan, J.N.; et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol. Cell Endocrinol. 2008, 296, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, N.I.; Gomes, J.A.S.; Fiuza, J.A.; Sousa, G.R.; Almeida, E.F.; Novaes, R.O.; Rocha, V.L.S.; Chaves, A.T.; Dutra, W.O.; Rocha, M.O.C.; et al. MMP-2 and MMP-9 plasma levels are potential biomarkers for indeterminate and cardiac clinical forms progression in chronic Chagas disease. Sci. Rep. 2019, 9, 14170. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Yoon, C.H.; Kim, H.S.; Choi, J.H.; Kang, H.J.; Hwang, K.K.; Oh, B.H.; Lee, M.M.; Park, Y.B. Characterization of Two Types of Endothelial Progenitor Cells and Their Different Contributions to Neovasculogenesis. Arter. Thromb. Vasc. Biol. 2004, 24, 288–293. Available online: http://atvb.ahajournals.org/content/atvbaha/24/2/288.full.pdf (accessed on 13 March 2018). [CrossRef]
- Urbich, C.; Dimmeler, S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ. Res. 2004, 95, 343–353. Available online: http://circres.ahajournals.org/cgi/doi/10.1161/01.RES.0000137877.89448.78 (accessed on 17 September 2018). [CrossRef] [PubMed]
- Markel, T.A.; Wang, Y.; Herrmann, J.L.; Crisostomo, P.R.; Wang, M.; Novotny, N.M.; Herring, C.M.; Tan, J.; Lahm, T.; Meldrum, D.R. VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H2308–H2314. Available online: http://ajpheart.physiology.org/cgi/doi/10.1152/ajpheart.00565.2008 (accessed on 23 April 2024). [CrossRef] [PubMed]
- Opstad, T.B.; Seljeflot, I.; Bøhmer, E.; Arnesen, H.; Halvorsen, S. MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology 2018, 139, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kanayasu-Toyoda, T.; Tanaka, T.; Ishii-Watabe, A.; Kitagawa, H.; Matsuyama, A.; Uchida, E.; Yamaguchi, T. Angiogenic Role of MMP-2/9 Expressed on the Cell Surface of Early Endothelial Progenitor Cells/Myeloid Angiogenic Cells. J. Cell Physiol. 2015, 230, 2763–2775. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25820539 (accessed on 23 August 2018). [CrossRef] [PubMed]
- Wang, L.; Zheng, G.Z.; Rui, L.Z.; Gregg, S.R.; Hozeska-Solgot, A.; LeTourneau, Y.; Wang, Y.; Chopp, M. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin- activated endothelial cells promote neural progenitor cell migration. J. Neurosci. 2006, 26, 5996–6003. Available online: https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5380-05.2006 (accessed on 23 August 2018). [CrossRef] [PubMed]
- Von Ungern-Sternberg, S.N.I.; Zernecke, A.; Seizer, P. Extracellular matrix metalloproteinase inducer emmprin (Cd147) in cardiovascular disease. Int. J. Mol. Sci. 2018, 19, 507. Available online: https://www.mdpi.com/1422-0067/19/2/507/htm (accessed on 1 August 2022). [CrossRef] [PubMed]
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17522591 (accessed on 1 August 2018). [CrossRef] [PubMed]
- Eichmann, A.; Simons, M. VEGF signaling inside vascular endothelial cells and beyond. Curr. Opin. Cell Biol. 2012, 24, 188–193. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0955067412000154 (accessed on 1 August 2018). [CrossRef]
- Tang, Y.; Nakada, M.T.; Rafferty, P.; Laraio, J.; McCabe, F.L.; Millar, H.; Cunningham, M.; Snyder, L.A.; Bugelski, P.; Yan, L. Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol. Cancer Res. 2006, 4, 371–377. Available online: http://mcr.aacrjournals.org/cgi/doi/10.1158/1541-7786.MCR-06-0042 (accessed on 23 April 2024). [CrossRef]
- Traish, A.M.; Galoosian, A. Androgens modulate endothelial function and endothelial progenitor cells in erectile physiology. Korean J. Urol. 2013, 54, 721–731. Available online: https://synapse.koreamed.org/DOIx.php?id=10.4111/kju.2013.54.11.721 (accessed on 18 May 2018). [CrossRef] [PubMed]
- Cai, J.; Hong, Y.; Weng, C.; Tan, C.; Imperato-McGinley, J.; Zhu, Y.S. Androgen stimulates endothelial cell proliferation via an androgen receptor/VEGF/cyclin A-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, 1210–1221. Available online: https://journals.physiology.org/doi/10.1152/ajpheart.01210.2010 (accessed on 9 January 2024). [CrossRef] [PubMed]
- Li, S.; Hu, G.F. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J. Cell. Physiol. 2012, 227, 2822–2826. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22021078 (accessed on 4 November 2018). [CrossRef] [PubMed]
- Lyons, S.M.; Fay, M.M.; Akiyama, Y.; Anderson, P.J.; Ivanov, P. RNA biology of angiogenin: Current state and perspectives. RNA Biol. 2017, 14, 171. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324756/ (accessed on 14 January 2024). [CrossRef] [PubMed]
- Chen, X.; Shao, Y.; Wei, W.; Zhu, S.; Li, Y.; Chen, Y.; Li, H.; Tian, H.; Sun, G.; Niu, Y.; et al. Androgen deprivation restores ARHGEF2 to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis. 2022, 13, 927. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637107/ (accessed on 14 January 2024). [CrossRef] [PubMed]
- Dbouk, H.A.; Weil, L.M.; Perera, G.K.S.; Dellinger, M.T.; Pearson, G.; Brekken, R.A.; Cobb, M.H. Actions of the protein kinase WNK1 on endothelial cells are differentially mediated by its substrate kinases OSR1 and SPAK. Proc. Natl. Acad. Sci. USA 2014, 111, 15999–16004. Available online: https://pubmed.ncbi.nlm.nih.gov/25362046/ (accessed on 15 January 2024). [CrossRef] [PubMed]
- Xie, J.; Wu, T.; Xu, K.; Huang, I.K.; Cleaver, O.; Huang, C.L. Endothelial-specific expression of WNK1 kinase is essential for angiogenesis and heart development in mice. Am. J. Pathol. 2009, 175, 1315–1327. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Begum, G.; Pointer, K.; Clark, P.A.; Yang, S.; Sen Lin, S.H.; Kahle, K.T.; Kuo, J.S.; Sun, D. WNK1-OSR1 kinase-mediated phospho-activation of Na+-K+-2Cl- cotransporter facilitates glioma migration. Mol. Cancer 2014, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lin, S. Essential role of SH3-domain GRB2-like 3 for vascular lumen maintenance in zebrafish. Arter. Thromb. Vasc. Biol. 2013, 33, 1280–1286. Available online: https://www.ahajournals.org/doi/abs/10.1161/ATVBAHA.112.301025 (accessed on 7 April 2024). [CrossRef]
- Kostka, G.; Giltay, R.; Bloch, W.; Addicks, K.; Timpl, R.; Fässler, R.; Chu, M.L. Perinatal Lethality and Endothelial Cell Abnormalities in Several Vessel Compartments of Fibulin-1-Deficient Mice. Mol. Cell Biol. 2001, 21, 7025. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC99878/ (accessed on 7 April 2024). [CrossRef]
- Faleeva, M.; Ahmad, S.; Lynham, S.; Watson, G.; Whitehead, M.; Cox, S.; Shanahan, C.M. Sox9 accelerates vascular ageing by regulating extracellular matrix composition and stiffness. bioRxiv 2023, 2023.05.03.539285. Available online: https://www.biorxiv.org/content/10.1101/2023.05.03.539285v2 (accessed on 7 April 2024).
- Li, H.; Xu, H.; Wen, H.; Liu, T.; Sun, Y.; Xiao, N.; Bai, C.; Ge, J.; Wang, X.; Song, L.; et al. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J. Cereb. Blood Flow Metab. 2019, 39, 547. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421250/ (accessed on 7 April 2024). [CrossRef]
- Gross, S.J.; Webb, A.M.; Peterlin, A.D.; Durrant, J.R.; Judson, R.J.; Raza, Q.; Kitajewski, J.K.; Kushner, E.J. Notch regulates vascular collagen IV basement membrane through modulation of lysyl hydroxylase 3 trafficking. Angiogenesis 2021, 24, 789–805. Available online: https://link.springer.com/article/10.1007/s10456-021-09791-9 (accessed on 7 April 2024). [CrossRef]
- Popa, M.A.; Corotchi, M.C. An in vitro method for adhesion of fresh adult murine heart slices on Collagen-Coated surfaces. Ann. Rom. Soc. Cell Biol. 2015, 20, 35–39. [Google Scholar]
- Bird, C.; Kirstein, S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat. Methods 2009, 6, v–vi. Available online: http://www.nature.com/articles/nmeth.f.263 (accessed on 5 September 2018). [CrossRef]
- Àlvarez, G.; González, M.; Isabal, S.; Blanc, V.; León, R. Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 2013, 3, 1. Available online: https://amb-express.springeropen.com/articles/10.1186/2191-0855-3-1 (accessed on 21 September 2018). [CrossRef]
- Al Ecovoiu, A.; Ghionoiu, I.C.; Ciuca, A.M.; Ratiu, A.C. Genome ARTIST: A robust, high-accuracy aligner tool for mapping transposon insertions and self-insertions. Mob. DNA 2016, 7, 3. Available online: http://www.mobilednajournal.com/content/7/1/3 (accessed on 5 September 2018). [CrossRef]
- Suica, V.I.; Uyy, E.; Boteanu, R.M.; Ivan, L.; Antohe, F. Comparative proteomic analysis of membrane microdomains isolated from two hyperlipidemic animal models. Biochim. Biophys Acta Proteins Proteom 2016, 1864, 1061–1071. Available online: http://ac.els-cdn.com/S1570963916301078/1-s2.0-S1570963916301078-main.pdf?_tid=88cf8b14-08c1-11e7-96d0-00000aacb35d&acdnat=1489501477_41f7b6b763374b72ee35864d8db51f24 (accessed on 13 March 2017). [CrossRef]
- Boteanu, R.M.; Suica, V.I.; Uyy, E.; Ivan, L.; Dima, S.O.; Popescu, I.; Simionescu, M.; Antohe, F. Alarmins in chronic noncommunicable diseases: Atherosclerosis, diabetes and cancer. J. Proteom. 2017, 153, 21–29. Available online: https://pubmed.ncbi.nlm.nih.gov/27840210/ (accessed on 13 March 2017). [CrossRef]
- Uyy, E.; Suica, V.I.; Boteanu, R.M.; Manda, D.; Baciu, A.E.; Badiu, C.; Antohe, F. Endoplasmic Reticulum Chaperones Are Potential Active Factors in Thyroid Tumorigenesis. J. Proteome Res. 2016, 15, 3377–3387. Available online: http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.6b00567 (accessed on 16 March 2017). [CrossRef] [PubMed]
- Knutsson, R.; Löfström, C.; Grage, H.; Hoorfar, J.; Rådström, P. Modeling of 5′ nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for Salmonella enterica. J. Clin. Microbiol. 2002, 40, 52–60. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11773092 (accessed on 21 September 2018). [CrossRef] [PubMed]
Accession | Description | Abundance Ratio: (DHT)/(Control) | p-Value: (DHT)/ (Control) |
---|---|---|---|
Q9C0H2 | Protein tweety homolog 3 | 19.16 | 1.18 × 10−8 |
Q92974 | Rho guanine nucleotide exchange factor 2 | 7.374 | 1.31 × 10−5 |
O95747 | Serine/threonine-protein kinase OSR1 | 7.315 | 8.2 × 10−3 |
O15230 | Laminin subunit alpha-5 | 5.569 | 7.74 × 10−3 |
P30622 | Isoform 2 of CAP-Gly domain-containing linker protein 1 | 5.16 | 3.32 × 10−4 |
P19388 | DNA-directed RNA polymerases I, II, and III subunit RPABC1 | 5.149 | 2.35 × 10−9 |
Q09161 | Nuclear cap-binding protein subunit 1 | 5.049 | 4.11 × 10−3 |
P43307 | Translocon-associated protein subunit alpha | 4.853 | 1.64 × 10−5 |
O00468 | Agrin | 4.48 | 4.07 × 10−4 |
Q8NE71 | ATP-binding cassette sub-family F member 1 | 4.405 | 3.07 × 10−6 |
P33316 | Deoxyuridine 5’-triphosphate nucleotidohydrolase, mitochondrial | 4.364 | 4.11 × 10−2 |
P03956 | Interstitial collagenase | 4.346 | 3.47 × 10−2 |
Q9BWD1 | Acetyl-CoA acetyltransferase, cytosolic | 4.339 | 1.30 × 10−5 |
Q96AP7 | Endothelial cell-selective adhesion molecule | 4.304 | 5.05 × 10−6 |
O95084 | Serine protease 23 | 4.213 | 2.18 × 10−2 |
P06454 | Prothymosin alpha | 4.184 | 4.19 × 10−4 |
Q5SWX8 | Protein odr-4 homolog | 4.075 | 7.2 × 10−2 |
P26885 | Peptidyl-prolyl cis-trans isomerase FKBP2 | 4.018 | 2.83 × 10−4 |
P53680 | AP-2 complex subunit sigma | 3.973 | 9.97 × 10−7 |
Accession | Description | Abundance Ratio: (DHT)/ (Control) | p-Value: (DHT)/ (Control) |
---|---|---|---|
P05106 | Integrin beta-3 | 0.541 | 1.58 × 10−1 |
Q9C0C2 | 182 kDa tankyrase-1-binding protein | 0.669 | 5.32 × 10−5 |
Q9P0V3 | SH3 domain-binding protein 4 | 0.363 | 4.30 × 10−5 |
O60568 | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 | 0.751 | 4.98 × 10−6 |
O00541 | Pescadillo homolog | 0.506 | 9.65 × 10−2 |
P17252 | Protein kinase C alpha type | 0.639 | 2.03 × 10−2 |
Q8IY17 | Neuropathy target esterase | 0.446 | 1.73 × 10−3 |
P15374 | Ubiquitin carboxyl-terminal hydrolase isozyme L3 | 0.464 | 1.44 × 10−3 |
P11310 | Medium-chain specific acyl-CoA dehydrogenase, mitochondrial | 0.356 | 2.66 × 10−2 |
P82909 | 28S ribosomal protein S36, mitochondrial | 0.712 | 9.52 × 10−3 |
P23142 | Fibulin-1 | 0.401 | 1.05 × 10−1 |
Q07960 | rho GTPase-activating protein 1 | 0.612 | 6.27 × 10−4 |
Q8N126 | Cell adhesion molecule 3 | 0.587 | 1.15 × 10−1 |
O94875 | Isoform 11 of Sorbin & SH3 domain-containing protein 2 | 0.428 | 1.15 × 10−6 |
P51808 | Dynein light chain Tctex-type 3 | 0.306 | 1.06 × 10−5 |
Q969X5 | Endoplasmic reticulum-Golgi intermediate compartment protein 1 | 0.515 | 1.85 × 10−3 |
P51858 | hepatoma-derived growth factor | 0.746 | 3.19 × 10−2 |
Q13492 | Phosphatidylinositol-binding clathrin assembly protein | 0.762 | 1.54 × 10−1 |
Q16740 | ATP-dependent Clp protease proteolytic subunit, mitochondrial | 0.734 | 1.61 × 10−3 |
Primer (Human) | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
GAPDH | GTTTCTATAAATTGAGCCCGCAG | CGACCAAATCCGTTGACTCC |
Androgen receptor (AR) | ATCCTTCACCAATGTCAACTCC | CCACTGGAATAATGCTGAAGAG |
MMP-2 | ACTACAACTTCTTCCCTCGCA | GGCATCATCCACTGTCTCTG |
MMP-9 | GCCACTACTGTGCCTTTGAG | CAGAGAATCGCCAGTACTTCC |
EMMPRIN | CTCACCTGCTCCTTGAATGAC | GAGTCCACCTTGAACTCCGT |
VEGFR-2 | AAGTAATCCCAGATGACAACCA | CCTTCAGATGCCACAGACTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, M.A.; Mihai, C.M.; Șuică, V.I.; Antohe, F.; Dubey, R.K.; Leeners, B.; Simionescu, M. Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism. Int. J. Mol. Sci. 2024, 25, 4862. https://doi.org/10.3390/ijms25094862
Popa MA, Mihai CM, Șuică VI, Antohe F, Dubey RK, Leeners B, Simionescu M. Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism. International Journal of Molecular Sciences. 2024; 25(9):4862. https://doi.org/10.3390/ijms25094862
Chicago/Turabian StylePopa, Mirel Adrian, Cristina Maria Mihai, Viorel Iulian Șuică, Felicia Antohe, Raghvendra K. Dubey, Brigitte Leeners, and Maya Simionescu. 2024. "Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism" International Journal of Molecular Sciences 25, no. 9: 4862. https://doi.org/10.3390/ijms25094862
APA StylePopa, M. A., Mihai, C. M., Șuică, V. I., Antohe, F., Dubey, R. K., Leeners, B., & Simionescu, M. (2024). Dihydrotestosterone Augments the Angiogenic and Migratory Potential of Human Endothelial Progenitor Cells by an Androgen Receptor-Dependent Mechanism. International Journal of Molecular Sciences, 25(9), 4862. https://doi.org/10.3390/ijms25094862