Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish
Abstract
:1. Introduction
2. Results
2.1. MnCl2 Exposure Leads to Reduced Survival of Zebrafish Larvae
2.2. MnCl2 Exposure Affects Body Length, Eye Size and Olfactory Organ Morphology
2.3. MnCl2 Toxicity Leads to Reduced Intensity of Neurogranin Immunoreaction and mRNA Expression
2.4. MnCl2 Exposure Leads to Mn Accumulation and Alters Larval Zebrafish Behavior
3. Discussion
3.1. Mn Overexposure Induces Morphological Changes in Zebrafish Larvae
3.2. Neurogranin Protein and Gene Expression Is Diminished upon MnCl2 Exposure
3.3. MnCl2 Exposure Produces Postural Defects and Behavioral Impairment in Zebrafish Larvae
4. Materials and Methods
4.1. Animal Maintenance and Embryo Collection
4.2. MnCl2 Exposure
4.3. Survival Analysis
4.4. Morphological Analyses
4.5. Immunohistochemistry
4.6. Electron Microscopy
4.7. Gene expression Analysis by RT-qPCR
4.8. ICP-MS Analysis of Metal Ions
4.9. Behavioral Analysis
4.9.1. Experimental Design
4.9.2. Light/Dark Exploration and Preference Assay
4.9.3. Optomotor Response Assay (OMR)
4.10. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barceloux, D.G. Manganese. Clin. Toxicol. 1999, 37, 293–307. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Aschner, M.; Erikson, K.M. Manganese. Adv. Nutr. 2017, 8, 520–521. [Google Scholar] [CrossRef] [PubMed]
- Papavasiliou, P.S.; Miller, S.T.; Cotzias, G.C. Role of liver in regulating distribution and excretion of manganese. Am. J. Physiol. Cell Physiol. 1996, 211, 211–216. [Google Scholar] [CrossRef]
- Testolin, G.; Ciappellano, S.; Alberio, A.; Piccinini, F.; Paracchini, L.; Jotti, A. Intestinal absorption of manganese: An in vitro study. Ann. Nutr. Met. 1993, 37, 289–294. [Google Scholar] [CrossRef]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Anagianni, S.; Tuschl, K. Genetic Disorders of Manganese Metabolism. Curr. Neurol. Neurosci. Rep. 2019, 19, 33. [Google Scholar] [CrossRef]
- Winslow, J.W.W.; Limesand, K.H.; Zhao, N. The functions of ZIP8, ZIP14, and ZnT10 in the regulation of systemic manganese homeostasis. Int. J. Mol. Sci. 2020, 21, 3304. [Google Scholar] [CrossRef]
- Nasr, P.; Ignatova, S.; Lundberg, P.; Kechagias, S.; Ekstedt, M. Low hepatic manganese concentrations in patients with hepatic steatosis—A cohort study of copper, iron and manganese in liver biopsies. J. Trace Elem. Med. Biol. 2021, 67, 126772. [Google Scholar] [CrossRef]
- Couper, J.C. On the Effects of Black oxide of manganese when inhaled into the lungs. Brain Ann. Med. Pharm. 1837, 1, 41–42. [Google Scholar]
- Dorman, D.C.; Struve, M.F.; Marshall, M.W.; Parkinson, C.U.; James, R.A.; Wong, B.A. Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicol. Sci. 2006, 92, 201–210. [Google Scholar] [CrossRef]
- Tuschl, K.; Mills, P.B.; Clayton, P.T. Manganese and the Brain. Int. Rev. Neurob. 2013, 110, 277–312. [Google Scholar] [CrossRef]
- Tuschl, K.; White, R.J.; Trivedi, C.; Valdivia, L.E.; Niklaus, S.; Bianco, I.H.; Dadswell, C.; González-Méndez, R.; Sealy, I.M.; Neuhauss, S.C.F.; et al. Loss of slc39a14 causes simultaneous manganese hypersensitivity and deficiency in zebrafish. Dis. Mod. Mech. 2022, 15, dmm044594. [Google Scholar] [CrossRef] [PubMed]
- Nyarko-Danquah, I.; Pajarillo, E.; Digman, A.; Soliman, K.F.A.; Aschner, M.; Lee, E. Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms. Molecules 2020, 25, 5880. [Google Scholar] [CrossRef]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmac. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Tjälve, H. Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol. Sci. 2000, 55, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Barahona, A.J.; Bursac, Z.; Veledar, E.; Lucchini, R.; Tieu, K.; Richardson, J.R. Relationship of Blood and Urinary Manganese Levels with Cognitive Function in Elderly Individuals in the United States by Race/Ethnicity, NHANES 2011–2014. Toxics 2022, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Gianutsos, G.; Morrow, G.R.; Morris, J.B. Accumulation of manganese in rat brain following intranasal administration. Fund. Appl. Toxicol. 1997, 37, 102–105. [Google Scholar] [CrossRef]
- Dorman, D.C.; Struve, M.F.; Gross, E.A.; Wong, B.A.; Howroyd, P.C. Sub-chronic inhalation of high concentrations of manganese sulfate induces lower airway pathology in rhesus monkeys. Resp. Res. 2005, 6, 1–10. [Google Scholar] [CrossRef]
- Heilig, E.A.; Thompson, K.J.; Molina, R.M.; Ivanov, A.R.; Brain, J.D.; Wessling-Resnick, M. Manganese and iron transport across pulmonary epithelium. Am. J. Physiol. 2006, 290, 1247–1259. [Google Scholar] [CrossRef]
- Foster, M.L.; Rao, D.B.; Francher, T.; Traver, S.; Dorman, D.C. Olfactory toxicity in rats following manganese chloride nasal instillation: A pilot study. Neuro Toxicol. 2018, 64, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, P.; Nachshen, D.A. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J. Physiol. 1984, 348, 493–510. [Google Scholar] [CrossRef]
- Takeda, A.; Kodama, Y.; Ishiwatari, S.; Okada, S. Manganese transport in the neural circuit of rat CNS. Brain Res. Bull. 1998, 45, 149–152. [Google Scholar]
- Takeda, A.; Sotogaku, N.; Oku, N. Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 2002, 114, 669–674. [Google Scholar]
- Thuen, M.; Berry, M.; Pedersen, T.B.; Goa, P.E.; Summerfield, M.; Haraldseth, O.; Sandvig, A.; Brekken, C. Manganese-enhanced MRI of the rat visual pathway: Acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn2+. J. Magn. Res. Imag. 2008, 28, 855–865. [Google Scholar] [CrossRef]
- Kulshreshtha, D.; Ganguly, J.; Jog, M. Manganese and movement disorders: A review. J. Mov. Dis. 2021, 14, 93–102. [Google Scholar] [CrossRef]
- Rodichkin, A.N.; Edler, M.K.; McGlothan, J.L.; Guilarte, T.R. Pathophysiological studies of aging Slc39a14 knockout mice to assess the progression of manganese-induced dystonia-parkinsonism. Neurotoxicology 2022, 93, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Rodier, J. Manganese poisoning in Moroccan miners. Br. J. Ind. Med. 1955, 12, 21–35. [Google Scholar] [CrossRef]
- Roels, H.; Lauwerys, R.; Buchet, J.P.; Genet, P.; Sarhan, M.J.; Hanotiau, I.; De Fays, M.; Bernard, A.; Stanescu, D. Epidemiological survey among workers exposed to manganese: Effects on lung, central nervous system, and some biological indices. Am. J. Ind. Med. 1987, 11, 307–327. [Google Scholar] [CrossRef]
- Tuschl, K.; Meyer, E.; Valdivia, L.E.; Zhao, N.; Dadswell, C.; Abdul-Sada, A.; Hung, C.Y.; Simpson, M.A.; Chong, W.K.; Jacques, T.S.; et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat. Commun. 2016, 7, 1–16. [Google Scholar] [CrossRef]
- Drinker, C.K. The Occurrence, Course, and Prevention of Chronic Manganese Poisoning. J. Dent. Res. 1921, 3, 83–91. [Google Scholar] [CrossRef]
- Elizan, T.S.; Hirano, A.; Abrams, B.M.; Need, R.L.; Van Nuis, C.; Kurland, L.T. Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam. Neurological reevaluation. Arch. Neurol. 1966, 14, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C., Jr.; Morcillo, P.; Ijomone, O.M.; Venkataramani, V.; Harrison, F.E.; Lee, E.; Bowman, A.B.; Aschner, M. New Insights on the Role of Manganese in Alzheimer’s Disease and Parkinson’s Disease. Int. J. Environ. Res. Pub. Health 2019, 16, 3546. [Google Scholar] [CrossRef] [PubMed]
- Shrader, R.E.; Everson, G.J. Anomalous Development of Otoliths Associated Postural Defects in Manganese-deficient Guinea Pigs. J. Nutr. 1967, 91, 453–460. [Google Scholar] [CrossRef]
- Ordoñez-Librado, J.L.; Anaya-Martínez, V.; Gutierrez-Valdez, A.L.; Colín-Barenque, L.; Montiel-Flores, E.; Avila-Costa, M.R. Manganese inhalation as a Parkinson disease model. Parkinson’s Dis. 2011; 2011, 6129. [Google Scholar] [CrossRef]
- Bakthavatsalam, S.; Das Sharma, S.; Sonawane, M.; Thirumalai, V.; Datta, A. A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity. Dis. Models Mech. 2014, 7, 1239–1251. [Google Scholar] [CrossRef]
- Vaz, R.L.; Outeiro, T.F.; Ferreira, J.J. Zebrafish as an animal model for drug discovery in Parkinson’s disease and other movement disorders: A systematic review. Front. Neurol. 2018, 9, 347. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, T.; Xiang, Y.; Liao, G.; Zou, F.; Meng, X. Neurotoxicity and gene expression alterations in zebrafish larvae in response to manganese exposure. Sci. Total Environ. 2022, 825, 153778. [Google Scholar] [CrossRef]
- Camporesi, E.; Nilsson, J.; Brinkmalm, A.; Becker, B.; Ashton, N.J.; Blennow, K.; Zetterberg, H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark. Insights 2020, 15, 1177271920950319. [Google Scholar] [CrossRef]
- Kivisäkk, P.; Carlyle, B.C.; Sweeney, T.; Quinn, J.P.; Ramirez, C.E.; Trombetta, B.A.; Mendes, M.; Brock, M.; Rubel, C.; Czerkowicz, J.; et al. Increased levels of the synaptic proteins PSD-95, SNAP-25, and neurogranin in the cerebrospinal fluid of patients with Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Li, G.L.; Farooque, M.; Lewen, A.; Lennmyr, F.; Holtz, A.; Olsson, Y. MAP2 and neurogranin as markers for dendritic lesions in CNS injury. An immunohistochemical study in the rat. Apmis 2000, 108, 98–106. [Google Scholar] [CrossRef]
- Agnello, L.; Lo Sasso, B.; Vidali, M.; Scazzone, C.; Piccoli, T.; Gambino, C.M.; Bivona, G.; Giglio, R.V.; Ciaccio, A.M.; La Bella, V.; et al. Neurogranin as a reliable biomarker for synaptic dysfunction in Alzheimer’s disease. Diagnostics 2021, 11, 2339. [Google Scholar] [CrossRef] [PubMed]
- Willemse, E.A.J.; Sieben, A.; Somers, C.; Vermeiren, Y.; De Roeck, N.; Timmers, M.; Van Broeckhoven, C.; De Vil, B.; Cras, P.; De Deyn, P.P.; et al. Neurogranin as biomarker in CSF is non-specific to Alzheimer’s disease dementia. Neurob. Aging 2021, 108, 99–109. [Google Scholar] [CrossRef]
- Xiang, Y.; Xin, J.; Le, W.; Yang, Y. Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Front. Aging Neurosci. 2020, 12, 584743. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, P.; Blennow, K. Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int. Psychogeriatr. 1998, 10, 11–23. [Google Scholar] [CrossRef]
- Thorsell, A.; Bjerke, M.; Gobom, J.; Brunhage, E.; Vanmechelen, E.; Andreasen, N.; Hansson, O.; Minthon, L.; Zetterberg, H.; Blennow, K. Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res. 2010, 1362, 13–22. [Google Scholar] [CrossRef]
- Casaletto, K.B.; Elahi, F.M.; Bettcher, B.M.; Neuhaus, J.; Bendlin, B.B.; Asthana, S.; Johnson, S.C.; Yaffe, K.; Carlsson, C.; Blennow, K.; et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology 2017, 89, 1782–1788. [Google Scholar] [CrossRef]
- Alba-González, A.; Folgueira, M.; Castro, A.; Anadón, R.; Yáñez, J. Distribution of neurogranin-like immunoreactivity in the brain and sensory organs of the adult zebrafish. J. Comp. Neurol. 2022, 530, 1569–1587. [Google Scholar] [CrossRef] [PubMed]
- Alba-González, A.; Yáñez, J.; Anadón, R.; Folgueira, M. Neurogranin-like immunoreactivity in the zebrafish brain during development. Brain Struct. Funct. 2022, 277, 2593–2607. [Google Scholar] [CrossRef] [PubMed]
- Kermen, F.; Franco, L.M.; Wyatt, C.; Yaksi, E. Neural circuits mediating olfactory-driven behavior in fish. Front. Neural Circuits 2013, 7, 1–9. [Google Scholar] [CrossRef]
- Calvo-Ochoa, E.; Byrd-Jacobs, C.A. The olfactory system of zebrafish as a model for the study of neurotoxicity and injury: Implications for neuroplasticity and disease. Int. J. Mol. Sci. 2019, 20, 1639. [Google Scholar] [CrossRef]
- Tu, H.; Fan, C.; Chen, X.; Liu, J.; Wang, B.; Huang, Z.; Zhang, Y.; Meng, X.; Zou, F. Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish. Environm. Toxicol. Chem. 2017, 36, 2147–2154. [Google Scholar] [CrossRef]
- Altenhofen, S.; Wiprich, M.T.; Nery, L.R.; Leite, C.E.; Vianna, M.R.M.R.; Bonan, C.D. Manganese (II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. Aquat. Toxicol. 2017, 182, 172–183. [Google Scholar] [CrossRef]
- Burgess, H.A.; Granato, M. Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol. 2007, 210, 2526–2539. [Google Scholar] [CrossRef] [PubMed]
- Tuz-Sasik, M.U.; Boije, H.; Manuel, R. Characterization of locomotor phenotypes in zebrafish larvae requires testing under both light and dark conditions. PLoS ONE 2022, 17, 1–16. [Google Scholar] [CrossRef]
- Burgess, H.A.; Schoch, H.; Granato, M. Distinct Retinal Pathways Drive Spatial Orientation Behaviors in Zebrafish Navigation. Curr. Biol. 2010, 20, 381–386. [Google Scholar] [CrossRef]
- Steenbergen, P.J.; Richardson, M.K.; Champagne, D.L. Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: A pharmacological study. Behav. Brain. Res. 2011, 222, 15–25. [Google Scholar] [CrossRef]
- Cheng, R.K.; Tan, J.X.M.; Chua, K.X.; Tan, C.J.X.; Wee, C.L. Osmotic Stress Uncovers Correlations and Dissociations Between Larval Zebrafish Anxiety Endophenotypes. Front. Mol. Neurosci. 2022, 15, 900223. [Google Scholar] [CrossRef]
- Orger, M.B.; Smear, M.C.; Anstis, S.M.; Baier, H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat. Neurosci. 2000, 3, 1128–1133. [Google Scholar] [CrossRef]
- Röllin, H. Manganese: Environmental Pollution and Health Effects. In Encyclopedia of Environmental Health; Nriagu, Ed.; Burligton; Elsevier: Amsterdam, The Netherlands, 2011; Volume 3, pp. 617–629. [Google Scholar]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Tuschl, K. Zebrafish Disease Models to Study the Pathogenesis of Inherited Manganese Transporter Defects and Provide a Route for Drug Discovery; University College London: London, UK, 2016; Available online: https://discovery.ucl.ac.uk/id/eprint/1541096/1/2017_02_15_PhD%20Thesis%20Tuschl%20K.pdf (accessed on 1 September 2023).
- Bonilla, E.; Salazar, E.; Villasmil, J.J.; Villalobos, R. The regional distribution of manganese in the normal human brain. Neurochem. Res. 1982, 7, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Pinsino, A.; Matranga, V.; Trinchella, F.; Roccheri, M.C. Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: Developmental and stress response effects. Ecotoxicology 2010, 19, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Hernández, R.B.; Nishita, M.I.; Espósito, B.P.; Scholz, S.; Michalke, B. The role of chemical speciation, chemical fractionation and calcium disruption in manganese-induced developmental toxicity in zebrafish (Danio rerio) embryos. J. Trace Elem. Med. Biol. 2015, 32, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.L.; Ensunsa, J.L.; Lönnerdal, B.; Zidenberg-Cherr, S. Manganese. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3, pp. 148–154. [Google Scholar] [CrossRef]
- Milatovic, D.; Gupta, R.C. Manganese. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 445–454. [Google Scholar] [CrossRef]
- Sánchez, D.J.; Domingo, J.L.; Llobet, J.M.; Keen, C.L. Maternal and developmental toxicity of manganese in the mouse. Toxicol. Lett. 1993, 69, 45–52. [Google Scholar] [PubMed]
- Tjälve, H.; Henriksson, J.; Tallkvist, J.; Larsson, B.S.; Lindquist, N.G. Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharm. Toxicol. 1996, 79, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Tallkvist, J.; Tjälve, H. Transport of manganese via the olfactory pathway in rats: Dosage dependency of the uptake and subcellular distribution of the metal in the olfactory epithelium and the brain. Toxicol. Appl. Pharm. 1999, 156, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Dorman, D.C.; Brenneman, K.A.; McElveen, A.M.; Lynch, S.E.; Roberts, K.C.; Wong, B.A. Olfactory transport: A direct route of delivery of inhaled manganese phosphate to the rat brain. J. Toxicol. Environ. Health A 2002, 65, 1493–1511. [Google Scholar] [CrossRef]
- Tjälve, H.; Mejàre, C.; Borg-Neczak, K. Uptake and Transport of Manganese in Primary and Secondary Olfactory Neurones in Pike. Pharm. Toxicol. 1995, 77, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Tjälve, H.; Henriksson, J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology 1999, 20, 181–195. [Google Scholar]
- Whitlock, K.E.; Westerfield, M. The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. Development 2000, 127, 3645–3653. [Google Scholar] [CrossRef]
- Blechinger, S.R.; Kusch, R.C.; Haugo, K.; Matz, C.; Chivers, D.P.; Krone, P.H. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicol. Appl. Pharmacol. 2007, 224, 72–80. [Google Scholar] [CrossRef]
- Wang, L.; Espinoza, H.M.; Gallagher, E.P. Brief exposure to copper induces apoptosis and alters mediators of olfactory signal transduction in coho salmon. Chemosphere 2013, 93, 2639–2643. [Google Scholar] [CrossRef]
- Ma, E.Y.; Heffern, K.; Cheresh, J.; Gallagher, E.P. Differential copper-induced death and regeneration of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish. Neurotoxicology 2018, 69, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Hentig, J.T.; Byrd-Jacobs, C.A. Exposure to zinc sulfate results in differential effects on olfactory sensory neuron subtypes in adult zebrafish. Int. J. Mol. Sci. 2016, 17, 1445. [Google Scholar] [CrossRef]
- Lazarri, M.; Bettini, S.; Milani, L.; Maurizzii, M.; Franceschini, V. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish. Aquatic Toxicol. 2017, 183, 54–62. [Google Scholar] [CrossRef]
- Lazarri, M.; Bettini, S.; Milani, L.; Maurizzii, M.; Franceschini, V. Differential nickel-inducedresponse of olfactory sensory neuron populations in zebrafish. Aquatic Toxicol. 2017, 206, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Lazarri, M.; Bettini, S.; Milani, L.; Maurizzii, M.; Franceschini, V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. Microsc. Microanal. 2022, 28, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Baudier, J.; Bronnerll, C.; Kligman, D.; Cole, D.R. Protein kinase C substrates from bovine brain. J. Biol. Chem. 1989, 264, 1824–1828. [Google Scholar] [PubMed]
- Baudier, J.; Deloulme, J.C.; Van Dorsselaer, A.; Black, D.; Matthes, H.W.D. Purification and characterization of a brain-specific protein kinase C substrate, Neurogranin (p 17): Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP-43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain. J. Biol. Med. 1991, 266, 229–237. [Google Scholar]
- Díez-Guerra, F.J. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 2010, 62, 597–606. [Google Scholar] [CrossRef]
- Zhong, L.; Gerges, N.Z. Neurogranin targets calmodulin and lowers the threshold for the induction of long-term potentiation. PLoS ONE 2012, 7, e41275. [Google Scholar] [CrossRef]
- Zhong, L.; Gerges, N.Z. Neurogranin Regulates Metaplasticity. Front. Mol. Neurosci. 2020, 12, 322. [Google Scholar] [CrossRef]
- Hwang, H.; Szucs, M.J.; Ding, L.J.; Allen, A.; Ren, X.; Haensgen, H.; Gao, F.; Rhim, H.; Andrade, A.; Pan, J.Q.; et al. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biol. Psychiatry 2021, 89, 256–269. [Google Scholar] [CrossRef]
- Caito, S.; Aschner, M. Neurotoxicity of metals. Handb. Clin. Neurol. 2015, 131, 169–189. [Google Scholar] [CrossRef]
- Lucchini, R.G.; Aschner, M.; Kim, Y.; Šarić, M. Manganese. In Handbook on the Toxicology of Metals; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1. [Google Scholar] [CrossRef]
- Angeli, S.; Barhydt, T.; Jacobs, R.; Killilea, D.W.; Lithgow, G.J.; Andersen, J.K. Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics 2014, 6, 1816–1823. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, D.S.; Lee, G.-H.; Kim, K.-W.; Kim, H.-R.; Chae, H.J. Apoptosis Induced by Manganese on Neuronal SK-N-MC Cell Line: Endoplasmic Reticulum (ER) Stress and Mitochondria Dysfunction. Environ. Health Toxicol. 2011, 26, e2011017. [Google Scholar] [CrossRef]
- Han, J.; Liu, K.; Wang, R.; Zhang, Y.; Zhou, B. Exposure to cadmium causes inhibition of otolith development and behavioral impairment in zebrafish larvae. Aquat. Toxicol. 2019, 214, 105236. [Google Scholar] [CrossRef]
- Zhao, F.; Cai, T.; Liu, M.; Zheng, G.; Luo, W.; Chen, J. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol. Sci. 2008, 107, 156–164. [Google Scholar] [CrossRef]
- O’Neal, S.L.; Lee, J.W.; Zheng, W.; Cannon, J.R. Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. Neurotoxicology 2014, 44, 303–313. [Google Scholar] [CrossRef]
- Balachandran, R.C.; Mukhopadhyay, S.; McBride, D.; Veevers, J.; Harrison, F.E.; Aschner, M.; Haynes, E.N.; Bowman, A.B. Brain manganese and the balance between essential roles and neurotoxicity. J. Biol. Chem. 2020, 295, 6312–6329. [Google Scholar] [CrossRef]
- Chen, M.K.; Lee, J.S.; McGlothan, J.L.; Furukawa, E.; Adams, R.J.; Alexander, M.; Wong, D.F.; Guilarte, T.R. Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology 2006, 27, 229–236. [Google Scholar] [CrossRef]
- Gwiazda, R.H.; Lee, D.; Sheridan, J.; Smith, D.R. Low cumulative manganese exposure affects striatal GABA but not dopamine. NeuroToxicology 2002, 23, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Fitsanakis, V.A.; Au, C.; Erikson, K.M.; Aschner, M. The effects of manganese on glutamate, dopamine and γ-aminobutyric acid regulation. Neurochem. Int. 2006, 48, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; An, J.; Wang, Y.; Luo, W.; Wang, W.; Mei, X.; Wu, S.; Chen, J. Intrastriatal manganese chloride exposure causes acute locomotor impairment as well as partial activation of substantia nigra GABAergic neurons. Environ. Toxicol. Pharm. 2011, 31, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- Turner, K.J.; Bracewell, T.G.; Hawkins, T.A. Anatomical dissection of zebrafish brain development. Meth. Mol. Biol. 2014, 1082, 197–214. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Shihan, M.H.; Novo, S.G.; Le Marchand, S.J.; Wang, Y.; Duncan, M.K. A simple method for quantitating confocal fluorescent images. Biochem. Bioph. Rep. 2021, 25, 100916. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Štih, V.; Petrucco, L.; Kist, A.M.; Portugues, R. Stytra: An open-source, integrated system for stimulation, tracking and closed-loop behavioral experiments. PLoS Comp. Biol. 2019, 15, 1–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba-González, A.; Dragomir, E.I.; Haghdousti, G.; Yáñez, J.; Dadswell, C.; González-Méndez, R.; Wilson, S.W.; Tuschl, K.; Folgueira, M. Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish. Int. J. Mol. Sci. 2024, 25, 4933. https://doi.org/10.3390/ijms25094933
Alba-González A, Dragomir EI, Haghdousti G, Yáñez J, Dadswell C, González-Méndez R, Wilson SW, Tuschl K, Folgueira M. Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish. International Journal of Molecular Sciences. 2024; 25(9):4933. https://doi.org/10.3390/ijms25094933
Chicago/Turabian StyleAlba-González, Anabel, Elena I. Dragomir, Golsana Haghdousti, Julián Yáñez, Chris Dadswell, Ramón González-Méndez, Stephen W. Wilson, Karin Tuschl, and Mónica Folgueira. 2024. "Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish" International Journal of Molecular Sciences 25, no. 9: 4933. https://doi.org/10.3390/ijms25094933
APA StyleAlba-González, A., Dragomir, E. I., Haghdousti, G., Yáñez, J., Dadswell, C., González-Méndez, R., Wilson, S. W., Tuschl, K., & Folgueira, M. (2024). Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish. International Journal of Molecular Sciences, 25(9), 4933. https://doi.org/10.3390/ijms25094933