MicroRNA-135b-5p Is a Pathologic Biomarker in the Endothelial Cells of Arteriovenous Malformations
Abstract
:1. Introduction
2. Results
2.1. Analysis of Endothelial Cell miRNA Expression
2.1.1. Differential Expression of Seven miRNAs in Endothelial Cells
2.1.2. Upregulation of miR-135b-5p and Downregulation of miR-137 in the AVM Group
2.2. Comparison of miRNA Expressions in Hypoxia with/without VEGF Treatment
2.2.1. MicroRNA Expression under Hypoxic Conditions
2.2.2. MicroRNA Expression under VEGF Treatment
2.2.3. MicroRNA Expression under Hypoxia and VEGF Treatment
3. Discussion
4. Materials and Methods
4.1. MicroRNA Profiling and Validation in Endothelial Cells
4.1.1. Isolation and Culture of Endothelial Cells
4.1.2. MicroRNA Profiling
4.1.3. MicroRNA Validation
4.2. Comparison of miRNAs’ Expression in Hypoxia with/without VEGF Treatment
- Group A: endothelial cells from Nor + nor O2 + w/o VEGF (n = 6);
- Group B: endothelial cells from AVM + nor O2 + w/o VEGF (n = 8);
- Group C: endothelial cells from Nor + hypo O2 + w/o VEGF (n = 6);
- Group D: endothelial cells from AVM + hypo O2 + w/o VEGF (n = 8);
- Group E: endothelial cells from Nor + nor O2 + w VEGF (n = 6);
- Group F: endothelial cells from AVM + nor O2 + w VEGF (n = 8);
- Group G: endothelial cells from Nor + hypo O2 + w VEGF (n = 6);
- Group H: endothelial cells from AVM + hypo O2 + w VEGF (n = 8).
4.2.1. Hypoxic Conditions
4.2.2. VEGF Treatment
4.2.3. MicroRNA Expression
4.2.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Redondo, P. Malformaciones vasculares (I). Concepto, clasificación, fisiopatogenia y manifestaciones clínicas [Vascular malformations (I). Concept, classification, pathogenesis and clinical features]. Actas Dermosifiliogr. 2007, 98, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.A.; Bartlett, E.; Lee, E.I. Vascular malformations: A review. Semin. Plast. Surg. 2014, 28, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Fishman, A.P. Endothelium: A distributed organ of diverse capabilities. Ann. N. Y. Acad. Sci. 1982, 401, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arnout, J.; Hoylaerts, M.F.; Lijnen, H.R. Haemostasis. In The Vascular Endothelium II; Handbook of Experimental Pharmacology Series; Springer: Berlin/Heidelberg, Germany, 2006; Volume 176/II, pp. 1–41. [Google Scholar] [CrossRef]
- Bazzoni, G.; Dejana, E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol. Rev. 2004, 84, 869–901. [Google Scholar] [CrossRef]
- Busse, R.; Fleming, I. Vascular Endothelium and Blood Flow; Handbook of Experimental Pharmacology Series; Springer: Berlin/Heidelberg, Germany, 2006; pp. 43–78. [Google Scholar] [CrossRef]
- Cines, D.B.; Pollak, E.S.; Buck, C.A.; Loscalzo, J.; Zimmerman, G.A.; McEver, R.P.; Pober, J.S.; Wick, T.M.; Konkle, B.A.; Schwartz, B.S.; et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998, 91, 3527–3561. [Google Scholar] [PubMed]
- Michiels, C. Endothelial cell functions. J. Cell Physiol. 2003, 196, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Minshall, R.D.; Malik, A.B. Transport across the endothelium: Regulation of endothelial permeability. In The Vascular Endothelium I; Handbook of Experimental Pharmacology Series; Springer: Berlin/Heidelberg, Germany, 2006; Volume 176/I, pp. 107–144. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Ambros, V. MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing. Cell 2003, 113, 673–676. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of posttranscriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef]
- Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2000–2013. [Google Scholar]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005, 69 (Suppl. 3), 4–10. [Google Scholar] [CrossRef] [PubMed]
- Alfons, F.J.; Vernimmen, I. Vascular endothelial growth factor blockade: A potential new therapy in the management of cerebral arteriovenous malformations. J. Med. Hypotheses Ideas 2014, 8, 57–61. [Google Scholar] [CrossRef]
- Han, C.; Choe, S.W.; Kim, Y.H.; Acharya, A.P.; Keselowsky, B.G.; Sorg, B.S.; Lee, Y.J.; Oh, S.P. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis 2014, 17, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Ma, L.; Shaligram, S.; Walker, E.J.; Yang, S.T.; Tang, C.; Zhu, W.; Zhan, L.; Li, Q.; Zhu, X.; et al. Effect of elevation of vascular endothelial growth factor level on exacerbation of hemorrhage in mouse brain arteriovenous malformation. J. Neurosurg. 2019, 132, 1566–1573. [Google Scholar] [CrossRef]
- Brown, J.M.; Giaccia, A.J. The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58, 1408–1416. [Google Scholar] [PubMed]
- Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989, 49, 6449–6465. [Google Scholar]
- Jain, R.K. Determinants of tumor blood flow: A review. Cancer Res. 1988, 48, 2641–2658. [Google Scholar]
- Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-induced angiogenesis: Good and evil. Genes. Cancer 2011, 12, 1117–1133. [Google Scholar] [CrossRef]
- Leung, A.K.; Sharp, P.A. Function and localization of microRNAs in mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 29–38. [Google Scholar] [CrossRef]
- Maroney, P.A.; Yu, Y.; Fisher, J.; Nilsen, T.W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat. Struct. Mol. Biol. 2006, 13, 1102–1107. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, G.H.; Lee, J.H.; Ryu, J.Y.; Oh, E.J.; Kim, H.M.; Kwak, S.; Hur, K.; Chung, H.Y. MicroRNA-365a/b-3p as a Potential Biomarker for Hypertrophic Scars. Int. J. Mol. Sci. 2022, 23, 6117. [Google Scholar] [CrossRef] [PubMed]
- Giannella, A.; Riccetti, S.; Sinigaglia, A.; Piubelli, C.; Razzaboni, E.; Di Battista, P.; Agostini, M.; Dal Molin, E.; Manganelli, R.; Gobbi, F.; et al. Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients. Front. Immunol. 2022, 11, 968991. [Google Scholar] [CrossRef] [PubMed]
- Gim, J.A.; Bang, S.M.; Lee, Y.S.; Lee, Y.; Yim, S.Y.; Jung, Y.K.; Kim, H.; Kim, B.H.; Kim, J.H.; Seo, Y.S.; et al. Evaluation of the severity of nonalcoholic fatty liver disease through analysis of serum exosomal miRNA expression. PLoS ONE 2021, 16, e0255822. [Google Scholar] [CrossRef]
- Biassi, T.P.; Guerra-Shinohara, E.M.; Moretti, P.N.S.; de Freitas Dutra, V.; Cabañas-Pedro, A.C.; Mecabo, G.; Colleoni, G.W.B.; Figueiredo, M.S. miRNA profile and disease severity in patients with sickle cell anemia. Ann. Hematol. 2022, 101, 27–34. [Google Scholar] [CrossRef]
- Zhou, X.; Yuan, P.; He, Y. Role of microRNAs in peripheral artery disease (review). Mol. Med. Rep. 2012, 6, 695–700. [Google Scholar] [CrossRef]
- Cheng, F.H.; Aguda, B.D.; Tsai, J.C.; Kochańczyk, M.; Lin, J.M.; Chen, G.C.; Lai, H.C.; Nephew, K.P.; Hwang, T.W.; Chan, M.W. A mathematical model of bimodal epigenetic control of miR-193a in ovarian cancer stem cells. PLoS ONE 2014, 9, e116050. [Google Scholar] [CrossRef]
- Jolly, M.K.; Huang, B.; Lu, M.; Mani, S.A.; Levine, H.; Ben-Jacob, E. Towards elucidating the connection between epithelial-mesenchymal transitions and stemness. J. R. Soc. Interface R. Soc. 2014, 11, 20140962. [Google Scholar] [CrossRef]
- Verduci, L.; Strano, S.; Yarden, Y.; Blandino, G. The circRNA-microRNA code: Emerging implications for cancer diagnosis and treatment. Mol. Oncol. 2019, 13, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Hernando, C.; Suárez, Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 2018, 25, 227–236. [Google Scholar] [CrossRef]
- Cho, W.C. MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol. 2010, 42, 1273–1281. [Google Scholar] [CrossRef]
- Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix- PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, H.; Zhao, H.; Sui, D. MicroRNA-135b-5p promotes endothelial cell proliferation and angiogenesis in diabetic retinopathy mice by inhibiting Von Hipp-el-Lindau and elevating hypoxia inducible factor α expression. J. Drug Target. 2021, 29, 300–309. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408. [Google Scholar] [CrossRef]
- Hes, F.J.; Höppener, J.W.; Luijt, R.B.; Lips, C.J. Von hippel-lindau disease. Hered. Cancer Clin. Pract. 2005, 3, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wenger, R.H.; Stiehl, D.P.; Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE Signal Transduct. Knowl. Environ. 2005, 2005, re12. [Google Scholar] [CrossRef]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef]
- Ahluwalia, A.; Tarnawski, A.S. Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr. Med. Chem. 2012, 19, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Arkin, A.P.; Schaffer, D.V. Network news: Innovations in 21st century systems biology. Cell 2011, 144, 844–849. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, J.; Chen, J.; Zhu, J.; Liu, S.C.; Ding, X.F.; Zhang, Q. VHL regulates NEK1 via both HIF-2α pathway and ubiquitin-proteasome pathway in renal cancer cell. Biochem. Biophys. Res. Commun. 2019, 509, 797–802. [Google Scholar] [CrossRef]
- Mima, A.; Qi, W.; Hiraoka-Yamomoto, J.; Park, K.; Matsumoto, M.; Kitada, M.; Li, Q.; Mizutani, K.; Yu, E.; Shimada, T.; et al. Retinal not systemic oxidative and inflammatory stress correlated with VEGF expression in rodent models of insulin resistance and diabetes. Invest. Ophthalmol. Vis. Sci. 2012, 53, 8424–8432. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Sivakumar, V.; Foulds, W.S.; Luu, C.D.; Ling, E.A. Cellular and vascular changes in the retina of neonatal rats after an acute exposure to Accepted Manuscripthypoxia. Invest. Ophthalmol. Vis. Sci. 2009, 50, 5364–5374. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.P.; Lee, H.C.; Huang, S.H.; Lee, S.S.; Lai, C.S.; Lin, S.D. MicroRNA signatures in ischemia-reperfusion injury. Ann Plast Surg. 2012, 69, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Ellims, A.H.; Moore, X.L.; White, D.A.; Taylor, A.J.; Chin-Dusting, J.; Dart, A.M. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med. 2015, 13, 314. [Google Scholar] [CrossRef]
- Yi, F.; Shang, Y.; Li, B.; Dai, S.; Wu, W.; Cheng, L.; Wang, X. MicroRNA-193-5p modulates angiogenesis through IGF2 in type 2 diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 2017, 491, 876–882. [Google Scholar] [CrossRef]
No. | Diagnosis | Sex | Age | Underlying Disease | Oxygen Condition | VEGF Condition |
---|---|---|---|---|---|---|
1 | Normal | Male | 45 | HTN | ||
2 | AVM | Male | 18 | - | Normoxia/Hypoxia | Treated/ Non-treated |
3 | Normal | Female | 43 | - | Normoxia/Hypoxia | Treated/ Non-treated |
4 | Normal | Male | 60 | - | Normoxia/Hypoxia | Treated/ Non-treated |
5 | AVM | Male | 33 | - | Normoxia/Hypoxia | Treated/ Non-treated |
6 | AVM | Female | 1 | - | ||
7 | Normal | Female | 43 | - | Normoxia/Hypoxia | Treated/ Non-treated |
8 | AVM | Female | 13 | - | ||
9 | AVM | Male | 22 | - | ||
10 | AVM | Female | 26 | - | Normoxia/Hypoxia | Treated/ Non-treated |
11 | AVM | Male | 4 | - | ||
12 | Normal | Male | 31 | - | Normoxia/Hypoxia | Treated/ Non-treated |
13 | Normal | Male | 20 | - | ||
14 | AVM | Female | 16 | - | Normoxia/Hypoxia | Treated/ Non-treated |
15 | AVM | Male | 25 | - | Normoxia/Hypoxia | Treated/ Non-treated |
16 | AVM | Male | 26 | - | ||
17 | Normal | Female | 62 | HTN | ||
18 | AVM | Male | 38 | - | Normoxia/Hypoxia | Treated/ Non-treated |
19 | Normal | Male | 45 | - | Normoxia/Hypoxia | Treated/ Non-treated |
20 | AVM | Male | 24 | - | Normoxia/Hypoxia | Treated/ Non-treated |
21 | Normal | Male | 21 | - | Normoxia/Hypoxia | Treated/ Non-treated |
22 | AVM | Male | 46 | HTN | Normoxia/Hypoxia | Treated/ Non-treated |
23 | Normal | Female | 47 |
Upregulated miRNA | Fold Change (AVM/Normal) | p-Value * |
---|---|---|
miR-135b-5p | 4.81 | 0.0484 |
miR-496 | 2.02 | 0.0237 |
miR-603 | 1.80 | 0.0213 |
miR-132-3p | 1.73 | 0.0274 |
miR-193a-5p + has-miR-193b-5p | 1.42 | 0.0315 |
Downregulated miRNA | Fold Change (AVM/normal) | p-value * |
miR-30a-3p | −1.45 | 0.0212 |
miR-137 | −2.54 | 0.0185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S.; Kim, G.; Lee, J.H.; Ryu, J.Y.; Oh, E.J.; Kim, H.M.; Kwak, S.; Hur, K.; Chung, H.Y. MicroRNA-135b-5p Is a Pathologic Biomarker in the Endothelial Cells of Arteriovenous Malformations. Int. J. Mol. Sci. 2024, 25, 4888. https://doi.org/10.3390/ijms25094888
Lee JS, Kim G, Lee JH, Ryu JY, Oh EJ, Kim HM, Kwak S, Hur K, Chung HY. MicroRNA-135b-5p Is a Pathologic Biomarker in the Endothelial Cells of Arteriovenous Malformations. International Journal of Molecular Sciences. 2024; 25(9):4888. https://doi.org/10.3390/ijms25094888
Chicago/Turabian StyleLee, Joon Seok, Gyeonghwa Kim, Jong Ho Lee, Jeong Yeop Ryu, Eun Jung Oh, Hyun Mi Kim, Suin Kwak, Keun Hur, and Ho Yun Chung. 2024. "MicroRNA-135b-5p Is a Pathologic Biomarker in the Endothelial Cells of Arteriovenous Malformations" International Journal of Molecular Sciences 25, no. 9: 4888. https://doi.org/10.3390/ijms25094888
APA StyleLee, J. S., Kim, G., Lee, J. H., Ryu, J. Y., Oh, E. J., Kim, H. M., Kwak, S., Hur, K., & Chung, H. Y. (2024). MicroRNA-135b-5p Is a Pathologic Biomarker in the Endothelial Cells of Arteriovenous Malformations. International Journal of Molecular Sciences, 25(9), 4888. https://doi.org/10.3390/ijms25094888