Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overview of Immune Genes’ Annotation
2.2. Annotation of Recognition Genes
2.2.1. Peptidoglycan Receptor Proteins
2.2.2. Gram-Negative Binding Proteins
2.2.3. Lectins
2.2.4. Thioester-Containing Proteins
2.2.5. Class C Scavenger and Nimrod Receptors
2.3. Annotation of Signaling Pathways
2.3.1. The Toll Signaling Pathway
2.3.2. The JAK/STAT Signaling Pathway
2.3.3. IMD and JNK Signaling Pathways
2.4. Annotation of Response Genes
2.4.1. Antimicrobial Peptides
2.4.2. Lysozyme and Peptidoglycan Degradation
2.4.3. Chitinases
2.4.4. Prophenoloxidase
2.4.5. Nitric Oxide Synthase
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siva-Jothy, M.T.; Moret, Y.; Rolff, J. Insect immunity: An evolutionary ecology perspective. In Advances in Insect Physiology; Simpson, S.J., Ed.; Academic Press: Cambridge, MA, USA, 2005; Volume 32, pp. 1–48. [Google Scholar]
- Ali Mohammadie Kojour, M.; Han, Y.S.; Jo, Y.H. An overview of insect innate immunity. Entomol. Res. 2020, 50, 282–291. [Google Scholar] [CrossRef]
- Beckage, N.E. Insect Immunology; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Wang, X.; Zhang, Y.; Zhang, R.; Zhang, J. The diversity of pattern recognition receptors (PRRs) Involved with insect defense against pathogens. Curr. Opin. Insect Sci. 2019, 33, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Niu, J.; Feng, D.; Wang, X.; Zhang, R. Immune functions of pattern recognition receptors in Lepidoptera. Front. Immunol. 2023, 14, 1203061. [Google Scholar] [CrossRef] [PubMed]
- Becchimanzi, A.; Di Lelio, I.; Pennacchio, F.; Caccia, S. Analysis of cellular immune responses in lepidopteran larvae. In Immunity in Insects; Sandrelli, F., Tettamanti, G., Eds.; Springer Protocols Handbooks; Springer: New York, NY, USA, 2020; pp. 97–111. [Google Scholar]
- Eleftherianos, I.; Heryanto, C.; Bassal, T.; Zhang, W.; Tettamanti, G.; Mohamed, A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021, 164, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Strand, M.R. The insect cellular immune response. Insect Sci. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C.A., Jr. Innate immunity: Impact on the adaptive immune response. Curr. Opin. Immunol. 1997, 9, 4–9. [Google Scholar] [CrossRef]
- Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins 2018, 10, 461. [Google Scholar] [CrossRef]
- Zhang, W.; Tettamanti, G.; Bassal, T.; Heryanto, C.; Eleftherianos, I.; Mohamed, A. Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal. 2021, 83, 110003. [Google Scholar] [CrossRef] [PubMed]
- Iacovone, A.; Ris, N.; Poirié, M.; Gatti, J.-L. Time-course analysis of Drosophila suzukii interaction with endoparasitoid wasps evidences a delayed encapsulation response compared to D. melanogaster. PLoS ONE 2018, 13, e0201573. [Google Scholar] [CrossRef]
- Manniello, M.D.; Moretta, A.; Salvia, R.; Scieuzo, C.; Lucchetti, D.; Vogel, H.; Sgambato, A.; Falabella, P. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021, 78, 4259–4282. [Google Scholar] [CrossRef]
- Stączek, S.; Cytryńska, M.; Zdybicka-Barabas, A. Unraveling the role of antimicrobial peptides in insects. Int. J. Mol. Sci. 2023, 24, 5753. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Welchman, D.P.; Lemaitre, B. Recognition and response to microbial infection in Drosophila. In Insect Infection and Immunity: Evolution, Ecology, and Mechanisms; Rolff, J., Reynolds, S., Eds.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Jiang, H.; Vilcinskas, A.; Kanost, M.R. Immunity in lepidopteran insects. In Invertebrate Immunity; Springer: Berlin/Heidelberg, Germany, 2010; pp. 181–204. [Google Scholar]
- King, J.G. Developmental and comparative perspectives on mosquito immunity. Dev. Comp. Immunol. 2020, 103, 103458. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-X.; Su, Z.-P.; Liu, H.-H.; Lu, S.-P.; Zhao, Y.; Ma, B.; Hou, Y.-M.; Shi, Z.-H. Current understanding and perspectives on the potential mechanisms of immune priming in beetles. Dev. Comp. Immunol. 2022, 127, 104305. [Google Scholar] [CrossRef] [PubMed]
- Morfin, N.; Anguiano-Baez, R.; Guzman-Novoa, E. Honey bee (Apis mellifera) immunity. Vet. Clin. North Am. Food Anim. Pract. 2021, 37, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Laughton, A.M.; Garcia, J.R.; Altincicek, B.; Strand, M.R.; Gerardo, N.M. Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 2011, 57, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.; Anselme, C.; Ravallec, M.; Rebuf, C.; Simon, J.-C.; Gatti, J.-L.; Poirié, M. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge. PLoS ONE 2012, 7, e42114. [Google Scholar] [CrossRef] [PubMed]
- Gerardo, N.M.; Altincicek, B.; Anselme, C.; Atamian, H.; Barribeau, S.M.; de Vos, M.; Duncan, E.J.; Evans, J.D.; Gabaldón, T.; Ghanim, M.; et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 2010, 11, R21. [Google Scholar] [CrossRef] [PubMed]
- Renoz, F.; Noël, C.; Errachid, A.; Foray, V.; Hance, T. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process. PLoS ONE 2015, 10, e0122099. [Google Scholar] [CrossRef] [PubMed]
- Brisson, J.A.; Stern, D.L. The pea aphid, Acyrthosiphon pisum: An emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays 2006, 28, 747–755. [Google Scholar] [CrossRef]
- Russo, E.; Di Lelio, I.; Shi, M.; Becchimanzi, A.; Pennacchio, F. Aphidius ervi venom regulates Buchnera contribution to host nutritional suitability. J. Insect Physiol. 2023, 147, 104506. [Google Scholar] [CrossRef]
- The International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 2010, 8, e1000313. [Google Scholar]
- Arp, A.P.; Hunter, W.B.; Pelz-Stelinski, K.S. Annotation of the Asian citrus psyllid genome reveals a reduced innate immune system. Front. Physiol. 2016, 7, 205526. [Google Scholar] [CrossRef] [PubMed]
- Nishide, Y.; Kageyama, D.; Yokoi, K.; Jouraku, A.; Tanaka, H.; Futahashi, R.; Fukatsu, T. Functional crosstalk across IMD and toll pathways: Insight into the evolution of incomplete immune cascades. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182207. [Google Scholar] [CrossRef]
- Salcedo-Porras, N.; Guarneri, A.; Oliveira, P.L.; Lowenberger, C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS ONE 2019, 14, e0214794. [Google Scholar] [CrossRef]
- Hodgson, C. A Review of neococcid scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) based on the morphology of the adult males. Zootaxa 2020, 4765, 1–264. [Google Scholar] [CrossRef]
- Gullan, P.J.; Kosztarab, M. Adaptations in scale insects. Annu. Rev. Entomol. 1997, 42, 23–50. [Google Scholar] [CrossRef] [PubMed]
- Kono, M.; Koga, R.; Shimada, M.; Fukatsu, T. Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl. Environ. Microbiol. 2008, 74, 4175–4184. [Google Scholar] [CrossRef]
- Perilla-Henao, L.M.; Casteel, C.L. Vector-borne bacterial plant pathogens: Interactions with hemipteran insects and plants. Front. Plant Sci. 2016, 7, 1163. [Google Scholar] [CrossRef] [PubMed]
- Rosenblueth, M.; Martínez-Romero, J.; Ramírez-Puebla, S.T.; Vera-Ponce de León, A.; Rosas-Pérez, T.; Bustamante-Brito, R.; Rincón-Rosales, R.; Martínez-Romero, E.; Rosenblueth, M.; Martínez-Romero, J.; et al. Endosymbiotic microorganisms of scale insects. TIP 2018, 21, 53–69. [Google Scholar]
- Szklarzewicz, T.; Michalik, K.; Grzywacz, B.; Kalandyk-Kołodziejczyk, M.; Michalik, A. Fungal associates of soft scale insects (Coccomorpha: Coccidae). Cells 2021, 10, 1922. [Google Scholar] [CrossRef]
- Szklarzewicz, T.; Michalik, A.; Michalik, K. The diversity of symbiotic systems in scale insects. In Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects; Kloc, M., Ed.; Results and Problems in Cell Differentiation; Springer International Publishing: Cham, Switzerland, 2020; pp. 469–495. [Google Scholar]
- Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 2005, 59, 155–189. [Google Scholar] [CrossRef] [PubMed]
- Vera-Ponce de León, A.; Ormeño-Orrillo, E.; Ramírez-Puebla, S.T.; Rosenblueth, M.; Degli Esposti, M.; Martínez-Romero, J.; Martínez-Romero, E. Candidatus Dactylopiibacterium carminicum, a nitrogen-fixing symbiont of Dactylopius cochineal insects (Hemiptera: Coccoidea: Dactylopiidae). Genome Biol. Evol. 2017, 9, 2237–2250. [Google Scholar] [CrossRef] [PubMed]
- Husnik, F.; McCutcheon, J.P. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl. Acad. Sci. USA 2016, 113, E5416–E5424. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Pérez, T.; Rosenblueth, M.; Rincón-Rosales, R.; Mora, J.; Martínez-Romero, E. Genome sequence of “Candidatus Walczuchella monophlebidarum” the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol. Evol. 2014, 6, 714–726. [Google Scholar] [CrossRef]
- Matsuura, Y.; Koga, R.; Nikoh, N.; Meng, X.-Y.; Hanada, S.; Fukatsu, T. Huge symbiotic organs in giant scale insects of the genus Drosicha (Coccoidea: Monophlebidae) harbor flavobacterial and enterobacterial endosymbionts. Zool. Sci. 2009, 26, 448–456. [Google Scholar] [CrossRef] [PubMed]
- García Morales, M.; Denno, B.D.; Miller, D.R.; Miller, G.L.; Ben-Dov, Y.; Hardy, N.B. ScaleNet: A literature-based model of scale insect biology and systematics. Database 2016, 2016, bav118. [Google Scholar] [PubMed]
- Mansour, R.; Grissa-Lebdi, K.; Suma, P.; Mazzeo, G.; Russo, A. Key scale insects (Hemiptera: Coccoidea) of high economic importance in a Mediterranean area: Host plants, bio-ecological characteristics, natural enemies and pest management strategies-a review. Plant Prot. Sci. 2017, 53, 1–14. [Google Scholar] [CrossRef]
- Nicoletti, R.; De Masi, L.; Migliozzi, A.; Calandrelli, M.M. Analysis of dieback in a coastal pinewood in Campania, Southern Italy, through high-resolution remote sensing. Plants 2024, 13, 182. [Google Scholar] [CrossRef]
- Ramos, A.S.d.J.C.; Lemos, R.N.S.d.; Costa, V.A.; Peronti, A.L.B.G.; Silva, E.A.d.; Mondego, J.M.; Moreira, A.A. Hymenopteran parasitoids associated with scale insects (Hemiptera: Coccoidea) in tropical fruit trees in the Eastern Amazon, Brazil. Fla. Entomol. 2018, 101, 273–278. [Google Scholar] [CrossRef]
- Amouroux, P.; Crochard, D.; Correa, M.; Groussier, G.; Kreiter, P.; Roman, C.; Guerrieri, E.; Garonna, A.; Malausa, T.; Zaviezo, T. Natural enemies of armored scales (Hemiptera: Diaspididae) and soft scales (Hemiptera: Coccidae) in Chile: Molecular and morphological identification. PLoS ONE 2019, 14, e0205475. [Google Scholar] [CrossRef]
- De León, J.H.; Neumann, G.; Follett, P.A.; Hollingsworth, R.G. Molecular markers discriminate closely related species Encarsia diaspidicola and Encarsia berlesei (Hymenoptera: Aphelinidae): Biocontrol candidate agents for white peach scale in Hawaii. J. Econ. Entomol. 2010, 103, 908–916. [Google Scholar] [CrossRef]
- Kundoo, A.A.; Khan, A.A. Coccinellids as biological control agents of soft bodied insects: A review. J. Entomol. Zool. Stud. 2017, 5, 1362–1373. [Google Scholar]
- Li, W.; Chen, B.; Toulakhom, C.; Wang, X. Two new species of Chilocorus Leach, 1815 from Laos (Coleoptera Coccinellidae Chilocorini). Biodivers. Data J. 2021, 9, e72966. [Google Scholar] [CrossRef] [PubMed]
- Mani, M. Hundred and sixty years of Australian lady bird beetle Crypotolaemus montrouzieri Mulsant—A global view. Biocontrol Sci. Technol. 2018, 28, 938–952. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Y.; Dong, J.; Xue, J.; Zhang, Y.; Lu, Y.; Wu, J. Pathogenicity of three entomopathogenic fungi to Matsucoccus matsumurae. PLoS ONE 2014, 9, e103350. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Becchimanzi, A. Endophytism of Lecanicillium and Akanthomyces. Agriculture 2020, 10, 205. [Google Scholar] [CrossRef]
- Dao, H.T.; Beattie, G.A.C.; Rossman, A.Y.; Burgess, L.W.; Holford, P. Four putative entomopathogenic fungi of armoured scale insects on citrus in Australia. Mycol. Prog. 2016, 15, 47. [Google Scholar] [CrossRef]
- Khonsanit, A.; Noisripoom, W.; Mongkolsamrit, S.; Phosrithong, N.; Luangsa-ard, J.J. Five new species of Moelleriella infecting scale insects (Coccidae) in Thailand. Mycol. Prog. 2021, 20, 847–867. [Google Scholar] [CrossRef]
- Urbina, H.; Ahmed, M.Z. Characterization of the entomopathogenic fungal species Conoideocrella luteorostrata on the scale insect pest Fiorinia externa infesting the Christmas tree Abies fraseri in the USA. Fla. Entomol. 2022, 105, 10–21. [Google Scholar] [CrossRef]
- Xu, X.-L.; Zeng, Q.; Lv, Y.-C.; Jeewon, R.; Maharachchikumbura, S.S.; Wanasinghe, D.N.; Hyde, K.D.; Xiao, Q.-G.; Liu, Y.-G.; Yang, C.-L. Insight into the systematics of novel entomopathogenic fungi associated with armored scale insect, Kuwanaspis howardi (Hemiptera: Diaspididae) in China. J. Fungi 2021, 7, 628. [Google Scholar] [CrossRef]
- De Lima, I.J.; Carneiro Leão, M.P.; Da Silva Santos, A.C.; Da Costa, A.F.; Tiago, P.V. Production of conidia by entomopathogenic isolates of Fusarium caatingaense on different vegetable substrates. Biocontrol Sci. Technol. 2021, 31, 206–218. [Google Scholar] [CrossRef]
- Nicoletti, R.; Russo, E.; Becchimanzi, A. Cladosporium—Insect relationships. J. Fungi 2024, 10, 78. [Google Scholar] [CrossRef]
- Qu, J.; Zou, X.; Cao, W.; Xu, Z.; Liang, Z. Two new species of Hirsutella (Ophiocordycipitaceae, Sordariomycetes) that are parasitic on lepidopteran insects from China. MycoKeys 2021, 82, 81. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yu, Y.; Wang, X.; Liu, Q.; Huang, X. The ubiquity and development-related abundance dynamics of Ophiocordyceps fungi in soft scale insects. Microorganisms 2021, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Polo, P.; Ballinger, M.J.; Lalzar, M.; Malik, A.; Ben-Dov, Y.; Mozes-Daube, N.; Perlman, S.J.; Iasur-Kruh, L.; Chiel, E. An exceptional family: Ophiocordyceps-allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Mol. Ecol. 2017, 26, 5855–5868. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, D. Encapsulation of parasitoid eggs in soft scales (Homoptera: Coccidae)*. Ecol. Entomol. 1977, 2, 185–192. [Google Scholar] [CrossRef]
- Kapranas, A.; Federici, B.A.; Luck, R.F.; Johnson, J. Cellular immune response of brown soft scale Coccus hesperidum L. (Hemiptera: Coccidae) to eggs of Metaphycus luteolus Timberlake (Hymenoptera: Encyrtidae). Biol. Control 2009, 48, 1–5. [Google Scholar] [CrossRef]
- Russo, J.; Allo, M.-R.; Nenon, J.-P.; Brehélin, M. The hemocytes of the mealybugs Phenacoccus manihoti and Planococcus citri (Insecta: Homoptera) and their role in capsule formation. Can. J. Zool. 1994, 72, 252–258. [Google Scholar] [CrossRef]
- Caccia, S.; Astarita, F.; Barra, E.; Di Lelio, I.; Varricchio, P.; Pennacchio, F. Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. J. Pest Sci. 2020, 93, 303–314. [Google Scholar] [CrossRef]
- Caccia, S.; Di Lelio, I.; La Storia, A.; Marinelli, A.; Varricchio, P.; Franzetti, E.; Banyuls, N.; Tettamanti, G.; Casartelli, M.; Giordana, B.; et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 9486–9491. [Google Scholar] [CrossRef]
- Yang, P.; Yu, S.; Hao, J.; Liu, W.; Zhao, Z.; Zhu, Z.; Sun, T.; Wang, X.; Song, Q. Genome sequence of the Chinese white wax scale insect Ericerus pela: The first draft genome for the Coccidae family of scale insects. GigaScience 2019, 8, giz113. [Google Scholar] [CrossRef] [PubMed]
- Kurata, S. Peptidoglycan recognition proteins in Drosophila immunity. Dev. Comp. Immunol. 2014, 42, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Cerenius, L.; Söderhäll, K. Immune properties of invertebrate phenoloxidases. Dev. Comp. Immunol. 2021, 122, 104098. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.-J.; Zhan, M.-Y.; Pan, Y.-M.; Liu, S.; Yang, P.-J.; Yang, L.-L.; Yu, X.-Q. Immune functions of insect βGRPs and their potential application. Dev. Comp. Immunol. 2018, 83, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Garcia, B.L.; Kanost, M.R. Initiating Protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects. Proc. Natl. Acad. Sci. USA 2015, 112, 13856–13861. [Google Scholar] [CrossRef] [PubMed]
- Warr, E.; Das, S.; Dong, Y.; Dimopoulos, G. The Gram-negative bacteria-binding protein gene family: Its role in the innate immune system of Anopheles gambiae and in anti-Plasmodium defence. Insect Mol. Biol. 2008, 17, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Pili-Floury, S.; Leulier, F.; Takahashi, K.; Saigo, K.; Samain, E.; Ueda, R.; Lemaitre, B. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults *. J. Biol. Chem. 2004, 279, 12848–12853. [Google Scholar] [CrossRef] [PubMed]
- Gottar, M.; Gobert, V.; Matskevich, A.A.; Reichhart, J.-M.; Wang, C.; Butt, T.M.; Belvin, M.; Hoffmann, J.A.; Ferrandon, D. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006, 127, 1425–1437. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, L.; Xu, Z.; Ma, L.; Lu, Z. Two atypical Gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). Insect Mol. Biol. 2021, 30, 427–435. [Google Scholar] [CrossRef]
- Palmer, W.J.; Jiggins, F.M. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol. Biol. Evol. 2015, 32, 2111–2129. [Google Scholar] [CrossRef]
- Ao, J.; Ling, E.; Yu, X.-Q. Drosophila C-type lectins enhance cellular encapsulation. Mol. Immunol. 2007, 44, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; You, M.; Rao, X.-J.; Yu, X.-Q. Insect C-type lectins in innate immunity. Dev. Comp. Immunol. 2018, 83, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Pace, K.E.; Baum, L.G. Insect galectins: Roles in immunity and development. Glycoconj. J. 2002, 19, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Richman, A.; della Torre, A.; Kafatos, F.C.; Louis, C. Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 1996, 93, 13066–13071. [Google Scholar] [CrossRef]
- Rao, X.-J.; Wu, P.; Shahzad, T.; Liu, S.; Chen, L.; Yang, Y.-F.; Shi, Q.; Yu, X.-Q. Characterization of a dual-CRD galectin in the silkworm Bombyx Mori. Dev. Comp. Immunol. 2016, 60, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.M.; Kriventseva, E.V.; Meister, S.; Xi, Z.; Alvarez, K.S.; Bartholomay, L.C.; Barillas-Mury, C.; Bian, G.; Blandin, S.; Christensen, B.M.; et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 2007, 316, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, J.-L.; Cheng, Y.; Wang, J.-X.; Zou, Z. Pattern recognition receptors from lepidopteran insects and their biological functions. Dev. Comp. Immunol. 2020, 108, 103688. [Google Scholar] [CrossRef] [PubMed]
- Blandin, S.A.; Marois, E.; Levashina, E.A. Antimalarial responses in Anopheles gambiae: From a complement-like protein to a complement-like pathway. Cell Host Microbe 2008, 3, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Theopold, U.; Schmid, M. Thioester-containing proteins: At the crossroads of immune effector mechanisms. Virulence 2017, 8, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Lagueux, M.; Perrodou, E.; Levashina, E.A.; Capovilla, M.; Hoffmann, J.A. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc. Natl. Acad. Sci. USA 2000, 97, 11427–11432. [Google Scholar] [CrossRef]
- Levashina, E.A.; Moita, L.F.; Blandin, S.; Vriend, G.; Lagueux, M.; Kafatos, F.C. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001, 104, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Rämet, M.; Pearson, A.; Manfruelli, P.; Li, X.; Koziel, H.; Göbel, V.; Chung, E.; Krieger, M.; Ezekowitz, R.A. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 2001, 15, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, K.; Sipos, B.; Pénzes, Z.; Kurucz, E.; Zsámboki, J.; Hultmark, D.; Andó, I. Evolution of genes and repeats in the nimrod superfamily. Mol. Biol. Evol. 2008, 25, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.S.; Cho, M.H.; Brade, L.; Kim, J.H.; Park, J.W.; Ha, N.-C.; Söderhäll, I.; Söderhäll, K.; Brade, H.; Lee, B.L. A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide. J. Immunol. 2006, 177, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, E.; Márkus, R.; Zsámboki, J.; Folkl-Medzihradszky, K.; Darula, Z.; Vilmos, P.; Udvardy, A.; Krausz, I.; Lukacsovich, T.; Gateff, E.; et al. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 2007, 17, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Melcarne, C.; Ramond, E.; Dudzic, J.; Bretscher, A.J.; Kurucz, É.; Andó, I.; Lemaitre, B. Two nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. FEBS J. 2019, 286, 2670–2691. [Google Scholar] [CrossRef] [PubMed]
- Boutros, M.; Agaisse, H.; Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 2002, 3, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qiu, L.-M.; Fang, Q.; Stanley, D.W.; Ye, G.-Y. Cellular and humoral immune interactions between Drosophila and its parasitoids. Insect Sci. 2021, 28, 1208–1227. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.F.; Torres, A.Q.; Jardim, R.; Mesquita, R.D.; Schama, R. Evolution of Toll, Spatzle and MyD88 in insects: The problem of the Diptera bias. BMC Genom. 2021, 22, 562. [Google Scholar] [CrossRef]
- Leulier, F.; Lemaitre, B. Toll-like receptors—Taking an evolutionary approach. Nat. Rev. Genet. 2008, 9, 165–178. [Google Scholar] [CrossRef]
- Agaisse, H.; Perrimon, N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 2004, 198, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Schlenke, T.A.; Morales, J.; Govind, S.; Clark, A.G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 2007, 3, e158. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.; Aronstein, K.; Chen, Y.P.; Hetru, C.; Imler, J.-L.; Jiang, H.; Kanost, M.; Thompson, G.J.; Zou, Z.; Hultmark, D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006, 15, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Dionne, M.S.; Schneider, D.S. Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis. Models Mech. 2008, 1, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Modahl, C.M.; Tan, S.T.; Xiang, B.W.W.; Missé, D.; Vial, T.; Kini, R.M.; Pompon, J.F. JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. PLoS Pathog. 2020, 16, e1008754. [Google Scholar] [CrossRef]
- Hanson, M.A.; Lemaitre, B. New insights on Drosophila antimicrobial peptide function in host defense and beyond. Curr. Opin. Immunol. 2020, 62, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Wong, A.C.-N.; Chaston, J.M.; Colvin, J.; McKenzie, C.L.; Douglas, A.E. The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 2014, 23, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Bachali, S.; Jager, M.; Hassanin, A.; Schoentgen, F.; Jollès, P.; Fiala-Medioni, A.; Deutsch, J.S. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J. Mol. Evol. 2002, 54, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Van Herreweghe, J.M.; Michiels, C.W. Invertebrate lysozymes: Diversity and distribution, molecular mechanism and in vivo function. J. Biosci. 2012, 37, 327–348. [Google Scholar] [CrossRef]
- Marra, A.; Hanson, M.A.; Kondo, S.; Erkosar, B.; Lemaitre, B. Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Paskewitz, S.M.; Li, B.; Kajla, M.K. Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae. Insect Mol. Biol. 2008, 17, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Beckert, A.; Wiesner, J.; Schmidtberg, H.; Lehmann, R.; Baumann, A.; Vogel, H.; Vilcinskas, A. Expression and characterization of a recombinant I-type lysozyme from the harlequin ladybird beetle Harmonia axyridis. Insect Mol. Biol. 2016, 25, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A.; McCutcheon, J.P.; Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 2008, 42, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Nikoh, N.; Nakabachi, A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 2009, 7, 12. [Google Scholar] [CrossRef]
- Templin, M.F.; Ursinus, A.; Höltje, J. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J. 1999, 18, 4108–4117. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, M.A.; Chen, Y.; Yahashiri, A.; Popham, D.L.; Weiss, D.S. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol. Microbiol. 2014, 93, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Nakabachi, A. Horizontal gene transfers in insects. Curr. Opin. Insect Sci. 2015, 7, 24–29. [Google Scholar] [CrossRef]
- Sun, T.; Wang, X.-Q.; Zhao, Z.-L.; Yu, S.-H.; Yang, P.; Chen, X.-M. A lethal fungus infects the Chinese white wax scale insect and causes dramatic changes in the host microbiota. Sci. Rep. 2018, 8, 5324. [Google Scholar] [CrossRef] [PubMed]
- Shigenobu, S.; Stern, D.L. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont. Proc. R. Soc. B Biol. Sci. 2013, 280, 20121952. [Google Scholar] [CrossRef]
- Loth, K.; Parisot, N.; Paquet, F.; Terrasson, H.; Sivignon, C.; Rahioui, I.; Ribeiro Lopes, M.; Gaget, K.; Duport, G.; Delmas, A.F.; et al. Aphid BCR4 structure and activity uncover a new defensin peptide superfamily. Int. J. Mol. Sci. 2022, 23, 12480. [Google Scholar] [CrossRef]
- Shahidi, F.; Abuzaytoun, R. Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2005; Volume 49, pp. 93–135. [Google Scholar]
- Arakane, Y.; Muthukrishnan, S. Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 2010, 67, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.-L.; Hou, J.; Feng, M.-G.; Ying, S.-H. Transcriptomic analyses reveal comprehensive responses of insect hemocytes to mycopathogen Beauveria bassiana, and fungal virulence-related cell wall protein assists pathogen to evade host cellular defense. Virulence 2020, 11, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Jollès, P. Lysozymes—Model Enzymes in Biochemistry and Biology; Birkhäuser: Basel, Switzerland, 1996. [Google Scholar]
- Sustar, A.E.; Strand, L.G.; Zimmerman, S.G.; Berg, C.A. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics 2023, 223, iyac185. [Google Scholar] [CrossRef]
- Nappi, A.J.; Christensen, B.M. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem. Mol. Biol. 2005, 35, 443–459. [Google Scholar] [CrossRef]
- Xu, L.; Ma, L.; Wang, W.; Li, L.; Lu, Z. Phenoloxidases are required for the pea aphid’s defence against bacterial and fungal infection. Insect Mol. Biol. 2019, 28, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, F.; Wang, W.; Xu, L.; Lu, Z.-Q. Identification of two clip domain serine proteases involved in the pea aphid’s defense against bacterial and fungal infection. Insect Sci. 2020, 27, 735–744. [Google Scholar] [CrossRef]
- McLean, A.H.C.; Parker, B.J. Variation in intrinsic resistance of pea aphids to parasitoid wasps: A transcriptomic basis. PLoS ONE 2020, 15, e0242159. [Google Scholar] [CrossRef]
- Rivero, A. Nitric oxide: An antiparasitic molecule of invertebrates. Trends Parasitol. 2006, 22, 219–225. [Google Scholar] [CrossRef]
- Sadekuzzaman, M.; Kim, Y. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. PLoS ONE 2018, 13, e0193282. [Google Scholar] [CrossRef]
- Nappi, A.J.; Vass, E.; Frey, F.; Carton, Y. Nitric oxide involvement in Drosophila immunity. Nitric Oxide 2000, 4, 423–430. [Google Scholar] [CrossRef]
- Ma, L.; Yan, X.; Zhou, L.; Wang, W.; Chen, K.; Hao, C.; Lu, Z.; Qie, X. Nitric oxide synthase is required for the pea aphid’s defence against bacterial infection. Insect Mol. Biol. 2023, 32, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.S.C.; Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 2005, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- de Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and prorule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, W362–W365. [Google Scholar] [CrossRef]
Role in Insect Immunity | Gene Symbol | Gene Name 1 | D. melanogaster NCBI Protein ID | A. pisum NCBI Protein ID | Best Matches (E-Value) 2 |
---|---|---|---|---|---|
bacterial recognition | PGRP-LC | peptidoglycan recognition protein | AAF50302.3 | not found | not found |
activation of PPO cascade and autophagy | PGRP-LE | peptidoglycan recognition protein | NP_573078.1 | not found | not found |
bacterial recognition | PGRP-SA | peptidoglycan recognition protein | AAF48056.1 | not found | not found |
bacterial recognition | PGRP-SD | peptidoglycan recognition protein | CAD89193.1 | not found | not found |
bacterial recognition | PGRP-LB | peptidoglycan recognition protein | NP_650079.1 | not found | not found |
bacterial recognition | PGRP-SC1a | peptidoglycan recognition protein | CAD89161.1 | not found | not found |
bacterial recognition | PGRP-SC2 | peptidoglycan recognition protein | CAD89187.1 | not found | not found |
pgn degradation and antibacterial activity | PGRP-SB1 | peptidoglycan recognition protein | CAD89136.1 | not found | not found |
blocking of imd pathway | PGRP-LF | peptidoglycan recognition protein | NP_648299.3 | not found | not found |
activation of imd pathway | PGRP-LA | peptidoglycan recognition protein | AAF50304.2 | not found | not found |
bacterial and fungal pattern recognition | GNBP1 | Gram-negative binding protein 1 | Q9NHB0.2 | XP_001944473.2 | QBOQ01000878.1 (3 × 10−8) QBOQ01000589.1 (2 × 10−6) |
bacterial and fungal pattern recognition | GNBP2 | Gram-negative binding protein 2 | ACU30172.1 | XP_001944473.2 | QBOQ01000878.1 (3 × 10−8) QBOQ01000589.1 (2 × 10−6) |
bacterial and fungal pattern recognition | GNBP3 | Gram-negative binding protein 3 | CAJ18910.1 | XP_029342159.1 | QBOQ01000878.1 (1 × 10−18) |
bacterial recognition, induction of PPO cascade | DL1 | c-type lectin 1 | AAF53793.1 | not found | not found |
bacterial recognition, induction of PPO cascade | DL2 | c-type lectin 2 | NP_001014489.1 | XP_016663197.1 XP_001950803.2 XP_001945032.2 | QBOQ01000461.1 (1 × 10−52) QBOQ01000461.1 (3 × 10−53) QBOQ01000466.1 (4 × 10−24) |
bacterial recognition, induction of PPO cascade | DL3 | c-type lectin 3 | NP_001014490.1 | XP_016663197.1 XP_001950803.2 | QBOQ01000461.1 (1 × 10−52) QBOQ01000461.1 (3 × 10−53) |
several roles have been hypothesized | galectin | galectin 9 | ADZ99399.1 | XP_001943769.2 | not found |
mark pathogens for phagocytosis | Tep1 | thioester containing protein 1 | CAB87807.1 | XP_029348718.1 | QBOQ01000202.1 (2 × 10−38) |
mark pathogens for phagocytosis | Tep2 | thioester containing protein 2 | CAB87808.1 | XP_029348718.1 | QBOQ01000202.1 (2 × 10−38) |
mark pathogens for phagocytosis | Tep3 | thioester containing protein 3 | AAL39195.1 | XP_029348714.1 | QBOQ01000202.1 (2 × 10−38) |
mark pathogens for phagocytosis | Tep4 | thioester containing protein 4 | NP_523603.2 | XP_029348718.1 | QBOQ01000202.1 (2 × 10−38) |
bacterial and fungal recognition | pes | peste, scavenger receptor class b | AHN54246.1 | XP_029341846.1 | QBOQ01001218.1 (2 × 10−33) |
bacterial and fungal recognition | crq | croquemort | AAF51494.1 | XP_001944867.2 | QBOQ01000024.1 (1 × 10−35) |
bacterial and fungal recognition | drpr | draper | NP_477450.1 | XP_001942552.2 | QBOQ01001915.1 (2 × 10−29) |
bind to lipoproteins and bacteria | sr-CI | scavenger receptor class c, type i | AAW79470.1 | not found | not found |
bind to lipoproteins and bacteria | sr-CII | scavenger receptor class c, type ii | AAF58551.1 | not found | not found |
bind to lipoproteins and bacteria | sr-CIII | scavenger receptor class c, type iii | AAF37564.1 | not found | not found |
bind to lipoproteins and bacteria | sr-CIV | scavenger receptor class c, type iv | AAF51092.1 | not found | not found |
receptor in phagocytosis and microbial binding | eater | eater | AAF56664.5 | not found | not found |
receptor in phagocytosis and microbial binding | nim-C1 | Nimrod c1 | AAF53364.2 | not found | not found |
Role in Insect Immunity | Gene Symbol | Gene Name 1 | D. melanogaster NCBI Protein ID | A. pisum NCBI Protein ID | Best Matches (E-Value) 2 |
---|---|---|---|---|---|
Toll pathway | spz1-1 | spätzle 1B | NP_733188.1 | NP_001153589 | QBOQ01001621.1 (7 × 10−13) |
Toll pathway | spz1-2 | spätzle 1Bii | NP_001138116.1 | NP_001153590 | QBOQ01001132.1 (9 × 10−8) |
Toll pathway | spz2 | spätzle 2, neurotrophin 1 | NP_001261417.1 | XP_001948459.1 | QBOQ01001810.1 (4 × 10−20) |
Toll pathway | spz3 | spätzle 3 | NP_609160.2 | XP_029341989.1 | QBOQ01001601.1 (2 × 10−21) QBOQ01001203.1 (2 × 10−14) QBOQ01000537.1 (9 × 10−13) |
Toll pathway | spz4 | spätzle 4 | NP_609504.2 | NP_001153592 | QBOQ01000537.1 (2 × 10−28) QBOQ01001203.1 (4 × 10−28) QBOQ01001601.1 (2 × 10−14) |
Toll pathway | Spz5 | spätzle 5 | NP_647753.1 | XP_001947495.2 | QBOQ01001431.1 (2 × 10−17) |
Toll pathway | spz6 | spätzle 6 | NP_611961.1 | XP_001944046 | QBOQ01001423.1 (6 × 10−58) |
Toll pathway | Toll-1 | protein Toll | NP_524518.1 | XP_008182102.1 | QBOQ01001036.1 (3 × 10−57) QBOQ01001364.1 (4 × 10−54) QBOQ01000985.1 (8 × 10−48) |
Toll pathway | Toll-1 | protein Toll | NP_524518.1 | XP_001942733.2 | QBOQ01001036.1 (6 × 10−54) QBOQ01001364.1 (7 × 10−49) QBOQ01000985.1 (2 × 10−38) |
Toll pathway | 18w | 18 wheeler, Toll-2 | NP_476814.1 | XP_001946943.2 | QBOQ01000059.1 (0.0) QBOQ01000985.1 (0.0) QBOQ01000048.1 (0.0) |
Toll pathway | Toll-6 | Toll-6 | NP_001246766.1 | XP_001947324.1 | QBOQ01000985.1 (0.0) QBOQ01000059.1 (0.0) QBOQ01000048.1 (0.0) |
Toll pathway | Toll-6 | Toll-6 | NP_001246766.1 | XP_003248960.1 | QBOQ01000048.1 (0.0) QBOQ01000985.1 (0.0) QBOQ01000059.1 (0.0) |
Toll pathway | Toll-7 | Toll-7 | NP_523797.1 | XP_001946943_2 | QBOQ01000059.1 (0.0) QBOQ01000985.1 (0.0) QBOQ01000048.1 (0.0) |
Toll pathway | Tollo | Tollo, Toll-8 | NP_524757.1 | XP_001948566.1 | QBOQ01000985.1 (0.0) QBOQ01000059.1 (0.0) QBOQ01000048.1 (0.0) |
Toll pathway | tub | tube, interleukin-1 receptor-associated kinase 4 | NP_001189164.1 | BAH72505.1 | QBOQ01000327.1 (8 × 10−15) |
Toll pathway | Myd88 | myeloid differentiation primary response gene | AAF58953.1 | XP_001948320.2 | not found |
Toll pathway | pll | pelle | AAF56686.1 | XP_029346632.1 | QBOQ01000327.1 (2 × 10−33) QBOQ01002061.1 (3 × 10−12) QBOQ01001518.1 (3 × 10−11) |
Toll pathway | cact | cactus | AAN10936.1 | NP_001156668.1 | not found |
Toll pathway | cactin | cactin | NP_523422.4 | XP_001952287.2 | QBOQ01001452.1 (1 × 10−88) |
Toll pathway | Pli | pellino | NP_524466.1 | XP_001946282.3 | QBOQ01001351.1 (4 × 10−29) |
Toll pathway | Traf1, Traf4 | TNF-receptor-associated factor 1 | AAD34346.1 | XP_001948355.1 | QBOQ01000448.1 (3 × 10−67) |
Toll pathway | Traf2, Traf6 | TNF-receptor-associated factor 2 | AAF46338.1 | XP_029347356.1 | QBOQ01001366.1 (1 × 10−17) |
Toll pathway | Traf3, Traf-like | TNF-receptor-associated factor 3 | NP_727976.1 | not found | not found |
Toll pathway | dl | dorsal | AAF53611.1 | XP_001949498.2 | QBOQ01000587.1 (1 × 10−68) |
Toll pathway | Dif | dorsal-related immunity factor, embryonic polarity protein | NP_523589.2 | XP_001949498.2 | QBOQ01000587.1 (1 × 10−68) |
Jak/stat pathway | dome | domeless 1, interleukine JAK/STAT receptor | CAD12503.1 | XP_029341085.1 | QBOQ01000913.1 (1 × 10−114) |
Jak/stat pathway | dome2 | domeless 2 | Not found | XP_029341036.1 | QBOQ01000913.1 (6 × 10−111) |
Jak/stat pathway | hops, jak | hopscotch, Janus kinase | NP_511119.2 | XP_008188128.1 | QBOQ01001628.1 (2 × 10−29) QBOQ01002061.1 (4 × 10−28) QBOQ01000952.1 (6 × 10−24) |
Jak/stat pathway | Stat92E | signal-transducer and activator of transcription, marelle | AAX33462.1 | XP_008188159.1 | QBOQ01001541.1 (5 × 10−44) QBOQ01000405.1 (1 × 10−42) |
Jak/stat pathway | upd1 | unpaired 1 | NP_525095.2 | not found | not found |
Jak/stat pathway | upd2 | unpaired 2 | NP_001356882.1 | not found | not found |
Jak/stat pathway | upd3 | unpaired 3 | NP_001097014.1 | not found | not found |
Imd pathway | imd | immune deficiency | NP_573394.1 | not found | not found |
Imd pathway | dFadd | dFadd | NP_651006.1 | not found | not found |
Imd pathway | Dredd | death related ced-3, caspase-1 | NP_477249.3 | XP_029344969.1 | QBOQ01001252.1 (4 × 10−61) |
Imd pathway | Rel | Relish | NP_477094.1 | not found | not found |
Imd pathway | Tab2 | TAK1-associated binding protein 2 | NP_611408.2 | XP_003244590.1 | QBOQ01001392.1 (7 × 10−8) |
Imd pathway | Tak1 | TGF-β activated kinase 1 | AAF50895.1 | XP_029347425.1 | QBOQ01001920.1 (3 × 10−35) QBOQ01001518.1 (6 × 10−29) QBOQ01000779.1 (1 × 10−17) |
Imd pathway | key | kenny | NP_523856.2 | not found | not found |
Imd pathway | Diap2 | death-associated inhibitor of apoptosis 2 | NP_477127.1 | XP_016661891.1 | QBOQ01002166.1 (3 × 10−20) QBOQ01001565.1 (2 × 10−12) QBOQ01001600.1 (4 × 10−12) |
Imd pathway | ird5 | immune response deficiency 5, IK-β, IKKB, I-kappaB kinase beta | NP_524751.3 | XP_001946184.1 | QBOQ01000860.1 (0.0) |
Jnk pathway | hep | hemipterous | NP_727661.1 | XP_008180171.1 | QBOQ01001476.1 (1 × 10−126) |
Jnk pathway | bsk | basket | P92208.1 | XP_001945460.2 | QBOQ01001118.1 (6 × 10−45) QBOQ01001795.1 (4 × 10−40) QBOQ01001783.1 (4 × 10−26) |
Jnk pathway | Jra | Jun-related antigen | AAF58845.1 | XP_001947556.1 | QBOQ01001648.1 (8 × 10−16) |
Jnk pathway | kay | kayak | NP_001027579.1 | XP_016663984.1 | not found |
Jnk pathway | egr | Eiger | AAF58848.2 | XP_008178962.1 | QBOQ01000141.1 (7 × 10−5) |
Role in Insect Immunity | Gene Symbol | Gene Name 1 | D. melanogaster NCBI Protein ID | A. pisum NCBI Protein ID | Best Matches (E-Value) 2 |
---|---|---|---|---|---|
antimicrobial peptide | Att | attacin | NP_523745.1 | not found | not found |
antimicrobial peptide | Cec | cecropin | C0HKQ7.1 | not found | not found |
antimicrobial peptide | Def | defensin | ANY27112.1 | not found | not found |
antimicrobial peptide | Dro | drosocin | XP_016946682.1 | not found | not found |
antimicrobial peptide | Mtk | metchnikowin | AAO72489.1 | not found | not found |
antimicrobial peptide | andropin | P21663.1 | not found | not found | |
antimicrobial peptide | diptericin | QER92349.1 | not found | not found | |
antimicrobial peptide | Drs | drosomycin | ANY27466.1 | not found | not found |
antimicrobial peptide | holotricin | XP_051861657.1 | not found | not found | |
antimicrobial peptide | bomanin | A1ZB62.1 | not found | not found | |
antimicrobial | LOC100164856 | thaumatin-like protein | not found | XP_001942718.2 | not found |
antimicrobial | LOC100160062 | thaumatin-like protein 1b | not found | XP_001942572.1 | not found |
antimicrobial | LOC100570639 | thaumatin-like protein 1 | not found | XP_003248856.4 | not found |
antimicrobial | LOC100162111 | uncharacterized LOC100162111, thaumatin family | not found | NP_001155516 | not found |
antimicrobial | LOC100168942 | TLP-PA-domain protein | not found | NP_001156304.1 | not found |
antimicrobial | LOC100169496 | pathogenesis-related protein 5-like | not found | NP_001313585.1 | not found |
microbial degradation | LysX | lysozyme X, i-type | CAL85493.1 | not found | not found |
microbial degradation | LysB | lysozyme B, i-type | NP_001261245.1 | not found | not found |
microbial degradation | LysP | lysozyme, i-type | NP_476828.1 | not found | not found |
microbial degradation | LysC | lysozyme | CAA80228 | not found | not found |
microbial degradation | LysD | lysozyme | NP_476823.1 | not found | not found |
microbial degradation | LysE | lysozyme | NP_476827.2 | not found | not found |
microbial degradation | LysS | lysozyme | NP_476829.1 | not found | not found |
microbial degradation | lysozyme, i-type | LOC100167742, lysozyme | ACD99447.1 | XP_001949318.2 | QBOQ01000327.1 (6 × 10−19) QBOQ01001156.1 (5 × 10−18) QBOQ01000040.1 (7 × 10−18) |
microbial degradation | lysozyme, i-type | LOC100168424, destabilase | NP_611164.3 | NP_001156290.1 | QBOQ01002128.1 (5 × 10−17) QBOQ01000327.1 (6 × 10−8) QBOQ01000040.1 (9 × 10−8) |
microbial degradation | lysozyme, i-type | LOC100160909, destabilase | NP_611163.2 | NP_001155465.1 | QBOQ01000040.1 (3 × 10−11) QBOQ01002128.1 (8 × 10−8) |
fungal degradation | Cht2 | chitinase-like protein 2, mucin | NP_001261282.1 | XP_016663378.1 | QBOQ01000205.1 (1 × 10−40) QBOQ01000535.1 (1 × 10−19) QBOQ01001282.1 (3 × 10−19) |
fungal degradation | Cht4 | chitinase-like protein 4, flocculation protein | NP_524962.2 | XP_029343203.1 | QBOQ01001282.1 (3 × 10−40) QBOQ01000205.1 (3 × 10−20) QBOQ01000535.1 (5 × 10−19) |
fungal degradation | Cht5 | chitinase-like protein 5, endochitinase | NP_650314.1 | XP_008181779.1 | QBOQ01000410.1 (3 × 10−47) QBOQ01000205.1 (3 × 10−16) QBOQ01001282.1 (5 × 10−21) |
fungal degradation | Cht6 | chitinase-like protein 6, flocculation protein | NP_001245602.1 | XP_029343203.1 | QBOQ01001282.1 (3 × 10−40) QBOQ01000205.1 (3 × 10−20) QBOQ01000535.1 (5 × 10−19) |
fungal degradation | Cht7 | chitinase-like protein 7, chitinase 10 | NP_647768.3 | XP_001950380.1 | QBOQ01000535.1 (9 × 10−87) QBOQ01000062.1 (2 × 10−61) QBOQ01001282.1 (3 × 10−24) |
fungal degradation | Cht7 | chitinase 3-like, LOC100169240 | NP_647768.3 | XP_008182858.1 | QBOQ01002026.1 (6 × 10−19) QBOQ01000535.1 (8 × 10−14) QBOQ01000205.1 (4 × 10−8) |
fungal degradation | Cht6 | LOC100162732 | NP_001245599.1 | XP_001945470.2 | QBOQ01001292.1 (2 × 10−7) |
fungal degradation | idgf6 | idgf | NP_001286499.1 | NP_001162142.1 | QBOQ01000713.1 (3 × 10−55) |
prophenoloxidase response | PPO1 | prophenoloxidase 1 | NP_476812.1 | XP_001949307.1 | QBOQ01000687.1 (5 × 10−45) QBOQ01000496.1 (8 × 10−33) QBOQ01002014.1 (3 × 10−27) |
prophenoloxidase response | PPO2 | prophenoloxidase 2 | NP_610443.1 | XP_001951137.1 | QBOQ01000687.1 (2 × 10−43) QBOQ01000496.1 (2 × 10−37) QBOQ01002014.1 (5 × 10−27) |
phenoloxidase activation | PAF2, PPAF2 | phenoloxidase-activating factor 2 | AAO24923.1 | XP_003244500.1 | QBOQ01000870.1 (3 × 10−13) QBOQ01001093.1 (2 × 10−12) QBOQ01001364.1 (2 × 10−9) |
phenoloxidase activation | PAF2, PPAF2 | phenoloxidase-activating factor 2 | AAO24923.1 | XP_001952301.1 | QBOQ01000870.1 (2 × 10−24) QBOQ01001093.1 (2 × 10−28) QBOQ01002068.1 (1 × 10−15) |
phenoloxidase activation | SP | serine protease-like precursor | NP_001097766.1 | NP_001155379.1 | QBOQ01000877.1 (2 × 10−24) QBOQ01000234.1 (2 × 10−23) QBOQ01001364.1 (6 × 10−8) |
cell aggregation | Hmct, hemolectin | hemocytin | NP_001261809.1 | XP_001952865.2 | QBOQ01002094.1 (3 × 10−22) |
production of nitric oxide, a toxic gas | Nos | nitric oxide synthase | NP_001027243.2 | XP_029343919.1 | QBOQ01001094.1 (4 × 10−29) |
peptidoglycan degradation | ldca | putative LD carboxypeptidase | not found | XP_029341985.1 | QBOQ01000175.1 (2 × 10−43) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becchimanzi, A.; Nicoletti, R.; Di Lelio, I.; Russo, E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int. J. Mol. Sci. 2024, 25, 4922. https://doi.org/10.3390/ijms25094922
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). International Journal of Molecular Sciences. 2024; 25(9):4922. https://doi.org/10.3390/ijms25094922
Chicago/Turabian StyleBecchimanzi, Andrea, Rosario Nicoletti, Ilaria Di Lelio, and Elia Russo. 2024. "Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae)" International Journal of Molecular Sciences 25, no. 9: 4922. https://doi.org/10.3390/ijms25094922
APA StyleBecchimanzi, A., Nicoletti, R., Di Lelio, I., & Russo, E. (2024). Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). International Journal of Molecular Sciences, 25(9), 4922. https://doi.org/10.3390/ijms25094922