Effect of Morphology Modification of BiFeO3 on Photocatalytic Efficacy of P-g-C3N4/BiFeO3 Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characterization
2.1.1. Fourier-Transform Infrared (FT-IR)
2.1.2. X-ray Diffraction (XRD)
2.1.3. N2 Physisorption Isotherm
2.1.4. Scanning Electron Microscopy (SEM)
2.1.5. Thermogravimetric Analysis with Derivative Thermogravimetry (TGA-dTG)
2.1.6. Ultraviolet-Visible (UV-vis) Spectroscopy
2.1.7. Photoluminescence Study
2.2. Photodegradation of RhB Evaluation
2.2.1. Free-Radical Scavenging
2.2.2. Proposed RhB Degradation Mechanism
2.2.3. Recyclability of the Binary Catalysts
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of P-Infused g-C3N4
3.3. Urea-Aided Synthesis of BiFeO3
3.4. Construction of P-g-C3N4/BiFeO3 Heterojunction
3.5. Materials Characterizations
3.6. Photocatalytic Degradation of RhB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Ravichandran, S.; Madhumitha Sri, R.M. Air Pollution: A Major Threats to Sustainable Development. Int. J. Clin. Biochem. Res. 2021, 8, 176–178. [Google Scholar] [CrossRef]
- Musial, J.; Mlynarczyk, D.T.; Stanisz, B.J. Photocatalytic Degradation of Sulfamethoxazole Using TiO2-based Materials—Perspectives for the Development of a Sustainable Water Treatment Technology. Sci. Total Environ. 2022, 856, 159122. [Google Scholar] [CrossRef] [PubMed]
- Nam, N.T.; Escribà-Gelonch, M.; Sarafraz, M.M.; Pho, Q.H.; Sagadevan, S.; Hessel, V. Process Technology and Sustainability Assessment of Wastewater Treatment. Ind. Eng. Chem. Res. 2023, 62, 1195–1214. [Google Scholar] [CrossRef]
- Mejía-Marchena, R.; Maturana-Córdoba, A.; Gómez-Cerón, D.; Quintero-Monroy, C.; Arismendy-Montes, L.; Cardenas-Perez, C. Industrial Wastewater Treatment Technologies for Reuse, Recycle, and Recovery: Advantages, Disadvantages, and Gaps. Environ. Technol. Rev. 2023, 12, 205–250. [Google Scholar] [CrossRef]
- Saravanan, R.; Sathish, T.; Sharma, K.; Rao, A.V.; Sathyamurthy, R.; Panchal, H.; Zahra, M.M.A. Sustainable Wastewater Treatment by RO and Hybrid Organic Polyamide Membrane Nanofiltration System for Clean Environment. Chemosphere 2023, 337, 139336. [Google Scholar] [CrossRef] [PubMed]
- Oyegoke, D.A. Exploring the Potential and Challenges of Electrochemical Processes for Sustainable Waste Water Remediation and Treatment. Acadlore Trans. Geosci. 2023, 2, 80–93. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J. Structured Semiconductors in Photocatalysis. Catalysts 2023, 13, 1111. [Google Scholar] [CrossRef]
- Dharma, H.N.C.; Jaafar, J.; Widiastuti, N.; Matsuyama, H.; Rajabsadeh, S.; Othman, M.H.D.; Rahman, M.A.; Jafri, N.N.M.; Suhaimin, N.S.; Nasir, A.M.; et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes 2022, 12, 345. [Google Scholar] [CrossRef]
- Panthi, G.; Park, M. Electrospun Carbon Nanofibers Decorated with Ag3PO4 Nanoparticles: Visible-Light-Driven Photocatalyst for the Photodegradation of Methylene Blue. Photochem 2021, 1, 345–357. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, B.; Wang, L.; Bao, Y.; Guan, G. Novel CdS/CeO2/g-C3N4 Nanocomposite for Efficient Phenol Photodegradation under Visible Light. Inorg. Chem. Commun. 2023, 150, 110459. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Ma, Y.; Jiang, T.; Zhu, Y.; Ren, H. Visible-light Photoelectrocatalysis/H2O2 Synergistic Degradation of Organic Pollutants by a Magnetic Fe3O4@SiO2@mesoporous TiO2 Catalyst-loaded Photoelectrode. RSC Adv. 2022, 12, 30577–30587. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Zhou, Q. Degradation of Some Typical Pharmaceuticals and Personal Care Products with Copper-plating Iron Doped Cu2O under Visible Light Irradiation. J. Environ. Sci. China 2012, 24, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.R.N.; Sampaio, M.J.; Carrapiço, P.M.; Silva, C.G.; Morales-Torres, S.; Dražić, G.; Faria, J.L.; Silva, A.M.T. Photocatalytic Degradation of Caffeine: Developing Solutions for Emerging Pollutants. Catal. Today 2013, 209, 108–115. [Google Scholar] [CrossRef]
- Sadanan, B.; Burapat, I.; Andrew, N.; Chen, J. Bismuth–based Oxide Photocatalysts for Selective Oxidation Transformations of Organic Compounds. ChemNanoMat 2023, 9, e202300140. [Google Scholar] [CrossRef]
- Ghosh, S.A.; Laha, D.; Hajra, P.; Sariket, D.; Ray, D.; Baduri, S.; Sahoo, H.S.; Bhattacharya, C. Development of Transition Metal Incorporated Bismuth-based Oxide Semiconductors as Potential Candidates for Solar Assisted Water Splitting Applications. ChemElectroChem 2023, 10, e202201062. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Ma, J.; Li, S.; Pan, H.; Nan, C.; Lin, Y. Controllable Electrical, Magnetoelectric and Optical Properties of BiFeO3 via Domain Engineering. Prog. Mater. Sci. 2022, 127, 100943. [Google Scholar] [CrossRef]
- Wu, Y.; Shangs, H.; Pan, X.; Zhou, G. Recent Advances of BiFeO3-based Catalysts Based on the Piezoelectric Built-in Electric Field. Mol. Catal. 2024, 556, 113820. [Google Scholar] [CrossRef]
- Haruna, A.; Abdulkadir, I.; Idris, S.O. Photocatalytic Activity and Doping Effects of BiFeO3 Nanoparticles in Model Organic Dyes. Heliyon 2020, 6, e03237. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wu, J.; Armutlulu, A.; Xie, R. Constructing Durable BiFeO3@SrBi2B2O7 p-n Heterojunction for Persulfate Enhanced Piezo-photocatalytic Water Purification. Sep. Purif. Technol. 2023, 324, 124479. [Google Scholar] [CrossRef]
- Djatoubai, E.; Khan, M.S.; Haq, S.U.; Heidari, G.; Ma, L.; Shen, S. BiFeO3-based All Perovskite Oxides Direct Z-scheme Heterostructure for Efficient Oxygen Evolution. ACS Appl. Energy Mater. 2023, 6, 5653–5661. [Google Scholar] [CrossRef]
- Nazeer, Z.; Bibi, I.; Majid, F.; Kamal, S.; Arshad, M.; Ghafoor, A.; Alwadai, N.; Ali, A.; Nazir, A.; Iqbal, M. Optical, Photocatalytic, Electrochemical, Magnetic, Dielectric, and Ferroelectric Properties of Cd- and Er-doped BiFeO3 Prepared via a Facile Microemulsion Route. ACS Omega 2023, 8, 24980–24998. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Leng, X.; Bai, J.; Kan, S.; Cui, Y.; Wang, J.; Xu, L. Enhancement of Photoelectrochemical Performance of BiFeO3 by Sm3+ Doping. Ceram. Int. 2023, 49, 10255–10264. [Google Scholar] [CrossRef]
- Das, S.; Fourmont, P.; Benetti, D.; Cloutier, S.; Nechache, R.; Wang, Z.; Rosei, F. High Performance BiFeO3 Ferroelectric Nanostructured Photocathodes. J. Chem. Phys. 2020, 153, 084705. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Sheibani, S.; Abdizadeh, H.; Golobostanfard, M.R. Modified BiFeO3/rGO Nanocomposite by Controlled Synthesis to Enhance Adsorption and Visible-light Photocatalytic Activity. J. Mater. Res. Technol. 2022, 22, 1250–1267. [Google Scholar] [CrossRef]
- Zhang, X.; Xuan, W.; Chai, J.; Shuang, X.; Ruxue, W.; Lei, J.; Wang, J.; Zhaohong, Z.; Dionysiou, D.D. Construction of Novel Symmetric Double Z-scheme BiFeO3/CuBi2O4/BaTiO3 Photocatalyst with Enhanced Solar-light-driven Photocatalytic Performance for Degradation of Norfloxacin. Appl. Catal. B Environ. 2020, 272, 119017. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Alaghmandfard, A.; Ghandi, K. A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–metal Oxide-based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials 2022, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, C.; Ela, S. Fabrication of g-C3N4-reinforced Cds Nanosphere-decorated TiO2 Nanotablet Composite Material for Photocatalytic Hydrogen Production and Dye-sensitized Solar Cell Application. J. Alloys Compd. 2023, 936, 168209. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Namgung, G.; Noh, J. Facile Synthesis of Porous Metal-doped ZnO/g-C3N4 Composites for Highly Efficient Photocatalysts. J. Photochem. Photobiol. A Chem. 2018, 368, 110–119. [Google Scholar] [CrossRef]
- Prasad, C.; Tang, H.; Bahadur, I. Graphitic Carbon Nitride Based Ternary Nanocomposites: From Synthesis to Their Applications in Photocatalysis: A Recent Review. J. Mol. Liq. 2019, 281, 634–654. [Google Scholar] [CrossRef]
- Tang, C.; Cheng, M.; Lai, C.; Li, L.; Yang, X.; Du, L.; Zhang, G.; Wang, G.; Yang, L. Recent Progress in the Applications of Non-metal Modified Graphitic Carbon Nitride in Photocatalysis. Coord. Chem. Rev. 2022, 474, 214846. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, W.; Dang, L.; Mao, Y.; Wu, J.; Xu, K. Recent Progress in Doped g-C3N4 Photocatalyst for Solar Water Splitting: A Review. Front. Chem. 2022, 10, 955065. [Google Scholar] [CrossRef]
- Katsina, A.U.; Mihai, S.; Matei, D.; Cursaru, D.-L.; Şomoghi, R.; Nistor, C.L. Construction of Pt@BiFeO3 Xerogel-Supported O-g-C3N4 Heterojunction System for Enhanced Visible-Light Activity towards Photocatalytic Degradation of Rhodamine B. Gels 2023, 9, 471. [Google Scholar] [CrossRef]
- Chowdhury, A.; Balu, S.; Lan, K.-W.; Wei-Chih Lee, L.; Yang, T.C.-K. Synergistic Effect of BiVo4/P-g-C3N4 Heterojunction with Enhanced Optoelectronic Properties on Synthetic Colorants under Visible Light. Colorants 2023, 2, 426–442. [Google Scholar] [CrossRef]
- Long, D.; Chen, Z.; Rao, X.; Zhang, Y. Sulfur-doped g-C3N4 and BiPo4 Nanorod Hybrid Architectures for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. ACS Appl. Energy Mater. 2020, 3, 5024–5030. [Google Scholar] [CrossRef]
- Muneeswaran, M.; Dhanalakshmi, R.; Akbari-Fakhrabadi, A. Synthesis and Characterization of Single-phased BiFeO3 Nanostructures for Photocatalytic Applications: Hydrothermal Approach. Green Photocatal. Energy Environ. Process 2020, 36, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Miranda, H.; de Obaldía, E.; Ching-Prado, E. Synthesis and Characterization of Polycrystalline BiFeO3 Deposited by Sol-gel Technique. In Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, 19–21 October 2022; pp. 802–809. [Google Scholar] [CrossRef]
- Yoshiyama, K.; Mori, M.; Hagiwara, M.; Fujihara, S. Effect of Particle Size and Morphology on the Performance of BiFeO3–pdms Piezoelectric Generators. CrystEngComm 2020, 22, 2919–2925. [Google Scholar] [CrossRef]
- Chien, C.; Ng, D.; Kumar, D.; Lam, S.; Jaffari, Z.H. Investigating the Effects of Various Synthesis Routes on Morphological, Optical, Photoelectrochemical and Photocatalytic Properties of Single-phase Perovskite BiFeO3. J. Phys. Chem. Solids 2021, 160, 110342. [Google Scholar] [CrossRef]
- Djatoubai, E.; Khan, M.S.; Haq, S.U.; Guo, P.; Shen, S. Rational Design of BiFeO3 Nanostructures for Efficient Charge Carrier Transfer and Consumption for Photocatalytic Water Oxidation. J. Alloys Compd. 2022, 911, 164920. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, Q.; Lv, K.; Zhang, Z.; Li, M.; Li, B. Effect of Contact Interface between TiO2 and g-C3N4 on the Photoreactivity of g-C3N4/TiO2 Photocatalyst: (0 0 1) Vs (1 0 1) Facets of TiO2. Appl. Catal. B-Environ. 2015, 164, 420–427. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Han, P. Electrospinning Preparation of g-C3N4/Nb2O5 Nanofibers Heterojunction for Enhanced Photocatalytic Degradation of Organic Pollutants in Water. Sci. Rep. 2021, 11, 22950. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xia, P.; Li, Y.; Ho, W.; Yu, J. Fabrication and Photocatalytic Activity Enhanced Mechanism of Direct Z-scheme g-C3N4/Ag2WO4 Photocatalyst. Appl. Surf. Sci. 2016, 391, 175–183. [Google Scholar] [CrossRef]
- Kim, M.S.; Hwang, S.; Yu, J.-S. Novel Ordered Nanoporous Graphitic C3N4 as a Support for Pt–Ru Anode Catalyst in Direct Methanol Fuel Cell. J. Mater. Chem. 2007, 17, 1656–1659. [Google Scholar] [CrossRef]
- Bala, I.; Gupta, S.P.; Kumar, S.; Singh, H.; De, J.; Sharma, N.; Kailasam, K.; Pal, S.K. Hydrogen-bond Mediated Columnar Liquid Crystalline Assemblies of C3-symmetric Heptazine Derivatives at Ambient Temperature. Soft Matter 2018, 14, 6342–6352. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, Y.; Wang, Z.; Ho, W. Enhanced Visible Light Photocatalytic Activity and Oxidation Ability of Porous Graphene-like g-C3N4 Nanosheets via Thermal Exfoliation. Appl. Surf. Sci. 2015, 358, 393–403. [Google Scholar] [CrossRef]
- Shi, X.; Quan, S.; Yang, L. Anchoring Co3O4 on BiFeO3: Achieving High Photocatalytic Reduction in Cr(vi) and Low Cobalt Leaching. J. Mater. Sci. 2019, 54, 12424–12436. [Google Scholar] [CrossRef]
- Tian, Y.; Chang, B.; Lu, J.; Fu, J.; Xi, F.; Dong, X. Hydrothermal Synthesis of Graphitic Carbon Nitride–Bi2wWO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities. ACS Appl. Mater. Interfaces 2013, 5, 7079–7085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L.; Huang, Y. Enhanced Visible Light Photocatalytic Activity of Gd-doped BiFeO3 Nanoparticles and Mechanism Insight. Sci. Rep. 2016, 6, 26467. [Google Scholar] [CrossRef]
- Blahovec, J.; Yanniotis, S. Modified Classification of Sorption Isotherms. J. Food Eng. 2009, 91, 72–77. [Google Scholar] [CrossRef]
- Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.; Cheng, H.-M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-doped Graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-light-driven Photocatalytic Hydrogen Evolution. Sci. Rep. 2016, 6, 22268. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; You, F.; Li, X. La-doped Zno/g-C3N4 Heterojunction for Efficient Degradation of Organic Contamination under Visible Light Irradiation. J. Inorg. Organomet. Polym. Mater. 2021, 31, 375–383. [Google Scholar] [CrossRef]
- Rajendran, R.; Vignesh, S.; Sasireka, A.; Kalyana Sundar, J.; Manickam, S.; Chandrasekaran, S.; Vairamuthu, R. Facile Construction of Novel ZnO and TiO2 Combined g-C3N4 Nanocomposite for Superior Visible-light Photocatalytic Organic Pollutant Degradation. Mater. Technol. 2022, 37, 1651–1664. [Google Scholar] [CrossRef]
- Han, Z.; Wang, N.; Fan, H.; Ai, S. Ag Nanoparticles Loaded on Porous Graphitic Carbon Nitride with Enhanced Photocatalytic Activity for Degradation of Phenol. Solid State Sci. 2017, 65, 110–115. [Google Scholar] [CrossRef]
- Piña-Salazar, E.-Z.; Kukobat, R.; Futamura, R.; Hayashi, T.; Toshio, S.; Ōsawa, E.; Kaneko, K. Water-selective adsorption sites on detonation nanodiamonds. Carbon 2018, 139, 853–860. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, M.; Lv, J.; Xu, G.; Zheng, Z.; Zhang, X.; Wu, Y. g-C3N4/g-C3N4 Isotype Heterojunction as an Efficient Platform for Direct Photodegradation of Antibiotic. Fuller. Nanotub. Carbon Nanostructures 2018, 26, 210–217. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakrabarty, S.; Kumari, N.; Su, W.-N.; Basu, S. Visible-light-mediated Electrocatalytic Activity in Reduced Graphene Oxide-supported Bismuth Ferrite. ACS Omega 2018, 3, 5946–5957. [Google Scholar] [CrossRef] [PubMed]
- Chankhanittha, T.; Komchoo, N.; Senasu, T.; Piriyanon, J.; Youngme, S.; Hemavibool, K.; Nanan, S. Silver Decorated Zno Photocatalyst for Effective Removal of Reactive Red Azo Dye and Ofloxacin Antibiotic Under Solar Light Irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127034. [Google Scholar] [CrossRef]
- Kannan, N.; Venkatesh, P.S.; Babu, M.G.; Paulraj, G.; Jeganathan, K. Hydrothermally Synthesized Rgo-bivo4 Nanocomposites for Photocatalytic Degradation of RhB. Chem. Phys. Impact 2023, 6, 100230. [Google Scholar] [CrossRef]
- Senasu, T.; Narenuch, T.; Wannakam, K. Solvothermally Grown Biocl Catalyst for Photodegradation of Cationic Dye and Fluoroquinolone-based Antibiotics. J. Mater. Sci. Mater. Electron. 2020, 31, 9685–9694. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, Y.; Xiao, B.; Ou-yang, J.; Li, H.; Chen, Z. Z-scheme 2D/2D g-C3N4/Sn3O4 Heterojunction for Enhanced Visible-light Photocatalytic H2 Evolution and Degradation of Ciprofloxacin. Mater. Sci. Semicond. Process. 2021, 129, 105767. [Google Scholar] [CrossRef]
- Shoran, S.; Sharma, A.; Chaudhary, S. Visible Light Enhanced Photocatalytic Degradation of Organic Pollutants with SiO2/g-C3N4 Nanocomposite for Environmental Applications. Environ. Sci. Pollut. Res. 2023, 30, 98732–98746. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Chen, S.; Ren, B.; Zhang, Y.; Luo, X.; Sun, Y. Facile Ball-milling Synthesis of Wo3/g-C3N4 Heterojunction for Photocatalytic Degradation of Rhodamine B. Chem. Phys. Lett. 2022, 805, 139908. [Google Scholar] [CrossRef]
- Mohanty, L.; Sundar Pattanayak, D.; Singhal, R.; Pradhan, D.; Kumar Dash, S. Enhanced Photocatalytic Degradation of Rhodamine B and Malachite Green Employing BiFeO3/g-C3N4 Nanocomposites: An Efficient Visible-light Photocatalyst. Inorg. Chem. Commun. 2022, 138, 109286. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Zhao, G.; Li, C.; Liu, L.; Jiao, F. Enhanced Visible Light Photocatalytic Degradation of Rhodamine B by Z-scheme Cuwo4/g-C3N4 Heterojunction. J. Mater. Sci. Mater. Electron. 2021, 32, 2731–2743. [Google Scholar] [CrossRef]
- Aissa, M.A.B.; Modwi, A.; Taha, K.; Elamin, N.; AbuMousa, R.A.; Bououdina, M. Environmental Remediation Applications of Mxoy-gC3N4 Nanocomposites (M = Mg, Ti, and Zn): Photocatalytic Activity for Indigo Carmine Dye Degradation. Diam. Relat. Mater. 2023, 136, 109988. [Google Scholar] [CrossRef]
- Swamy, C.K.; Hezam, A.; Ramesh, A.M.; Ramakrishnegowda, D.H.; Purushothama, D.K.; Krishnegowda, J.; Shivanna, S. Microwave Hydrothermal Synthesis of Copper Induced Zno/gC3N4 Heterostructure with Efficient Photocatalytic Degradation through S-scheme Mechanism. J. Photochem. Photobiol. A Chem. 2021, 418, 113394. [Google Scholar] [CrossRef]
- Gandamalla, A.; Manchala, S.; Anand, P.; Fu, Y.; Shanker, V. Development of Versatile Cdmoo4/g-C3N4 Nanocomposite for Enhanced Photoelectrochemical Oxygen Evolution Reaction and Photocatalytic Dye Degradation Applications. Mater. Today Chem. 2021, 19, 100392. [Google Scholar] [CrossRef]
- Bharathi, K.; Sathiyamoorthy, K.; Bakiyaraj, G.; Archana, J.; Navaneethan, M. 2D V2O5 Nanoflakes on 2D P-gc3n4 Nanosheets of Heterostructure Photocatalysts with the Enhanced Photocatalytic Activity of Organic Pollutants under Direct Sunlight. Surf. Interfaces 2023, 41, 103219. [Google Scholar] [CrossRef]
- Rubesh Ashok Kumar, S.; Vasvini Mary, D.; Suganya Josephine, G.; Sivasamy, A. Hydrothermally Synthesized Wo3:ceo2 Supported Gc3n4 Nanolayers for Rapid Photocatalytic Degradation of Azo Dye under Natural Sunlight. Inorg. Chem. Commun. 2024, 164, 112366. [Google Scholar] [CrossRef]
- Tong, R.; Wang, X.; Zhou, X.; Liu, Q.; Wang, H.; Peng, X.-N.; Liu, X.; Zhang, Z.; Wang, H.; Lund, P. Cobalt-phosphate Modified TiO2/bivo4 Nanoarrays Photoanode for Efficient Water Splitting. Int. J. Hydrogen Energy 2017, 42, 5496–5504. [Google Scholar] [CrossRef]
- Ahmad, M.; Ali, R.; Rehman, A.; Ali, A.; Sultana, I.; Ali, I.; Asif, M. Insight into the Structural, Electrical, and Magnetic Properties of Al-Substituted BiFeO3 Synthesised by the Sol–Gel Method. Z. Naturforschung A 2020, 75, 249–256. [Google Scholar] [CrossRef]
- Armstrong, D.A.; Huie, R.E.; Koppenol, W.H.; Lymar, S.V.; Merenyi, G.; Neta, P.; Ruscic, B.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals. Pure Appl. Chem. 2015, 87, 1139–1150. [Google Scholar] [CrossRef]
- Li, Q.; Xia, Y.; Yang, C.; Lv, K.; Lei, M.; Li, M. Building a Direct Z-scheme Heterojunction Photocatalyst by Znin2s4 Nanosheets and TiO2 Hollowspheres for Highly-efficient Artificial Photosynthesis. Chem. Eng. J. 2018, 349, 287–296. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Z.; Lin, T.; Li, B.; Liao, X.; Yu, H.; Yu, C. Controlled Preparation of P-doped g-C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production. Chin. J. Chem. Eng. 2020, 28, 2677–2688. [Google Scholar] [CrossRef]
- Denisov, N.M.; Chubenko, E.B.; Bondarenko, V.P. Synthesis of Oxygen-doped Graphitic Carbon Nitride from Thiourea. Tech. Phys. Lett. 2019, 45, 108–110. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, C.; Xu, Z. Low-temperature Hydrothermal Synthesis of BiFeO3 Microcrystals and Their Visible-light Photocatalytic Activity. Mater. Res. Bull. 2012, 47, 3513–3517. [Google Scholar] [CrossRef]
- Iyyapushpam, S.; Nishanthi, S.; Padiyan, D.P. Synthesis of Β-bi2o3 towards the Application of Photocatalytic Degradation of Methyl Orange and Its Instability. J. Phys. Chem. Solids 2015, 81, 74–78. [Google Scholar] [CrossRef]
Catalyst | BET SSA (m2/g) | Pore Size Distribution (Adsorption) | |||||
---|---|---|---|---|---|---|---|
Pore Diameter (nm) | Pore Volume (m3/g) | ||||||
Ads. | Des. | Avr. | Ads. | Des. | Avr. | ||
BFO | 15.615 | 2.130 | 2.127 | 2.129 | 0.024 | 0.109 | 0.133 |
U-BFO | 3.893 | 2.124 | 1.188 | 1.656 | 0.108 | 0.022 | 0.065 |
BFO/PCN | 49.746 | 2.525 | 2.661 | 2.593 | 0.563 | 0.365 | 0.464 |
U-BFO/PCN | 65.875 | 2.664 | 3.943 | 3.304 | 0.619 | 0.621 | 0.620 |
PCN | 51.557 | 2.814 | 4.497 | 3.341 | 0.582 | 0.383 | 0.483 |
CN | 47.252 | 2.523 | 3.933 | 3.228 | 0.448 | 0.450 | 0.449 |
Catalyst | Efficiency (%) | Rate Constant, k (min−1) | R2 |
---|---|---|---|
BFO | 23.8 | 0.0031 | 0.9621 |
U-BFO | 26.1 | 0.0042 | 0.9733 |
BFO/PCN | 88.5 | 0.1080 | 0.9785 |
U-BFO/PCN | 99.2 | 0.2410 | 0.9870 |
PCN | 67.4 | 0.0560 | 0.9784 |
CN | 52.1 | 0.0368 | 0.9755 |
Catalyst (Amount, mg) | Conditions | Efficiency (%)-Rate Const. (min−1) | Ref. |
---|---|---|---|
gC3N4/TiO2/kaolinite (200 mg) | 100 mL (CIP 10 mg/L)—visible light 300 W | 92%—0.008 | [63] |
SiO2/gC3N4 (10 mg) | 100 mL (XO 10 ppm; AO, 10 ppm)—visible light | XO; 84%—0.014 AO; 70%—0.009 | [64] |
WO3/g-C3N4 (100 mg) | 100 mL (RhB 100 mg/L)—visible light 500 W | 96%—0.063 | [65] |
BiFeO3/g-C3N4 (50 mg) | 25 mL (RhB 40 mg/L)—natural sunlight | 96%—0.039 | [66] |
CuWO4/g-C3N4 (50 mg) | 50 mL (RhB 50 mg/L)—visible light 300 W | 93%—0.015 | [67] |
MgO@g-C3N4 (50 mg) | 50 mL (IC 25 ppm)—visible light | 99%—0.084 | [68] |
Cu-ZnO/gC3N4 (50 mg) | 100 mL (IC 10 mg/L)—visible light | 98%—0.088 | [69] |
CdMoO4/g-C3N4 (50 mg) | 50 mL (MB 10 ppm)—visible light | 98%—0.020 | [70] |
V2O5/protonated g-C3N4 (25 mg) | 100 mL (MB 10 mg/L)—sunlight | 94%—0.024 | [71] |
U-BiFeO3/P-g-C3N4 (30 mg) | 50 mL, (RhB 10 mg/L)—visible light 500 W | 99%—0.260 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsina, A.U.; Cursaru, D.-L.; Matei, D.; Mihai, S. Effect of Morphology Modification of BiFeO3 on Photocatalytic Efficacy of P-g-C3N4/BiFeO3 Composites. Int. J. Mol. Sci. 2024, 25, 4948. https://doi.org/10.3390/ijms25094948
Katsina AU, Cursaru D-L, Matei D, Mihai S. Effect of Morphology Modification of BiFeO3 on Photocatalytic Efficacy of P-g-C3N4/BiFeO3 Composites. International Journal of Molecular Sciences. 2024; 25(9):4948. https://doi.org/10.3390/ijms25094948
Chicago/Turabian StyleKatsina, Abubakar Usman, Diana-Luciana Cursaru, Dănuţa Matei, and Sonia Mihai. 2024. "Effect of Morphology Modification of BiFeO3 on Photocatalytic Efficacy of P-g-C3N4/BiFeO3 Composites" International Journal of Molecular Sciences 25, no. 9: 4948. https://doi.org/10.3390/ijms25094948
APA StyleKatsina, A. U., Cursaru, D. -L., Matei, D., & Mihai, S. (2024). Effect of Morphology Modification of BiFeO3 on Photocatalytic Efficacy of P-g-C3N4/BiFeO3 Composites. International Journal of Molecular Sciences, 25(9), 4948. https://doi.org/10.3390/ijms25094948