JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases
Abstract
:1. Introduction
2. Results
2.1. Recognition of JMJD6 Using Serum Antibodies from Patients with UAP
2.2. Elevation of the Levels of Serum Antibodies against JMJD6 in Patients with Cerebrovascular Diseases
2.3. Analysis of Correlations between JMJD6 Antibody Levels and Clinical Parameters in the Sawara Hospital Cohort
2.4. Elevation of s-JMJD6-Ab Levels in Patients with AMI and DM
2.5. Elevated s-JMJD6-Ab Levels in Patients with Cancers
2.6. Combinatorial Prognosis Prediction Combining the s-JMJD6-Ab Levels with Programmed Cell Death Ligand 1 (PD-L1)
2.7. Immunohistochemical Analysis of JMJD6
3. Discussion
4. Materials and Methods
4.1. Patient and Control Sera
4.2. SEREX Screening of the Expressed Recombinant Proteins Using a Human cDNA Library
4.3. Sequence Analysis of Isolated cDNAs
4.4. Expression and Purification of JMJD6 Protein
4.5. Amplified Luminescence Proximity Homogeneous Assay-Linked Immunosorbent Assay
4.6. TCGA Database
4.7. Tissue Collection and Immunohistochemistry Staining
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Biondi-Zoccai, G.G.; Abbate, A.; Liuzzo, G.; Biasucci, L.M. Atherothrombosis, inflammation, and diabetes. J. Am. Coll. Cardiol. 2003, 41, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Amalia, M.; Puteri, M.U.; Saputri, F.C.; Sauriasari, R.; Widyantoro, B. Platelet glycoprotein-Ib (GPIb) may serve as a bridge between type 2 diabetes mellitus (T2DM) and atherosclerosis, making It a potential target for antiplatelet agents in T2DM patients. Life 2023, 13, 1473. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Gupta, A.; Chauhan, R.; Bhat, A.A.; Nisar, S.; Hashem, S.; Akhtar, S.; Ahmad, A.; Haris, M.; Singh, M.; et al. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: Potential driver of oncogenesis. Cancer Metastasis Rev. 2022, 41, 281–299. [Google Scholar] [CrossRef]
- Echizen, K.; Hirose, O.; Maeda, Y.; Oshima, M. Inflammation in gastric cancer: Interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci. 2016, 107, 391–397. [Google Scholar] [CrossRef]
- Lu, L.Q.; Tian, J.; Luo, X.J.; Peng, J. Targeting the pathways of regulated necrosis: A potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol. Life Sci. 2021, 78, 63–78. [Google Scholar] [CrossRef]
- Koton, S.; Pike, J.R.; Johansen, M.; Knopman, D.S.; Lakshminarayan, K.; Mosley, T.; Patole, S.; Rosamond, W.D.; Schneider, A.L.C.; Sharrett, A.R.; et al. Association of ischemic stroke incidence, severity, and recurrence with rementia in the atherosclerosis risk in communities cohort study. JAMA Neurol. 2022, 79, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Wang, H.; Huang, J. The role of lactate in cardiovascular diseases. Cell Commun. Signal 2023, 21, 317. [Google Scholar] [CrossRef]
- Jung, T.W.; Park, H.S.; Choi, G.H.; Kim, D.; Lee, T. β-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway. J. Biomed. Sci. 2018, 25, 27. [Google Scholar] [CrossRef]
- Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-induced tumorigenesis and metastasis. Int. J. Mol. Sci. 2021, 22, 5421. [Google Scholar] [CrossRef]
- Ben Ammar, R. Potential effects of geraniol on cancer and inflammation-related diseases: A review of the recent research findings. Molecules 2023, 28, 3669. [Google Scholar] [CrossRef]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal inflammation and cancer. Gastroenterology 2011, 140, 1807–1816. [Google Scholar] [CrossRef]
- Sexauer, D.; Gray, E.; Zaenker, P. Tumour-associated autoantibodies as prognostic cancer biomarkers—A review. Autoimmun. Rev. 2022, 21, 103041. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.H.; Ha, Y.J.; Lee, Y.J. Autoantibody biomarkers in rheumatic diseases. Int. J. Mol. Sci. 2020, 21, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Wasserfall, C.H.; Atkinson, M.A. Autoantibody markers for the diagnosis and prediction of type 1 diabetes. Autoimmun. Rev. 2006, 5, 424–428. [Google Scholar] [CrossRef]
- Qian, B.; Li, K.; Lou, X.; Guo, Y.; Wang, Y.; Wu, L.; Zhang, D. Plasma cell-free DNA as a novel biomarker for the diagnosis and monitoring of atherosclerosis. Cells 2022, 11, 3248. [Google Scholar] [CrossRef]
- Hiwasa, T.; Wang, H.; Goto, K.I.; Mine, S.; Machida, T.; Kobayashi, E.; Yoshida, Y.; Adachi, A.; Matsutani, T.; Sata, M.; et al. Serum anti-DIDO1, anti-CPSF2, and anti-FOXJ2 antibodies as predictive risk markers for acute ischemic stroke. BMC Med. 2021, 19, 131. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Zhang, B.S.; Li, S.Y.; Yoshida, Y.; Wang, H.; Adachi, A.; Matsutani, T.; Mine, S.; Machida, T.; Kamitsukasa, I.; et al. Serum anti-TSTD2 antibody as a biomarker for atherosclerosis-induced ischemic stroke and chronic kidney disease. Med. Int. 2023, 3, 4. [Google Scholar] [CrossRef]
- Ito, M.; Hiwasa, T.; Oshima, Y.; Yajima, S.; Suzuki, T.; Nanami, T.; Sumazaki, M.; Shiratori, F.; Funahashi, K.; Takizawa, H.; et al. Identification of serum anti-striatin 4 antibodies as a common marker for esophageal cancer and other solid cancers. Mol. Clin. Oncol. 2021, 15, 237. [Google Scholar] [CrossRef]
- Vangimalla, S.S.; Ganesan, M.; Kharbanda, K.K.; Osna, N.A. Bifunctional enzyme JMJD6 contributes to multiple disease pathogenesis: New twist on the old story. Biomolecules 2017, 7, 41. [Google Scholar] [CrossRef]
- Cioni, B.; Ratti, S.; Piva, A.; Tripodi, I.; Milani, M.; Menichetti, F.; Langella, T.; Botti, L.; De Cecco, L.; Chiodoni, C.; et al. JMJD6 shapes a pro-tumor microenvironment via ANXA1-dependent macrophage polarization in breast cancer. Mol. Cancer Res. 2023, 21, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Xu, J.; Tong, D. Targeting the JMJD6/TGF-β axis in prostate cancer by immunotherapy: A potential treatment based on RNA splicing. Med. Hypotheses 2023, 171, 111018. [Google Scholar] [CrossRef]
- Merchant, J.P.; Zhu, K.; Henrion, M.Y.R.; Zaidi, S.S.A.; Lau, B.; Moein, S.; Alamprese, M.L.; Pearse, R.V.; Bennett, D.A.; Ertekin-Taner, N.; et al. Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer’s disease. Commun. Biol. 2023, 6, 503. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, L.; Dadsetan, S.; Fomina, A.F. Endogenous Jmjd6 gene product is expressed at the cell surface and regulates phagocytosis in immature monocyte-like activated THP-1 cells. J. Cell Physiol. 2009, 221, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Si, W.; Liu, X.; He, L.; Ren, J.; Yang, Z.; Yang, J.; Li, W.; Liu, S.; Pei, F.; et al. JMJD6 promotes melanoma carcinogenesis through regulation of the alternative splicing of PAK1, a key MAPK signaling component. Mol. Cancer 2017, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Liu, Q.; Wu, R.; Xiao, C.; Ni, C.; Wang, K.; Hu, W.; Zhong, Z.; Zhao, J.; Li, Q.; et al. Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction. Mol. Ther.-Nucleic Acids 2022, 11, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Mason, A.M.; Bäck, M.; Klarin, D.; Damrauer, S.M.; Michaëlsson, K.; Burgess, S. Genetic predisposition to smoking in relation to 14 cardiovascular diseases. Eur. Heart J. 2020, 41, 3304–3310. [Google Scholar] [CrossRef] [PubMed]
- Soukup, J.M.; Becker, S. Role of monocytes and eosinophils in human respiratory syncytial virus infection in vitro. Clin. Immunol. 2003, 107, 178–185. [Google Scholar] [CrossRef]
- Ito, M.; Yajima, S.; Suzuki, T.; Oshima, Y.; Nanami, T.; Sumazaki, M.; Shiratori, F.; Funahashi, K.; Tochigi, N.; Shimada, H. High serum PD-L1 level is a poor prognostic biomarker in surgically treated esophageal cancer. Cancer Med. 2020, 9, 1321–1327. [Google Scholar] [CrossRef]
- Lee, K.O.; Woo, M.H.; Chung, D.; Choi, J.W.; Kim, N.K.; Kim, O.J.; Oh, S.H. Differential impact of plasma homocysteine levels on the periventricular and subcortical white matter hyperintensities on the brain. Front. Neurol. 2019, 10, 1174. [Google Scholar] [CrossRef]
- Kumakura, H.; Kanai, H.; Matsuo, Y.; Iwasaki, T.; Ichikawa, S. Asymptomatic cerebral infarction is a predictor of long-term survival and vascular or limb events in peripheral arterial disease. Eur. Heart J. Qual. Care Clin. Outcomes 2019, 5, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Katsi, V.; Papakonstantinou, I.; Tsioufis, K. Atherosclerosis, diabetes mellitus, and cancer: Common epidemiology, shared mechanisms, and future management. Int. J. Mol. Sci. 2023, 24, 11786. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Koene, R.J.; Prizment, A.E.; Blaes, A.; Konety, S.H. Shared risk factors in cardiovascular disease and cancer. Circulation 2016, 133, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Versmissen, J.; Mirabito Colafella, K.M.; Koolen, S.L.W.; Danser, A.H.J. Vascular cardio-oncology: Vascular endothelial growth factor inhibitors and hypertension. Cardiovasc. Res. 2019, 115, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, C.; Maurizi, N.; Marchionni, N.; Fornasari, D. β-blockers: Their new life from hypertension to cancer and migraine. Pharmacol. Res. 2020, 151, 104587. [Google Scholar] [CrossRef] [PubMed]
- Doll, R.; Peto, R.; Boreham, J.; Sutherland, I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ 2004, 328, 1519. [Google Scholar] [CrossRef]
- Goikuria, H.; Vandenbroeck, K.; Alloza, I. Inflammation in human carotid atheroma plaques. Cytokine Growth Factor Rev. 2018, 39, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Li, Y.; Zhang, C.; Li, Y.; Rebello, K.R.; Li, S.; Xu, S.; Vasquez, H.G.; Zhang, L.; Luo, W.; et al. Epigenetic induction of smooth muscle cell phenotypic alterations in aortic aneurysms and dissections. Circulation 2023, 148, 959–977. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Li, S.Y.; Yoshida, Y.; Kobayashi, E.; Adachi, A.; Hirono, S.; Matsutani, T.; Mine, S.; Machida, T.; Ohno, M.; Nishi, E.; et al. Association between serum anti-ASXL2 antibody levels and acute ischemic stroke, acute myocardial infarction, diabetes mellitus, chronic kidney disease and digestive organ cancer, and their possible association with atherosclerosis and hypertension. Int. J. Mol. Med. 2020, 46, 1274–1288. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhao, R.; Xia, W.; Chang, C.W.; You, Y.; Hsu, J.M.; Nie, L.; Chen, Y.; Wang, Y.C.; Liu, C.; et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 2020, 22, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Matsutani, T.; Hiwasa, T.; Takiguchi, M.; Oide, T.; Kunimatsu, M.; Saeki, N.; Iwadate, Y. Autologous antibody to src-homology 3-domain GRB2-like 1 specifically increases in the sera of patients with low-grade gliomas. J. Exp. Clin. Cancer Res. 2012, 31, 85. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Long, Y.H.; Wang, S.Q.; Zhang, Y.Y.; Li, Y.F.; Mi, J.S.; Yu, C.H.; Li, D.Y.; Zhang, J.H.; Zhang, X.J. JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity. Oncogene 2019, 38, 980–997. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, M.; Lu, T.; Liu, Y.; Hong, W.; He, X.; Cheng, Y.; Liu, J.; Wei, Y.; Wei, X. JMJD6 in tumor-associated macrophage regulates macrophage polarization and cancer progression via STAT3/IL-10 axis. Oncogene 2023, 42, 2737–2750. [Google Scholar] [CrossRef]
- Henson, P.M.; Bratton, D.L.; Fadok, V.A. The phosphatidylserine receptor: A crucial molecular switch? Nat. Rev. Mol. Cell Biol. 2001, 2, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhao, B. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. BMJ 2018, 362, k3529. [Google Scholar] [CrossRef]
- Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wang, W.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017, 18, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Fadok, V.A.; Bratton, D.L.; Rose, D.M.; Pearson, A.; Ezekewitz, R.A.; Henson, P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000, 405, 85–90. [Google Scholar] [CrossRef]
- Li, M.O.; Sarkisian, M.R.; Mehal, W.Z.; Rakic, P.; Flavell, R.A. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 2003, 302, 1560–1563. [Google Scholar] [CrossRef]
- Kunisaki, Y.; Masuko, S.; Noda, M.; Inayoshi, A.; Sanui, T.; Harada, M.; Sasazuki, T.; Fukui, Y. Defective fetal liver erythropoiesis and T lymphopoiesis in mice lacking the phosphatidylserine receptor. Blood 2004, 103, 3362–3364. [Google Scholar] [CrossRef]
- Yoshida, K.; Hiwasa, T.; Ito, M.; Ushigome, M.; Takizawa, H.; Li, S.Y.; Zhang, B.S.; Iwadate, Y.; Funahashi, K.; Shimada, H. Prognostic and diagnostic significance of preoperative Jumonji domain-containing 6 antibodies in colorectal cancer. Oncol. Lett. 2023, 25, 127. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; MacFadyen, J.; Glynn, R.J.; Jiao, L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Tardif, J.C.; et al. Effects of randomized treatment with icosapent ethyl and a mineral oil comparator on interleukin-1β, interleukin-6, C-reactive protein, oxidized low-density lipoprotein cholesterol, homocysteine, lipoprotein(a), and lipoprotein-associated phospholipase A2: A REDUCE-IT biomarker substudy. Circulation 2022, 146, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. trial of org 10172 in acute stroke treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ 2016, 4, e1780v1. [Google Scholar] [CrossRef]
- Lal, S.; Nguyen, L.; Tezone, R.; Ponten, F.; Odeberg, J.; Li, A.; Dos Remedios, C. Tissue microarray profiling in human heart failure. Proteomics 2016, 16, 2319–2326. [Google Scholar] [CrossRef]
Sample Information | HD | CCI | ACI | TIA/Asympt-CI | DSWMH |
---|---|---|---|---|---|
Total sample number | 285 | 65 | 464 | 111 | 162 |
Male/female | 188/97 | 47/18 | 271/193 | 68/43 | 88/74 |
Age (median ± SD) | 53.5 ± 11.7 | 73.0 ± 9.3 | 79.0 ± 11.5 | 73.0 ± 11.9 | 67.0 ± 10.0 |
Patient group | Type of value | s-JMJD6-Ab | |||
HD | Median | 7497 | |||
Cutoff value | 16,361 | ||||
Positive no. | 14 | ||||
Positive rate (%) | 4.9% | ||||
CCI | Median | 10,118 | |||
Positive no. | 13 | ||||
Positive rate (%) | 20.0% | ||||
p-value (vs. HD) | <0.0001 | ||||
ACI | Median | 10486 | |||
Positive no. | 101 | ||||
Positive rate (%) | 21.8% | ||||
p-value (vs. HD) | <0.0001 | ||||
TIA/Asympt-CI | Median | 10150 | |||
Positive no. | 17 | ||||
Positive rate (%) | 15.3% | ||||
p-value (vs. HD) | <0.0001 | ||||
DSWMH | Median | 8891 | |||
Positive no. | 14 | ||||
Positive rate (%) | 8.6% | ||||
p-value (vs. HD) | 0.0025 |
Parameter | Rho Value | 95% Confidence Interval | p-Value | Number of Pairs |
---|---|---|---|---|
Age | 0.3173 | 0.2532 to 0.3786 | <0.0001 | 839 |
BMI * | −0.0797 | −0.1488 to −0.0098 | 0.0215 | 832 |
IMT (r) | 0.2507 | 0.1744 to 0.3240 | <0.0001 | 640 |
IMT (l) | 0.2661 | 0.1904 to 0.3386 | <0.0001 | 641 |
max IMT | 0.2761 | 0.2009 to 0.3481 | <0.0001 | 642 |
A/G | −0.1357 | −0.2047 to −0.0653 | 0.0001 | 808 |
AST | 0.0421 | −0.0278 to 0.1116 | 0.2238 | 836 |
ALT | −0.0180 | −0.0877 to 0.0520 | 0.6045 | 835 |
ALP | 0.0989 | 0.0266 to 0.1701 | 0.0059 | 775 |
LDH | 0.0541 | −0.0169 to 0.1245 | 0.1243 | 810 |
tBil | −0.0469 | −0.1171 to 0.0237 | 0.1801 | 818 |
CHE | −0.1352 | −0.2129 to −0.0558 | 0.0006 | 636 |
γ-GTP | 0.0389 | −0.0334 to 0.1107 | 0.2778 | 782 |
TP | −0.1581 | −0.2264 to −0.0883 | <0.0001 | 812 |
ALB | −0.2019 | −0.2686 to −0.1334 | <0.0001 | 821 |
BUN | 0.0442 | −0.0258 to 0.1137 | 0.2022 | 834 |
Creatinin | 0.0213 | −0.0488 to 0.0912 | 0.5399 | 830 |
eGFR | −0.0540 | −0.1274 to 0.0200 | 0.1406 | 746 |
UA | −0.0093 | −0.0909 to 0.0723 | 0.8176 | 612 |
AMY | −0.0430 | −0.1313 to 0.0459 | 0.3288 | 517 |
T-CHO | −0.1239 | −0.1966 to −0.0498 | 0.0008 | 733 |
HDL-c | −0.0222 | −0.1087 to 0.0648 | 0.6072 | 541 |
TG | −0.0989 | −0.1813 to −0.0152 | 0.0173 | 579 |
Na+ | 0.0093 | −0.0611 to 0.0797 | 0.7892 | 821 |
K+ | −0.0573 | −0.1272 to 0.01320 | 0.1009 | 821 |
Cl− | 0.0418 | −0.0287 to 0.1119 | 0.2312 | 821 |
CRP | 0.1370 | 0.0555 to 0.2167 | 0.0007 | 604 |
WBC | 0.0702 | 0.0003 to 0.1394 | 0.0426 | 834 |
Neutrophils | 0.0818 | 0.004362 to 0.1583 | 0.0331 | 679 |
Eosinophils | −0.0360 | −0.1132 to 0.04157 | 0.3486 | 679 |
Basophils | −0.0566 | −0.1335 to 0.02095 | 0.1406 | 679 |
Monocytes | 0.0516 | −0.02601 to 0.1285 | 0.1796 | 679 |
Lymphocytes | −0.1083 | −0.1842 to −0.03106 | 0.0047 | 679 |
RBC | −0.1118 | −0.1802 to −0.0422 | 0.0012 | 834 |
HGB | −0.0830 | −0.1520 to −0.0132 | 0.0165 | 834 |
HCT | −0.0793 | −0.1484 to −0.0095 | 0.0220 | 834 |
MCV | 0.0879 | 0.0181 to 0.1568 | 0.0111 | 834 |
MCH | 0.0781 | 0.0083 to 0.1472 | 0.0241 | 834 |
MCHC | −0.0308 | −0.1004 to 0.0392 | 0.3750 | 834 |
RDW | 0.0836 | 0.0138 to 0.1526 | 0.0158 | 834 |
PLT | −0.0966 | −0.1653 to −0.0269 | 0.0052 | 834 |
MPV | −0.0109 | −0.0807 to 0.0591 | 0.7540 | 834 |
PCT | −0.0956 | −0.1644 to −0.0259 | 0.0057 | 834 |
PDW | −0.0470 | −0.1165 to 0.0230 | 0.1751 | 834 |
BS | 0.1343 | 0.0622 to 0.2049 | 0.0002 | 772 |
HbA1c | 0.0571 | −0.0225 to 0.1360 | 0.1474 | 645 |
BP | 0.0946 | 0.0102 to 0.1776 | 0.0238 | 571 |
Smoking period | 0.1515 | 0.0761 to 0.2253 | <0.0001 | 699 |
Alcohol frequency | 0.0449 | −0.0319 to 0.1212 | 0.2382 | 692 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | |
Sex (Male) | 0.78 | 0.54 to 1.12 | 0.1700 | |||
Age > 65 | 25.30 | 15.70. to 40.90 | <0.0001 | 15.7 | 9.00 to 27.40 | <0.0001 |
DM | 5.98 | 3.02 to 11.80 | <0.0001 | 4.75 | 2.04 to 11.10 | 0.0003 |
HT | 9.72 | 6.43 to 14.70 | <0.0001 | 5.16 | 3.02 to 8.81 | <0.0001 |
CVDs | 9.14 | 2.16 to 38.60 | 0.0026 | 3.17 | 0.67 to 15.00 | 0.1470 |
Lipidemia | 1.32 | 0.86 to 2.01 | 0.2020 | |||
Obesity (BMI ≥ 25) | 0.95 | 0.64 to 1.41 | 0.7990 | |||
Smoking | 1.38 | 0.96 to 1.99 | 0.0781 | |||
s-JMJD6-Ab | 3.80 | 2.60 to 5.57 | <0.0001 | 3.77 | 2.19 to 6.50 | <0.0001 |
Sample Information | HD | AMI | DM |
---|---|---|---|
Total sample number | 128 | 128 | 128 |
Male/female | 72/56 | 105/23 | 72/56 |
Age (median ± SD) | 57.0 ± 5.6 | 61.0 ± 8.5 | 60.0 ± 9.2 |
Patient group | Type of value | s-JMJD6-Ab | |
HD | Median | 28,808 | |
Cutoff value | 66,732 | ||
Positive no. | 6 | ||
Positive rate (%) | 4.7% | ||
AMI | Median | 46,884 | |
Positive no. | 28 | ||
Positive rate (%) | 21.9% | ||
p-value (vs. HD) | <0.0001 | ||
DM | Median | 50,092 | |
Positive no. | 27 | ||
Positive rate (%) | 21.1% | ||
p-value (vs. HD) | <0.0001 |
Sample Information | HD | EC | GC | LC | MC |
---|---|---|---|---|---|
Total sample number | 96 | 192 | 96 | 96 | 96 |
male/female | 51/45 | 155/37 | 68/28 | 42/54 | 58/38 |
Age (median ± SD) | 57.0 ± 6.0 | 68.0 ± 9.8 | 69.0 ± 10.6 | 63.0 ± 13.3 | 69.0 ± 9.6 |
Subject | Type of value | s-JMJD6-Ab | |||
HD | Median | 734 | |||
Cutoff value | 2629 | ||||
Positive no. | 4 | ||||
Positive rate (%) | 4.2% | ||||
EC | Median | 1755 | |||
Positive no. | 67 | ||||
Positive rate (%) | 34.9% | ||||
p-value (vs. HD) | <0.0001 | ||||
GC | Median | 1646 | |||
Positive no. | 29 | ||||
Positive rate (%) | 30.2% | ||||
p-value (vs. HD) | <0.0001 | ||||
LC | Median | 1140 | |||
Positive no. | 21 | ||||
Positive rate (%) | 21.9% | ||||
p-value (vs. HD) | 0.0031 | ||||
MC | Median | 992 | |||
Positive no. | 19 | ||||
Positive rate (%) | 19.8% | ||||
p-value (vs. HD) | 0.0054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.-S.; Zhang, X.-M.; Ito, M.; Yajima, S.; Yoshida, K.; Ohno, M.; Nishi, E.; Wang, H.; Li, S.-Y.; Kubota, M.; et al. JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases. Int. J. Mol. Sci. 2024, 25, 4935. https://doi.org/10.3390/ijms25094935
Zhang B-S, Zhang X-M, Ito M, Yajima S, Yoshida K, Ohno M, Nishi E, Wang H, Li S-Y, Kubota M, et al. JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases. International Journal of Molecular Sciences. 2024; 25(9):4935. https://doi.org/10.3390/ijms25094935
Chicago/Turabian StyleZhang, Bo-Shi, Xiao-Meng Zhang, Masaaki Ito, Satoshi Yajima, Kimihiko Yoshida, Mikiko Ohno, Eiichiro Nishi, Hao Wang, Shu-Yang Li, Masaaki Kubota, and et al. 2024. "JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases" International Journal of Molecular Sciences 25, no. 9: 4935. https://doi.org/10.3390/ijms25094935
APA StyleZhang, B. -S., Zhang, X. -M., Ito, M., Yajima, S., Yoshida, K., Ohno, M., Nishi, E., Wang, H., Li, S. -Y., Kubota, M., Yoshida, Y., Matsutani, T., Mine, S., Machida, T., Takemoto, M., Yamagata, H., Hayashi, A., Yokote, K., Kobayashi, Y., ... Hiwasa, T. (2024). JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases. International Journal of Molecular Sciences, 25(9), 4935. https://doi.org/10.3390/ijms25094935