Age Prediction Using DNA Methylation Heterogeneity Metrics
Abstract
:1. Introduction
2. Results
2.1. Development of WSH-Based Regional Blood eAge Clock Models
2.2. Assessment of Regional Blood Epigenetic Clock Performance
2.3. Regional Blood and WSH-Based Models for Minimized Epigenetic Clocks Design
3. Discussion
4. Materials and Methods
4.1. Source Data
4.2. Data Processing and WSH Scores Calculation
4.3. Heterogeneity Loci Processing and Annotation
4.4. WSH-Based Epigenetic Clock Construction Using Random Forest Regression
4.5. Genome Segmentation and Calculation of Average Methylation Level
4.6. Region-Based Epigenetic Clock Construction Using LASSO Regression
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Loyfer, N.; Magenheim, J.; Peretz, A.; Cann, G.; Bredno, J.; Klochendler, A.; Fox-Fisher, I.; Shabi-Porat, S.; Hecht, M.; Pelet, T.; et al. A DNA Methylation Atlas of Normal Human Cell Types. Nature 2023, 613, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, P.D.; Suderman, M.; Langdon, R.; Whitehurst, O.; Davey Smith, G.; Relton, C.L. DNA Methylation-Based Predictors of Health: Applications and Statistical Considerations. Nat. Rev. Genet. 2022, 23, 369–383. [Google Scholar] [CrossRef]
- Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; et al. Non-Invasive Early Detection of Cancer Four Years before Conventional Diagnosis Using a Blood Test. Nat. Commun. 2020, 11, 3475. [Google Scholar] [CrossRef]
- Moran, S.; Martínez-Cardús, A.; Sayols, S.; Musulén, E.; Balañá, C.; Estival-Gonzalez, A.; Moutinho, C.; Heyn, H.; Diaz-Lagares, A.; de Moura, M.C.; et al. Epigenetic Profiling to Classify Cancer of Unknown Primary: A Multicentre, Retrospective Analysis. Lancet Oncol. 2016, 17, 1386–1395. [Google Scholar] [CrossRef]
- Simpson, D.J.; Chandra, T. Epigenetic Age Prediction. Aging Cell 2021, 20, e13452. [Google Scholar] [CrossRef] [PubMed]
- Colită, C.-I.; Udristoiu, I.; Ancuta, D.-L.; Hermann, D.M.; Colita, D.; Colita, E.; Glavan, D.; Popa-Wagner, A. Epigenetics of Ageing and Psychiatric Disorders. J. Integr. Neurosci. 2024, 23, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Laird, P.W.; Shen, H. Comprehensive Characterization, Annotation and Innovative Use of Infinium DNA Methylation BeadChip Probes. Nucleic Acids Res. 2017, 45, e22. [Google Scholar] [CrossRef]
- Guo, S.; Diep, D.; Plongthongkum, N.; Fung, H.-L.; Zhang, K.; Zhang, K. Identification of Methylation Haplotype Blocks Aids in Deconvolution of Heterogeneous Tissue Samples and Tumor Tissue-of-Origin Mapping from Plasma DNA. Nat. Genet. 2017, 49, 635–642. [Google Scholar] [CrossRef]
- Doherty, R.; Couldrey, C. Exploring Genome Wide Bisulfite Sequencing for DNA Methylation Analysis in Livestock: A Technical Assessment. Front. Genet. 2014, 5, 126. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.; Nebel, A.; Franke, A.; Walter, J.; Lengauer, T.; Bock, C.; Müller, F.; List, M. Quantitative Comparison of Within-Sample Heterogeneity Scores for DNA Methylation Data. Nucleic Acids Res. 2020, 48, e46. [Google Scholar] [CrossRef]
- Simpson, D.J.; Zhao, Q.; Olova, N.N.; Dabrowski, J.; Xie, X.; Latorre-Crespo, E.; Chandra, T. Region-based Epigenetic Clock Design Improves RRBS-based Age Prediction. Aging Cell 2023, 22, e13866. [Google Scholar] [CrossRef] [PubMed]
- Bryzgunova, O.; Bondar, A.; Ruzankin, P.; Laktionov, P.; Tarasenko, A.; Kurilshikov, A.; Epifanov, R.; Zaripov, M.; Kabilov, M.; Laktionov, P. Locus-Specific Methylation of GSTP1, RNF219, and KIAA1539 Genes with Single Molecule Resolution in Cell-Free DNA from Healthy Donors and Prostate Tumor Patients: Application in Diagnostics. Cancers 2021, 13, 6234. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Dai, W.; Wang, H.; Lan, X.; Ma, C.; Su, Z.; Xiang, W.; Han, L.; Luo, W.; Zhang, L.; et al. Early Detection and Prognosis Prediction for Colorectal Cancer by Circulating Tumour DNA Methylation Haplotypes: A Multicentre Cohort Study. EClinicalMedicine 2023, 55, 101717. [Google Scholar] [CrossRef]
- Franzen, J.; Zirkel, A.; Blake, J.; Rath, B.; Benes, V.; Papantonis, A.; Wagner, W. Senescence-associated DNA Methylation Is Stochastically Acquired in Subpopulations of Mesenchymal Stem Cells. Aging Cell 2017, 16, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Herraez, I.; Evano, B.; Stubbs, T.; Commere, P.-H.; Jan Bonder, M.; Clark, S.; Andrews, S.; Tajbakhsh, S.; Reik, W. Ageing Affects DNA Methylation Drift and Transcriptional Cell-to-Cell Variability in Mouse Muscle Stem Cells. Nat. Commun. 2019, 10, 4361. [Google Scholar] [CrossRef]
- Yu, M.; Hazelton, W.D.; Luebeck, G.E.; Grady, W.M. Epigenetic Aging: More Than Just a Clock When It Comes to Cancer. Cancer Res. 2020, 80, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Kerepesi, C.; Gladyshev, V.N. Intersection Clock Reveals a Rejuvenation Event during Human Embryogenesis. Aging Cell 2023, 22, e13922. [Google Scholar] [CrossRef]
- Landan, G.; Cohen, N.M.; Mukamel, Z.; Bar, A.; Molchadsky, A.; Brosh, R.; Horn-Saban, S.; Zalcenstein, D.A.; Goldfinger, N.; Zundelevich, A.; et al. Epigenetic Polymorphism and the Stochastic Formation of Differentially Methylated Regions in Normal and Cancerous Tissues. Nat. Genet. 2012, 44, 1207–1214. [Google Scholar] [CrossRef]
- Landau, D.A.; Clement, K.; Ziller, M.J.; Boyle, P.; Fan, J.; Gu, H.; Stevenson, K.; Sougnez, C.; Wang, L.; Li, S.; et al. Locally Disordered Methylation Forms the Basis of Intratumor Methylome Variation in Chronic Lymphocytic Leukemia. Cancer Cell 2014, 26, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Bertucci-Richter, E.M.; Shealy, E.P.; Parrott, B.B. Epigenetic Drift Underlies Epigenetic Clock Signals, but Displays Distinct Responses to Lifespan Interventions, Development, and Cellular Dedifferentiation. Aging 2024, 16, 1002–1020. [Google Scholar] [CrossRef] [PubMed]
- Bhak, Y.; Jeong, H.; Cho, Y.S.; Jeon, S.; Cho, J.; Gim, J.-A.; Jeon, Y.; Blazyte, A.; Park, S.G.; Kim, H.-M.; et al. Depression and Suicide Risk Prediction Models Using Blood-Derived Multi-Omics Data. Transl. Psychiatry 2019, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; He, Q.-Y. ChIPseeker: An R/Bioconductor Package for ChIP Peak Annotation, Comparison and Visualization. Bioinformatics 2015, 31, 2382–2383. [Google Scholar] [CrossRef]
- Alghanim, H.; Antunes, J.; Silva, D.S.B.S.; Alho, C.S.; Balamurugan, K.; McCord, B. Detection and Evaluation of DNA Methylation Markers Found at SCGN and KLF14 Loci to Estimate Human Age. Forensic. Sci. Int. Genet. 2017, 31, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Naue, J.; Hoefsloot, H.C.J.; Mook, O.R.F.; Rijlaarsdam-Hoekstra, L.; van der Zwalm, M.C.H.; Henneman, P.; Kloosterman, A.D.; Verschure, P.J. Chronological Age Prediction Based on DNA Methylation: Massive Parallel Sequencing and Random Forest Regression. Forensic Sci. Int. Genet. 2017, 31, 19–28. [Google Scholar] [CrossRef]
- Tajuddin, S.M.; Hernandez, D.G.; Chen, B.H.; Noren Hooten, N.; Mode, N.A.; Nalls, M.A.; Singleton, A.B.; Ejiogu, N.; Chitrala, K.N.; Zonderman, A.B.; et al. Novel Age-Associated DNA Methylation Changes and Epigenetic Age Acceleration in Middle-Aged African Americans and Whites. Clin. Epigenetics 2019, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Karlsson, R.; Lampa, E.; Zhang, Q.; Hedman, Å.K.; Almgren, M.; Almqvist, C.; McRae, A.F.; Marioni, R.E.; Ingelsson, E.; et al. Epigenetic Influences on Aging: A Longitudinal Genome-Wide Methylation Study in Old Swedish Twins. Epigenetics 2018, 13, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Jiang, Y.; Dai, Z.; Wu, X.; Li, B.; Wang, N.; Bian, W.; Zhong, W. Lin28b Delays Vasculature Aging by Reducing Platelet-Derived Growth Factor-Beta Resistance in Senescent Vascular Smooth Muscle Cells. Atherosclerosis 2023, 364, 29–38. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Mavromatis, L.A.; Bell, A.S.; Wagner, J.; Jung, J.; Marioni, R.E.; Davey Smith, G.; Horvath, S.; Lohoff, F.W. Multivariate Genome-Wide Analysis of Aging-Related Traits Identifies Novel Loci and New Drug Targets for Healthy Aging. Nat. Aging 2023, 3, 1020–1035. [Google Scholar] [CrossRef]
- Sheffield, N.C.; Pierron, G.; Klughammer, J.; Datlinger, P.; Schönegger, A.; Schuster, M.; Hadler, J.; Surdez, D.; Guillemot, D.; Lapouble, E.; et al. DNA Methylation Heterogeneity Defines a Disease Spectrum in Ewing Sarcoma. Nat. Med. 2017, 23, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Ambroa-Conde, A.; Girón-Santamaría, L.; Mosquera-Miguel, A.; Phillips, C.; Casares de Cal, M.A.; Gómez-Tato, A.; Álvarez-Dios, J.; de la Puente, M.; Ruiz-Ramírez, J.; Lareu, M.V.; et al. Epigenetic Age Estimation in Saliva and in Buccal Cells. Forensic Sci. Int. Genet. 2022, 61, 102770. [Google Scholar] [CrossRef]
- Jung, S.-E.; Lim, S.M.; Hong, S.R.; Lee, E.H.; Shin, K.-J.; Lee, H.Y. DNA Methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 Genes for Age Prediction from Blood, Saliva, and Buccal Swab Samples. Forensic Sci. Int. Genet. 2019, 38, 1–8. [Google Scholar] [CrossRef]
- Marttila, S.; Kananen, L.; Häyrynen, S.; Jylhävä, J.; Nevalainen, T.; Hervonen, A.; Jylhä, M.; Nykter, M.; Hurme, M. Ageing-Associated Changes in the Human DNA Methylome: Genomic Locations and Effects on Gene Expression. BMC Genom. 2015, 16, 179. [Google Scholar] [CrossRef] [PubMed]
- Refn, M.R.; Andersen, M.M.; Kampmann, M.-L.; Tfelt-Hansen, J.; Sørensen, E.; Larsen, M.H.; Morling, N.; Børsting, C.; Pereira, V. Longitudinal Changes and Variation in Human DNA Methylation Analysed with the Illumina MethylationEPIC BeadChip Assay and Their Implications on Forensic Age Prediction. Sci. Rep. 2023, 13, 21658. [Google Scholar] [CrossRef]
- Tharakan, R.; Ubaida-Mohien, C.; Moore, A.Z.; Hernandez, D.; Tanaka, T.; Ferrucci, L. Blood DNA Methylation and Aging: A Cross-Sectional Analysis and Longitudinal Validation in the InCHIANTI Study. J. Gerontol. Ser. A 2020, 75, 2051–2055. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, T.; Zhang, N.; Ma, Y.; Shi, S.; Zhang, R.; Zheng, X.; Zhao, L. LncRNA TRHDE-AS1 Inhibit the Scar Fibroblasts Proliferation via MiR-181a-5p/PTEN Axis. J. Mol. Histol. 2021, 52, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Petkovich, D.A.; Podolskiy, D.I.; Lobanov, A.V.; Lee, S.-G.; Miller, R.A.; Gladyshev, V.N. Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metab. 2017, 25, 954–960.e6. [Google Scholar] [CrossRef]
- Yang, J.-H.; Hayano, M.; Griffin, P.T.; Amorim, J.A.; Bonkowski, M.S.; Apostolides, J.K.; Salfati, E.L.; Blanchette, M.; Munding, E.M.; Bhakta, M.; et al. Loss of Epigenetic Information as a Cause of Mammalian Aging. Cell 2023, 186, 305–326.e27. [Google Scholar] [CrossRef]
- Maegawa, S.; Lu, Y.; Tahara, T.; Lee, J.T.; Madzo, J.; Liang, S.; Jelinek, J.; Colman, R.J.; Issa, J.-P.J. Caloric Restriction Delays Age-Related Methylation Drift. Nat. Commun. 2017, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.M. Epigenetic Gambling and Epigenetic Drift as an Antagonistic Pleiotropic Mechanism of Aging. Aging Cell 2009, 8, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F. TrimGalore: A Wrapper around Cutadapt and FastQC to Consistently Apply Adapter and Quality Trimming to FastQ Files, with Extra Functionality for RRBS Data. Available online: https://github.com/FelixKrueger/TrimGalore (accessed on 1 March 2024).
- Krueger, F.; Andrews, S.R. Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Koo, B.; Yang, J.; Kim, S. Metheor: Ultrafast DNA Methylation Heterogeneity Calculation from Bisulfite Read Alignments. PLoS Comput. Biol. 2023, 19, e1010946. [Google Scholar] [CrossRef]
- Reimand, J.; Kull, M.; Peterson, H.; Hansen, J.; Vilo, J. G:Profiler—A Web-Based Toolset for Functional Profiling of Gene Lists from Large-Scale Experiments. Nucleic Acids Res. 2007, 35, W193–W200. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Heterogeneity Metrics | Number of Heterogeneity Loci | Cor ≤ −0.25 | Cor ≥ 0.25 | |Cor| ≥ 0.5 |
---|---|---|---|---|
FDRP | 1,918,416 | 2311 | 16,108 | 10 |
MHL | 1,287,083 | 934 | 40,393 | 22 |
PDR | 1,291,638 | 3000 | 25,675 | 48 |
PM | 696,871 | 2297 | 11,478 | 20 |
qFDRP | 1,918,416 | 3548 | 34,856 | 27 |
Metric | Ensembl Gene ID | Gene Symbol | Gene Name | Biological Process | Gene Regions |
---|---|---|---|---|---|
MHL | ENSG00000164082 | GRM2 | glutamate metabotropic receptor 2 | negative regulation of adenylate cyclase activity | Promoter; 5’ UTR; Exon (1 of 4); Intron (1 of 5) |
ENSG00000158815 | FGF17 | fibroblast growth factor 17 | positive regulation of protein phosphorylation | Exon (5 of 5) | |
PDR | ENSG00000043591 | ADRB1 | adrenoreceptor beta 1 | positive regulation of heart rate by epinephrine-norepinephrine | Exon (1 of 1) |
ENSG00000170549 | IRX1 | Iroquois homeobox 1 | negative regulation of transcription from RNA polymerase II promoter | Exon (2 of 4) | |
ENSG00000122584 | NXPH1 | neurexophilin 1 | NA | Intron (2 of 2) | |
ENSG00000079689 | SCGN | secretagogin, EF-hand calcium-binding protein | regulation of cytosolic calcium ion concentration | 5’ UTR; Exon (1 of 10) | |
ENSG00000212719 | LINC02693 | long intergenic non-protein coding RNA 2693 | NA | Intron (2 of 6) | |
ENSG00000171649 | ZIK1 | zinc finger protein interacting with K protein | regulation of transcription from RNA polymerase II promoter | 5’ UTR | |
PM | ENSG00000150594 | ADRA2A | adrenoreceptor alpha 2A | positive regulation of cytokine production | Exon (1 of 1) |
ENSG00000043591 | ADRB1 | adrenoreceptor beta 1 | positive regulation of heart rate by epinephrine-norepinephrine | Exon (1 of 1) | |
ENSG00000164082 | GRM2 | glutamate metabotropic receptor | negative regulation of adenylate cyclase activity | Promoter; Exon (1 of 4); Intron (1 of 5) | |
ENSG00000212719 | LINC02693 | long intergenic non-protein coding RNA 2693 | NA | Intron (2 of 6) | |
ENSG00000122584 | NXPH1 | neurexophilin 1 | NA | Intron (2 of 2) | |
FDPR | ENSG00000164082 | GRM2 | glutamate metabotropic receptor | negative regulation of adenylate cyclase activity | 5’ UTR; Exon (1 of 4); Intron (1 of 5) |
ENSG00000164093 | PITX2 | paired-like homeodomain | negative regulation of transcription from RNA polymerase II promoter | Exon (3 of 5) | |
qFDPR | ENSG00000043591 | ADRB1 | adrenoreceptor beta 1 | positive regulation of heart rate by epinephrine-norepinephrine | Exon (1 of 1) |
ENSG00000164082 | GRM2 | glutamate metabotropic receptor | negative regulation of adenylate cyclase activity | Promoter; 5’ UTR; Exon (1 of 4); Intron (1 of 5) | |
ENSG00000187772 | LIN28B | lin-28 homolog | miRNA catabolic process | 5’ UTR | |
ENSG00000212719 | LINC02693 | long intergenic non-protein coding RNA 2693 | NA | Intron (2 of 6) | |
ENSG00000164093 | PITX2 | paired-like homeodomain | negative regulation of transcription from RNA polymerase II promoter | Exon (3 of 5) | |
ENSG00000269897 | COMMD3-BMI1 | COMMD3-BMI1 | sodium ion transport | Distal Intergenic |
Metrics | Test Sample | |
---|---|---|
R2 | MAE | |
FDRP | 0.596 | 4.929 |
MHL | 0.424 | 5.334 |
PDR | 0.806 | 3.686 |
PM | 0.709 | 3.969 |
qFDRP | 0.668 | 4.278 |
Window Size | Cross Validation | Test Sample | Number of Regions with Non-Zero Coefficient in Regression Model | ||
---|---|---|---|---|---|
R2 | MAE | R2 | MAE | ||
9000 bp | 0.556 | 4.192 | 0.764 | 3.814 | 14 |
8000 bp | 0.665 | 3.698 | 0.774 | 3.504 | 16 |
7000 bp | 0.668 | 3.671 | 0.752 | 4.096 | 12 |
6000 bp | 0.718 | 3.437 | 0.743 | 3.889 | 13 |
5000 bp | 0.735 | 3.288 | 0.785 | 3.416 | 18 |
4000 bp | 0.760 | 3.187 | 0.823 | 3.043 | 13 |
3000 bp | 0.756 | 3.273 | 0.788 | 3.460 | 17 |
2000 bp | 0.791 | 3.019 | 0.812 | 3.305 | 16 |
1000 bp | 0.837 | 2.527 | 0.837 | 3.052 | 20 |
500 bp | 0.862 | 2.392 | 0.887 | 2.713 | 28 |
250 bp | 0.873 | 2.266 | 0.889 | 2.633 | 32 |
150 bp | 0.858 | 2.379 | 0.884 | 2.750 | 43 |
100 bp | 0.874 | 2.299 | 0.879 | 2.712 | 42 |
100 bp sliding window (20 bp step size) | 0.885 | 2.164 | 0.877 | 2.866 | 53 |
Ensembl Gene ID | Gene Symbol | Gene Name | Biological Process |
---|---|---|---|
ENSG00000114738 | MAPKAPK3 | MAPK-activated protein kinase 3 | MAPK cascade |
ENSG00000197142 | ACSL5 | acyl-CoA synthetase long-chain family member 5 | long-chain fatty acid metabolic process |
ENSG00000164082 | GRM2 | glutamate metabotropic receptor 2 | negative regulation of adenylate cyclase activity |
ENSG00000148734 | NRFFR1 | neuropeptide FF receptor 1 | G-protein coupled receptor signaling pathway |
ENSG00000115594 | IL1R1 | interleukin 1 receptor type 1 | inflammatory response |
ENSG00000142235 | LMTK3 | lemur tyrosine kinase 3 | protein phosphorylation |
ENSG00000158458 | NRG2 | neuregulin 2 | signal transduction |
ENSG00000010322 | NISCH | nischarin | apoptotic process |
ENSG00000197646 | PDCD1LG2 | programmed cell death 1 ligand 2 | adaptive immune response |
ENSG00000106772 | PRUNE2 | prune homolog 2 with BCH domain | apoptotic process |
ENSG00000163239 | TDRD10 | Tudor domain containing 10 | P-granule organization |
ENSG00000165626 | BEND7 | BEN Domain-Containing Protein 7 | |
ENSG00000203709 | MIR29B2CHG/C1orf132 | MIR29B2 And MIR29C Host Gene | gene silencing by miRNA |
ENSG00000236333 | TRHDE-AS1 | TRHDE antisense RNA 1 | |
ENSG00000166135 | HIF1AN | hypoxia-inducible factor 1 subunit alpha inhibitor | peptidyl-histidine hydroxylation |
ENSG00000180720 | CHRM4 | cholinergic receptor muscarinic 4 | carbohydrate metabolic process |
ENSG00000164197 | RNF180 | ring finger protein 180 | protein polyubiquitination |
Metrics | Test Sample | |
---|---|---|
R2 | MAE | |
FDRP | 0.635 | 4.662 |
MHL | 0.648 | 4.444 |
PDR | 0.563 | 4.993 |
PM | 0.697 | 4.293 |
qFDRP | 0.722 | 3.962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karetnikov, D.I.; Romanov, S.E.; Baklaushev, V.P.; Laktionov, P.P. Age Prediction Using DNA Methylation Heterogeneity Metrics. Int. J. Mol. Sci. 2024, 25, 4967. https://doi.org/10.3390/ijms25094967
Karetnikov DI, Romanov SE, Baklaushev VP, Laktionov PP. Age Prediction Using DNA Methylation Heterogeneity Metrics. International Journal of Molecular Sciences. 2024; 25(9):4967. https://doi.org/10.3390/ijms25094967
Chicago/Turabian StyleKaretnikov, Dmitry I., Stanislav E. Romanov, Vladimir P. Baklaushev, and Petr P. Laktionov. 2024. "Age Prediction Using DNA Methylation Heterogeneity Metrics" International Journal of Molecular Sciences 25, no. 9: 4967. https://doi.org/10.3390/ijms25094967
APA StyleKaretnikov, D. I., Romanov, S. E., Baklaushev, V. P., & Laktionov, P. P. (2024). Age Prediction Using DNA Methylation Heterogeneity Metrics. International Journal of Molecular Sciences, 25(9), 4967. https://doi.org/10.3390/ijms25094967